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1 Abstract

A production system model of problem solving is applied to the
design of a vision system by which an autonomous land vehicle
(ALV) navigates roads. The ALV vision task consists of hypoth-
esizing objects in a scene model and verifying these hypothe-
ses using the vehicle’s sensors. Object hypothesis generation is
based on the local navigation task, an a priori road map, and
the contents of the scene model. Verification of an object hy-
pothesis involves directing the sensors toward the expected loca-
tion of the object, collecting evidence in support of the object,
and reasoning about the evidence. Constructing the scene model
consists of building a semantic network of object frames exhibit-
ing component, spatial, and inheritance relationships. The con-
trol structure is provided by a set of communicating production
systems implementing a structured blackboard; each production
system contains rules for defining the attributes of a particular
class of object frame. The combination of production-system and
object-oriented programming techniques results in a flexible con-
trol structure able to accommodate new object classes, reasoning
strategies, vehicle sensors, and image analysis techniques.

2 Introduction

The development of an Autonomous Land Vehicle (ALV) involves
the development of computer vision techniques by which a vehi-
cle can autonomously navigate itself through the environment.
Although the goals for the ALV are broad, including both on-
and off-road navigation, the work presented here is primarily
concerned with the road following task. From images acquired
from a camera, the ALV vision system constructs a model of the
environment; this scene model contains the objects visually iden-
tified by the ALV. Based on this collection of objects, the vehicle
plans a course and moves through the environment.

For the road following task, the scene model contains either
objects that represent the road or objects from which the location
of the road can be deduced. Obviously, the direct detection of
a patch of road would be most useful; however, in the event
that the ALV vision system cannot directly identify the road, the
detection of other objects may suggest the location of the road.
For example, telephone poles and ditches often run parallel to
the road; their presence may thus provide clues as to its location
and direction. In certain cases, major landmarks contained in
a road map such as buildings may be used to infer the road
location; however, such information is more useful in registering
the vehicle to some absolute location.

Construction of the scene model is complex. The selection
of which object to track depends on the navigation goals of the
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ALV, the history of object tracking, the contents of the scene
model, and information from the road map. Verifying the ex-
istence of an object requires directing vehicle sensors towards
the object, fusing data from different sensors, and selecting algo-
rithms for image analysis. Methods for performing all these tasks
are continually evolving as the road following task becomes bet-
ter understood. New objects must be tracked by the ALV, new
sensors are available to track objects, and new image processing
techniques are identified for sensor image feature extraction. The
successful evolution of an ALV vision system hinges on the ability
of its control structure and knowledge representation schemes to
accommodate these changes.

We propose the design of a system for constructing an ALV
scene model, offering a flexible control structure able to accom-
modate new strategies for object tracking, sensor selection, and
feature extraction. The goal of the system is to provide a flexible
tool for the development of ALV road following software. The de-
sign is based on concepts described in [Hanson & Riseman], but
offers a unique implementation based on a set of communicating
production systems.

3 System Overview

The task of building a scene model for the ALV consists of two
major subtasks:

1. deciding what object to look for and where to look for it;
2. verifying that the object exists in the world.

These two functions are performed by the Scene Model Plan-
ner (the Planner) and Scene Model Verifier (the Verifier), re-
spectively; together, they form the Scene Model Builder (the
Builder). The data flow diagram for the Builder is presented in
Figure 1. The Planner, in addition to interpreting and updat-
ing the scene model, is aware of the local navigation task and
initiates queries to the a priori road map. The Verifier controls
the movement of the sensors and acquires the sensor image data.
In a hypothesize-and-test paradigm, the Planner sends object hy-
potheses to the Verifier, while the Verifier returns verified objects
to the Planner. The dataflow of the Builder proceeds as follows.
The Planner first determines the scene model requirements of
the local navigation task; for example, following a straight road
requires that the left and right road boundaries be contained in
the scene model. Next, the Planner looks at the road map and
the partial scene model and decides what objects may be useful
in locating the road; for example, it might decide that a road
patch, a ditch, or even a row of telephone poles is sufficient to



define a road boundary. The Planner then decides the type and
expected location of the object to be tracked, hypothesizes the
object, and passes the hypothesis to the Verifier.

The Verifier attempts to verify the hypothesis by directing
the vehicle’s image sensors towards the expected location of the
object. The object is then located in the sensor images and its
image location is mapped to a 3-D location based on a fixed
point of reference. The confidence with which the object is found
becomes a measure of its verifiability. Once the confidence is
defined, the hypothesis is returned to the Planner for inspection.
If the object is deemed sufficiently verified, it is added to the scene
model. Otherwise, the Planner determines the next course of
action; for example, the object may be hypothesized in a different
location, or a new object hypothesized.

Scene
Model

Local Scene A Priori
Navigation Model Road
‘ank Planner Map
Hypothesis

Figure 1: The Scene Model Builder Dataflow

4 Modeling World Objects

Objects in the ALV scene model exhibit the following relation-
ships:

e Component Relationships. For example, an intersection is
made up of four connecting roads, stop lights, etc. These
component objects, in turn, can be decomposed into their
component objects, e.g. a road may be defined as a pair of
left and right segments, each edge representing the border
between road and shoulder, or shoulder and background.
Primitive objects such as lines and surfaces extracted from
an image cannot be decomposed.

Spatial Relationships. For example, telephone poles are of-
ten located near the road and run parallel to the road.

Property Inheritance. For example, a three-dimensional
line segment may be defined by a pair of endpoints. The
edge separating the road surface from the shoulder is a
specialization of a three-dimensional line segment; thus, in
addition to its properties specific to a road edge, it inherits
the endpoint properties of the three-dimensional line seg-
ment.

To accommodate these relationships, frames have been chosen
to model objects [Minsky]. The following sections describe the
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object frames defined in the system; the frame attributes are
discussed in more detail in [Dickinson & Davis].

A planar ribbon is defined as a pair of facing and parallel
three-dimensional line segments. A road patch is a specialization
of a planar ribbon, whose three-dimensional line segments repre-
sent the left and right features of the road. Thus, a road patch
frame inherits the attributes of a planar ribbon. Road patches
are oriented and may be connected together to form a piece of
road; the front of one road patch may be connected to the back of
another. The orientation of a road patch is based on the assigned
orientation of the initial road patch; typically, the back end of
the initial road patch is closest to the ALV, while the front end
is furthest from the ALV. The left and right features, i.e. three-
dimensional segments, are oriented looking from the back to the
front of the road patch. Figure 2 depicts the vehicle with respect
to a series of road patches.

A world segment is defined as a three-dimensional line seg-
ment. A road patch segment is a specialization of a world seg-
ment representing a road feature, i.e. the boundary between the
road surface and the shoulder surface or the boundary between
the shoulder surface and the vegetation or background. Thus a
road patch segment frame inherits the attributes of a world seg-
ment. Road patch segments are oriented and may be connected
together to form a continuous linear feature; the front of one road
patch segment may be connected to the back of another. The ori-
entation of a road patch segment is based on the orientation of
its parent road patch.

A camera segment is defined as a two-dimensional line seg-
ment extracted from a camera image. A road patch camera seg-
ment is a specialization of a camera segment representing the
two-dimensional projection of a three-dimensional road feature.
Thus a road patch camera segment frame inherits the attributes
of a camera segment frame. Road patch camera segments are ori-
ented and may be connected together to form a continuous two-
dimensional linear feature; the front of one road patch camera
segment may be connected to the back of another. The orienta-
tion of a road patch camera segment is based on the orientation
of its parent road patch segment.

search location
(of hypothesized
road patch)

Road Patch #5
(last road patch
in scene model)

= verified road patch
E = unverified road

Road Patch #4
Road Patch #8
Road Patch #2

prior road straightness

(of hypothesized road patch)
Road Patch #1

Figure 2: A Series of Road Patches



5 The Scene Model Planner

The scene model is central to the ALV vision system. It is ac-
cessed by the Planner in determining what object to search for,
and by the ALV navigator when plotting a course through the
scene model objects. Based on the local navigation task, the a
priori map, and the scene model, the Planner decides what type
of object to track and verify. To simplify the initial implementa-
tion of the Planner, we have assumed a constant local navigation
task of following the road ad infinitum, and an a priori road map
which contains the approximate locations of intersecting roads
along with an approximate road width. Hence, the production
system consistently selects a road patch for verification by in-
stantiating a road patch frame whose attributes are undefined.

The next task of the Planner is to choose the search loca-
tion of the road patch hypothesis. The production system first
queries the scene model for the directional history of the road.
If the direction has varied erratically, then the Planner’s confi-
dence as to the location of the road patch is low. Imposing the
constraint that the hypothesized road patch must be connected
to the last road patch in the scene model improves the likelihood
of verifying the road patch hypothesis. Hence, the Planner, im-
plemented by a production system, defines the search strategy
as “connected”; the search location is defined to be the leading
edge of the connected road patch. If the road has been found to
be recently straight for, say, at least 10 meters, then the Planner
assumes that the road beyond the scene model is also straight.
In this case the search strategy is defined to be “disconnected”
and the search location is extrapolated a distance of 10 meters
from the end of the scene model. If successful, the scene model
can be built more rapidly in this fashion, ultimately resulting in
higher vehicle speeds.

The Planner is now ready to send the road patch hypothe-
sis to the Verifier, where evidence is gathered in support of it.
Once complete, the Verifier returns the hypothesis to the Plan-
ner; all the attributes in the road patch frame are now defined.
If the evidence is deemed acceptable by the Planner, it will add
the verified object to the scene model. However, if the evidence
is considered unacceptable, several options are available to the
Planner:

1. hypothesize the object at a different location;
2. hypothesize a different object;
3. retain the verified components of the unverified object.

Currently, only option 1 is implemented and proceeds as follows.
If the unverified road patch hypothesis is disconnected, i.e. the
Planner ventured out beyond the end of the scene model to hy-
pothesize the road patch, the hypothesis is abandoned and a con-
nected road patch is hypothesized back at the end of the scene
model. If the unverified road patch hypothesis is connected, the
Planner aborts the road following task. Figure 3 summarizes the
actions taken by the Planner.

6 The Scene Model Verifier

The role of the Verifier is to receive an object hypothesis from the
Planner, collect evidence in support of the object, and return the
verified object to the Planner. More specifically, when the Verifier
receives an object hypothesis in the form of a sparsely defined
frame, it proceeds to fill in the empty attributes; if the object
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Figure 3: The Scene Model Planner States

has component parts, e.g. a road patch segment, the Verifier
must create and define these frames. To accomplish this task, a
separate blackboard has been assigned to each class of object.

When an object hypothesis is posted on the blackboard cor-
responding to its class, knowledge sources are activated to fill the
empty attributes of the hypothesis. As in the case of the Plan-
ner, each blackboard is implemented as a frame, providing a set
of attributes and inheriting the capabilities of a production sys-
tem. The attributes provide links to other blackboard frames and
system modules, e.g. vehicle pilot and image processor. The pro-
duction system rules control the activation of knowledge sources,
i.e. when the left-hand side of a rule matches the contents of
the factual database, the right-hand side activates a knowledge
source. Ties are resolved by the conflict resolution strategy.

Blackboard frames, like object frames, possess both compo-
nent and inheritance relationships; spatial relationships are unde-
fined for blackboard frames. For example, the road patch black-
board has an attribute pointing to the road patch segment black-
board; although there are two component road patch segments
for each road patch, there is only one road patch segment black-
board on which every instance of a road patch segment object
is posted. When an object blackboard is instantiated, it may
inherit the attributes and rules of other object blackboards.

When the Planner hypothesizes an object, the Verifier in-
vokes a top-down approach to verify the object. In Figure 4, this
approach has been applied to the verification of a road patch
hypothesis. Once the Planner creates the road patch hypothe-
sis, it posts it on the road patch blackboard (a specialization of
a planar ribbon blackboard). The rules belonging to the road
patch blackboard, acting as daemons, invoke knowledge sources
to define the attributes of the now sparsely defined road patch
hypothesis. The rule antecedents ensure that the attributes are
defined in a specific order. When rules fire to define the left road
patch segment component, the activated knowledge source cre-
ate a road patch segment object hypothesis, and posts it on the
road patch segment blackboard. At this point, control is trans-
ferred to the road patch segment blackboard while the road patch
blackboard is put to sleep.

Responding to a new object hypothesis on their blackboard,
the rules belonging to the road patch segment blackboard proceed
to define the attributes of the road patch segment object. When
rules fire to define the camera segment attribute, the activated
knowledge source creates a road patch camera segment, defines
a subset of its attributes, and posts it on the road patch segment
blackboard. Control is transferred to the road patch camera
segment blackboard.



The rules at the road patch camera segment blackboard de-
fine an image search area and an image processing line detec-
tor, and proceed to extract a segment from the image. Once
the road patch camera segment hypothesis is completely defined
(including a confidence measure), control is passed back up the
hierarchy. The process is repeated for the right hand segment.

This system of communicating blackboards offers many ad-
vantages to the system builder. Each modular blackboard con-
trols the definition of a single object class; as new classes are
created, new blackboards are defined. If the definition of a class
is changed, i.e. attributes are added or deleted, new sets of rules
are added or deleted. Since rules map to single attributes, the
alteration of one set of rules will have little or no impact on rules
corresponding to other attributes. Within each blackboard, the
inherent advantages of a rule-based system are clear. Rule-based
activation of knowledge sources provides a data-driven, flexible
control structure, while English-like rules provide readability and
support maintainability.

Road Patch
Blackboard road patch

hypothesis

rule defining

*has-part-right-world-segment®
attribute

rule defining
*has-part-left-world-segment”
attribute

road patch segment
Road Patch 2 hypothesis
Segment
Blackboard Toad patch segment s
hypothesis

rule defining
“has-part-camera-segment”
attribute

rule defining
"has-part-camera-segment”
attribute

road patch camera
Road Patch segment hypothesis
Camera Segment

Blackboard

road patch camera 5
segment hypothesis

Figure 4: Top-Down Hypothesis Verification

7 Experimental Results

In this section we demonstrate the system on two road sequences;
the road images were taken from the Martin Marietta ALV test
track in Denver, CO. The current implementation runs in the
Maryland Franz Lisp environment [Allen et al.], under UNIX!
4.3BSD on a VAX? 11/785. As described earlier, all system mod-
ules are frames implemented using the Maryland Franz Flavors
package [Wood]; the production system frames inherited by the
Planner and Verifier blackboards are implemented using YAPS
[Allen]. YAPS is an antecedent-driven production system similar
to OPS5 [Forgy|, but offering more flexibility. Functions bound
to the frames are implemented in Lisp; C routines are called
from the Lisp environment for numerically-intensive processing.
All image display functions are provided by a Vicom image pro-
cessor.

The first sequence is shown in Figure 5 and demonstrates the
construction of a scene model containing a curved road. At the

1UNIX is a trademark of Bell Laboratories.
2VAX is a trademark of Digital Equipment Corporation.
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bottom of the image, the initial search windows are placed ac-
cording to the a priori points on the side of the road; the search
windows are indicated by the rectangular boxes which contain
the extracted line segments. From then on, the road patch con-
nected search strategy is repeatedly invoked to verify successive
connected road patches. Following the insertion of the eighth
road patch into the scene model, over 10 meters of straight road
have been accumulated. In this case, the disconnected search
strategy is invoked resulting in a search location 10 meters be-
yond the end of the scene model. However, because the vehicle
could not predict the upcoming curve in the road, the predicted
search location is off the road, ultimately yielding a road patch
with very poor total confidence (due to lack of parallelism and
poor width). The Planner aborts the disconnected search strat-
egy and invokes the connected search strategy from the previ-
ously verified road patch in the scene model. As a result, the
curve is successfully navigated, as shown in Figure 6.

Figure 5: Tracking A Curved Road - Frame 1

Figure 6: Tracking A Curved Road - Frame 2



8 System Evolution

In Section 7 we demonstrated two search strategies invoked by
the Planner to verify a road patch. As these strategies are rather
simplistic, we expect that they will evolve with time, and have
designed the control structure to accommodate such evolution.
In this section, we demonstrate the flexibility of the control struc-
ture by exploring the effects of altering the search strategy used
by the Planner.

The current search strategy dictates that the Planner abort
the disconnected search strategy in the event of an unverifiable
road patch hypothesis. Rather than returning to the connected
search strategy, we might try to relax our projected search loca-
tion and re-hypothesize the road patch halfway between the un-
verified road patch and the last verified road patch in the scene
model. We replace our old rule with the following rule:

(defp disconnected-to-halfway-retry
(hypothesized object -object)
(goal (process road patch hypothesis ~object))
test (eq (<- -object 'search-strategy) ’disconnected)
(cond ((mot (null (<- -object 'total-confidence)))
(< (<- -object 'total-confidence)
NIN-ROAD-PATCH-CONFIDENCE)))
-->
(<~ -object 'set-search-location
(<- -object 'set-search-location (halfway
(<= (<- (<- syaps-db* ’scene-model)
‘:iretrieve-most-recent-road-patch)
‘search-location)
(<- -object ’'search-location)))))

In this case, the search location is calculated by a function finding
the midpoint between the last road patch in the scene model,
and the unverified road patch. Applying this strategy to the
unverifiable road patch in Figure 5, we obtain the results depicted
in Figure 7.

Figure 7: Dynamically Decreasing Road Projection
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9 Related Work

The decomposition of an object both by component and by level
of abstraction, and the construction of hierarchical frame net-
works, bear close resemblance to techniques used in the VISIONS
system [Hanson & Riseman|. In that system, the long term mem-
ory (LTM) contains a priori visual knowledge of the world, while
the short term memory (STM) represents the interpretation of
the scene. Both the LTM and STM are structured as a hierar-
chy of levels of representation defining the levels of object ab-
straction. The control strategy first decides which partial model
(frame network) to focus on, expands (hypothesizes) a node, and
finally verifies the node. Although originally defined for outdoor
house scenes, this work has been extended to the road following
task [Arkin et al.].

[Lawton et al.| describe a system resembling the VISIONS
system. The short term memory acts as a dynamic scratchpad
for the vision system, containing object hypotheses, incoming
imagery, and the results of feature extraction. When hypothe-
ses accumnulate sufficient evidence, they are moved to the long
term memory, which includes a priori terrain representations.
The control structure provides both top-down and bottom-up
hypothesis instantiation over the network hierarchies. Although
hypothesis instantiation in the above systems is both top-down
and bottom-up, the entire sensor image is processed to initialize
the short term memory with image features; local processing in
our system is based on [Le Moigne et al.].

[Smith & Strat] describe an information manager that is the
core of a sensor-based autonomous system. A centralized knowl-
edge database is proposed, accessible to a community of indepen-
dent asynchronous processes. The representation scheme orga-
nizes data tokens in both an octree and a semantic network thus
supporting both spatial and semantic queries. The independent
asynchronous processes can be activated by daemons embedded
in the database or by procedure call.

10 Conclusions

The system described in this report provides a flexible architec-
ture for constructing an ALV scene model. The representation of
objects as networks of frames offers a natural grouping of knowl-
edge; the multiple layers of abstraction facilitate the addition of
new sensor features in support of existing world objects. Con-
struction of the frame network is provided by a set of modular
blackboards providing top-down instantiation of the frames in the
network. Each blackboard, implemented by a production system,
is an “expert” in defining a particular class of frame; the English-
like rules governing the invocation of knowledge sources are easy
to understand, and narrow the gap between control specification
and implementation. From a system maintenance standpoint, all
object frames, blackboards, production system tools, and object
oriented programming tools are off-the-shelf; these facilities are
documented, tested, and readily accessible. The implementation
languages supporting the system cover the needs of the program-
mer; YAPS offers high-level encoding of control strategy, Lisp
provides symbolic manipulation, C speeds up numerical process-
ing, and Flavors facilitates inter-object communication.

The system is currently being expanded to support new plan-
ning and verification strategies. The Planner is being supple-
mented with strategies for road following in the event that a
connected road patch cannot be verified. This includes proceed-



ing past an unverified road patch provided that it contains a
verified component, and invoking an exhaustive search for road
patches in a given area; the latter strategy will be accomplished
using bottom-up verification in which road patch camera seg-
ments posted at lower levels generate instances of road patches
at upper levels. This integration of top-down and bottom-up ver-
ification will remove some of the burden placed on the Planner
of accurately predicting the location of an object.
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