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Abstract
Previous approaches to deformable model shape estimation
and tracking have assumed a fixed class of shapes represen-
tation (e.g., deformable superquadrics), initialized prior to
tracking. Since the shape coverage of the model is fixed, such
approaches do not directly accommodate incremental repre-
sentation discovery during tracking. As a result, model shape
coverage is decoupled from tracking, thereby limiting both
processes in terms of scope and robustness. We present a
novel deformable model framework that accommodates the
incremental incorporation during tracking of new geometric
primitives (lines, in addition to points) that are not explicitly
captured in the initial deformable model but that are moving
consistently with its image motion. As these new features are
detected via consistency checks, they are added to the model,
providing incremental soft constraints on the estimation of
its rigid parameters. The consistency checks are based on
trilinear relationships between geometric primitives. Con-
sequently, we not only increase both model scope and, ulti-
mately, its higher-level shape coverage, but improve tracking
robustness and accuracy, by directly employing the new fea-
tures in both forward prediction and reconstruction. Our new
formulation is a step towards automating model shape esti-
mation and tracking, since it requires significantly reduced
initial model hand-crafting. We demonstrate our approach on
two separate image-based tracking domains, each involving
complex 3D object shape and motion.
Keywords: Deformable models, geometric constraints, ob-
ject tracking, model grouping, bundle adjustement.

1 Introduction

1.1 Approach
Deformable models offer a powerful, data-driven framework
for recovering the shape and motion of an object through nu-
merical integration of a dynamical system that encodes the
fitting error. The process is a physics-based interpretation of
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an optimization process, in which the initial model shape and
pose are supplied by an initialization process that aligns the
model with the object of interest in the initial image. The
model subsequently moves under the action of forces de-
rived from image measurements which, in turn, are converted
(through a Jacobianmatrix) into generalized forces that act on
the model’s rigid and non-rigid degrees of freedom.
The quest for robustness and accuracy during model es-

timation naturally leads to the search for geometrically and
photometrically derived image forces (cues), for model pa-
rameterizations, and for ways to combine them in a consis-
tent manner. Although previous approaches have investigated
the use of particular combinations of cues in the context of
deformable models, they assumed a fixed and known initial
model shape representation.
In this paper, we present a novel two-step technique in

which new model structure is revealed during tracking using
geometric consistency checks. These checks combine het-
erogeneous information, involving an initial model’s rigid pa-
rameters as well as independently tracked line features in the
image. Our goal is to enhance the higher level model shape
representation with additional deformable shapes, and enrich
its basic discretization power through the incremental addi-
tion of line features.
In our approach, line features (not belonging to the initial

deformable model) are tracked in an image sequence. Those
features whose motion is consistent with the model are re-
constructed, integrated into the initial (high-level) model rep-
resentation, and subsequently used to increase tracking ro-
bustness. The technique consequently attempts to bridge the
gap between model-based, top-down estimation techniques
and classical bottom-up, feature-based reconstruction tech-
niques, by relaxing some constraints on each side. Com-
plete model representation is no longer fully known a-priori,
while knowledge of feature motion is acquired during recon-
struction, once their identity as being part of the model is
established. Our final model is a mixture of lines, points
and parameterized shapes, and generalizes the shape cover-
age of previously-used deformable models. We show how a
deformable model framework naturally accommodates rigid
and non-rigid high-level shape representations and their as-
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sociated constraints, and various model discretizations such
as points and lines, by combining the simplicity of linear re-
constructionmethods with the refinement and bias removal of
non-linear estimation methods.
We present experiments involving complex objects and

motion in monocular video sequences and show that the pro-
posed method is able to recover model structure accurately
and efficiently. We also quantitatively show how the novel
recovered structure significantly improves the accuracy and
speed of the deformablemodels estimation process, providing
important additional constraints especially during difficult to
track, towards camera motion.

1.2 Relation to Previous Work
In the area of physics-based deformable models, various for-
mulations have been proposed ([25, 13, 17, 16]). As powerful
as these techniques are, they typically assume the model rep-
resentation is fixed and known a-priori, sometimes imposing
a heavy burden on the model initialization/recovery process
([6, 5]). Furthermore, a representational “gap” exists between
the coarse, parametric shapes used to model the objects and
the point-based discretizations used to bind them to the im-
age; no obvious method exists to bridge this gap through the
inclusion of other basic geometric primitives, e.g., lines. On
the other hand, it has been recognized ([19]) that the rather
different parameterizations of various features encountered in
different approaches or applications usually lead to difficult
problems when attempting to integrate those features within
a particular representation or optimization procedure.
In the area of constraint integration, particularly in a de-

formable model setting, contours and stereo ([26]), shading
and stereo ([7]), contours and optical flow ([3, 4]), and shad-
ing ([18]) have been introduced, with good results. Beyond
the particular choice of sources of information to use, the ap-
proaches differ in the way they fuse their component informa-
tion. Some combine the information in a symmetric manner
and weight them statistically (soft constraints). Others favor
a particular hierarchical constraint satisfaction order with an
exact policy, such that inconsistent contributions to the solu-
tion from constraints further down in the hierarchy are pruned
away by constraints higher-up (hard constraints).
Finally, in the area of feature-based rigid motion and struc-

ture estimation, various approaches based on the type of cor-
respondences (2-D to 2-D, 2-D to 3-D, or 3-D to 3-D) as
well as the type of features (lines, points, or corners), have
also been proposed (see [10] for a review). Several algo-
rithms, commonly based on Kalman filtering, are also known
([2, 27]). Approaches to simultaneous structure and motion
estimation, based on the inversion of the so-called forward
model, have been presented. Many of these methods, such as
[23, 1, 24], could be related to the classical relative orientation
paper ([11]).
The approach we present here is based on a deformable

model formulation similar to ([25]), in which we employ an
articulated chain of deformable superquadrics with global de-
formations, such as tapering bending, shearing and twisting.
For broader modeling coverage, additional local deformation
functions could also be used. As in the standard formula-
tion, we employ local contour-based forces derived from im-
age gradients for basic model motion estimation. We diverge
from previous approaches in that we assume our initial model
is incomplete, and attempt to recover additional model struc-
ture through the use of geometric consistency checks embed-
ded in a tracking framework. Specifically, we integrate con-
straints in the form of new line features discovered in the im-
age as moving consistently with the model, with constraints
in the form of point features derived from a discretization of
the model.
The line feature consistency checks we use are based on

the conditions present in separate, bottom-up structure and
motion estimation under 2-D to 2-D line correspondences in
the Euclidean calibrated case ([10, 15, 28]). A later body of
work for calibrated, uncalibrated, and projective reconstruc-
tion cases ([22, 21, 8] addresses trilinear constraints between
points and lines in 3 views, and presents linear, bottom-up,
and model-free rigid reconstruction methods (see [9] for a
comprehensive review).
However, unlike these approaches, we assume an incom-

plete deformable and Euclidean model and we don’t attempt
to solve for the rigid parameters. On the contrary, by know-
ing the estimated rigid parameters of the model, we only at-
tempt to check whether the consistency conditions are indeed
satisfied for arbitrarily independent tracked lines in at least
three frames. Once consistent lines have been identified, they
are reconstructed, and the model representation is enhanced
to include them. Their prediction in subsequent frames un-
der the action of the Euclidean group is derived, while their
structure is continuously re-estimated together with the de-
formable structure and motion of the other model parts. Their
contribution to the solution for the model’s estimated rigid
parameters is linearized by means of their corresponding Ja-
cobian matrix and integrated as an additional soft constraint
(see section 3.5).

2 Deformable Model Formulation
In the next two sections, we shall briefly review the de-
formable model formulation in terms of its underlying geom-
etry and dynamics (see [14] for details).

2.1 Model Geometry
The reference shape of the model is defined over a domain
Ω as p = T(qd,u), where T defines a global deformation
based on the parameters, qd and u ∈ Ω. Following [20], we
employ a deformable superquadric ellipsoid, having global
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tapering and bending deformations, as a reference shape. The
position of a point on the model is expressed with respect
to a world coordinate system Φ as x = D(qr,p), where D
represents a rigid displacement parameterized by qr. Finally,
both rigid and non-rigid parameters are assembled in a vector,
q = (qr,qd), sometimes referred to as the model’s general-
ized coordinates.

2.2 Dynamics and Generalized Forces
The velocity of points on the model is given by:

ẋ(u) = L(q,u)q̇ (1)

where L is the model Jacobian matrix [25]. By omitting the
mass term (since we want a model free of inertia), the La-
grangian dynamics equations become [25]:

Dq̇ + Kq = fq, fq =
∫

L!fdu (2)

whereD =
∫

γL!L, andK = diag(ksi), with ksi being the
stiffness associated with the global parameter i.
When the estimation of the model is based on image con-

tours, the above formulation has to be extended to include: 1)
the perspective projection Jacobian, Lp, computed in terms
of the model Jacobian and the perspective transform Jacobian
evaluated at points on the model discretization, and 2) the def-
inition of local forces fp derived from image potentials (see
[14] for derivations). Consequently, the generalized forces
with respect to edges are defined as:

fqe =
∫

L!
p fpdu (3)

3 Line Feature Formulation
The formulation of the tracking process in the previous sec-
tions is based on a physics-based deformable framework,
where the model moves under the action of local forces de-
rived from image potentials. In this section, we extend that
formulation by integrating new line features into the model –
line features that are initially not part of the model, but for
which evidence exists in the image. We begin by tracking
a minimal model in a sequence of images and attempt, in-
crementally over time, to: 1) identify line features moving
consistently with the model, and 2) augment the model with
these consistent features to improve its tracking. At each iter-
ation, the model not only increases in scope but covers more
of the image features, resulting in more robust tracking of the
object.
Our approach consequently attempts to relate two pro-

cesses at the image and model levels, respectively. At the
image level, we employ purely image-based techniques to
track lines in a sequence of frames. We call such lines image-
tracked lines (ITL). At the model level, we use contour based

gradient forces to estimate the model (rigid and non-rigid)
parameters. First, we decide whether an ITL represents a
line belonging to the object (but not present in its model)
by means of two geometric consistency checks, derived from
tracking the ITL in at least three successive frames. The lines
that pass this test are called consistent image-tracked lines
(CITL). Second, for CITLs detected in the previous step, we
attempt to robustly recover their structure in terms of an un-
derlying parameterization in a model-centered frame. Third,
we predict how a CITL will appear in a subsequent image
based on the current estimate of the model’s rigid motion. We
call this prediction a model-predicted line (MPL). Finally, we
use the error between a CITL and a MPL to define additional
image alignment forces. They are subsequently linearized
by means of their corresponding Jacobian matrices and com-
bined into the model estimation procedure as soft constraints.
The initially reconstructed line representation is subsequently
re-estimated, together with the entire model structure and mo-
tion, within the deformable model framework.

3.1 Line parameterization
In the following formulation, we denote a line in 3-D by
lower-case letters, li(i = 1..n), and its corresponding pro-
jected line (or segment) in the image plane by capital letters,
Li(i = 1..n). A 3-D line is parameterized by a unit vector
v, representing one of two possible directions on the 3-D line
l, and a vector d terminating on l and perpendicular to it (see
Fig. 1a). This line representation forms a 6-dimensional pa-
rameter space with 4 degrees of freedom. Consequently, the
underlying relation between the line primitives can be iden-
tified as a 4-dimensional manifold embedded in the abstract
parameter space, and any line can be identified with (actually
two) points on this manifold ([12, 24]).
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Figure 1: Line Representation and Motion

The 3-D line, l, and the optical center of the camera
determine a plane (line’s interpretation plane) with normal,
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N = (Nx, Ny, Nz). This plane intersects the image plane,
defined by the equation z = f (f being the camera focal
length) at line L. The equation of line L in the image plane
can be consequently written as:

NxX + NyY + Nzf = 0 (4)

The above relation, used in an inverse manner, yields an
immediate representation for the normal of the plane contain-
ing a 3-D line in space by knowing the image plane equa-
tion of its projected (observed) line, or segment. In vector
terms, given a plane, P = (Nx, Ny, Nz, 0) = (N, 0), and
any point belonging to the interpretation plane of a given
line, X = (X, Y, Z, 1), we can write the plane equation as
P!X = 0.

3.2 Model-Based Consistency Checks
The standard formulations for recovering motion and struc-
ture using 2-D to 2-D line correspondences (e.g., [10, 28, 15])
rely on three frames and at least six line correspondences (al-
though no formal proof is yet available, [10]) for uniquely
recovering the structure and motion of a rigid object (within a
scale factor for translation and structure parameters). Further-
more, for the two view case, the resulting system of equations
is under-constrained, so one would expect infinitely many so-
lutions.
Consider now the motion of a 3-D line, l, in three suc-

cessive frames (li, i = 1, 2, 3, with direction support vi, i =
1, 2, 3) and it’s corresponding image projected lines (L i, i =
1, 2, 3). The motion between frames 1 and 2 is described by
the translation and rotation, t12 and R12, and for frames 1
and 3, by t13 and R13, respectively. The corresponding nor-
mals for the interpretation planes, P1, P2, P3, determined by
the line L and the center of projection in the three frames, are
N1,N2,N3, respectively (see Fig. 1b).
The following two relations can be derived either geomet-

rically or algebraically, from the quantities presented above
([10, 15, 28]):

N1 · (R−1
12 N2 × R−1

13 N3) = 0 (5)

−t12 · (R12N1) =
‖N2 × R12N1‖
‖N2 × R−1

23 N3‖
·R−1

23 t23 ·R−1
23 N3 (6)

In this model-based formulation, we are not interested in solv-
ing for the rotation and translation but, given a model with
knownmotion and some independent ITLs, checkingwhether
those lines are moving consistently with our model (CITLs).
More specifically, given an ITL in three frames (that is, know-
ingN1,N2 andN3) as well as the motion of the model (that
is, R12, t12 and R13, t13), we use equations (5) and (6) to
check whether the motion of the line is consistent with the
model’s motion. If so, we hypothesize that the line is part of
the object and therefore should be added to the model. One

can prove that the above two relations are necessary and suf-
ficient conditions for consistency. In practice, the above two
relations are never satisfied exactly, due to slight errors in the
image tracked lines and errors in the estimated model rigid
parameters, so a threshold must be chosen, based on the co-
variance of both model rigid parameters estimation and the
image tracked lines, respectively.

3.3 Robust Unbiased Model-Based Structure
Recovery

Once a moving image line has been assigned to the model
through the above consistency check, the next step is to re-
cover its structure, i.e., the vector pair (v,d) in a model-
centered coordinate system. In order to increase the robust-
ness of the recovery process, we can use as many line corre-
spondences in as many frames (at least two) as are available.
The process can be formulated as follows: all interpretation
planes for the line correspondences in a camera frame are
transformed to a common, model-centered coordinate frame.
Each line, li, having the interpretation plane,P i, is subject to
the displacement,D−1

c D−1
i , where:

Dc =
[
Rc tc
0 1

]

is the displacement corresponding to the camera, and D i is
the displacement corresponding to the model (in the world
coordinate system) in frame i. Then, the equation of the plane
in the object-centered frame is: Pi

! ·D−1
c D−1

i · X = 0. By
stacking together the equations for corresponding lines, we
obtain:

A ·X =





P!
1 ·D−1

c D−1
1

P!
2 ·D−1

c D−1
1

...

...

...
P!

k ·D−1
c D−1

k




· X = 0

Since we are looking for the line intersection of all the
above planes, the above [k x 4] matrix A should have rank
2. Any point p on the intersecting line can be written as a
linear combination of the singular vectors corresponding to
the 2 smallest singular values of the matrixA:

p = a · Xs1 + b ·Xs2 (7)

The corresponding line parameterization can be subsequently
recovered as:

v = Xs1 − Xs2 d = (I− v · v!

‖ v ‖2
) ·Xs1 (8)

As mentioned before, a 3D line has 4 intrinsic degrees of freedom while
a projected image line has just 2. Measurements are collected in 3 frames, so
this will determine 3x2-4=2 independent relations.
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The stability of the reconstruction can be verified in terms
of the ratio of the 2nd and 3rd singular values of A (remem-
ber that in the noise free case the last two singular values
should be zero), being satisfactory when this ratio is high.
The above linear method, although robust, might be prone to
bias in the initial line parameter estimates, due to fixed rigid
displacements. However, we are working in a deformable
model framework, in which both model structure and model
motion are jointly estimated. Consequently, any such initial
linear bias is automatically removed during estimation in sub-
sequent frames.

3.4 Forward Model Line Prediction
Once consistent lines (CITL) have been identified, recovered,
and effectively added to the model, we use these new lines
to improve the tracking of the enhanced model by impos-
ing further constraints on its alignment with the data. The
approach we follow is to define alignment forces between a
CITL in the image and the projection (MPL) of its corre-
sponding (new) model line, as predicted under the forward
motion of the model.
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Figure 2: Lines transfer and alignment

Consider the two frame case, as illustrated in Fig. 2a.
Given (N1,v1,d1), one can obtain (N2,v2,d2) by geomet-
ric means as follows:

v2 = R12v1 (9)

d2 = (R12d1 + t12) − v2((R12d1 + t12) · v2) (10)

N2 =
v2 × d2

‖ v2 × d2 ‖ (11)

As mentioned in the introductory section,N2 fully identifies
the MPL in the second frame.
The Jacobian matrix associated with the line parameteriza-

tion is derived analytically (it is omitted here, due to lack of
space). Given a line representation, ul = (v!,d!)!, and the

rigid parameterization of the model qr, the Jacobian matrix
of the line parameters with respect to the model parameters is
a [6x7] matrix:

Lul =
∂ul

∂qr
(12)

3.5 Image Forces and Soft Constraints
Given an MPL, identified by equation (4), and a CITL, iden-
tified by its endpoints P1 = (X1, Y1) and P2 = (X2, Y2),
we define 2-D forces to compensate for their alignment er-
ror. Since the CITL and MPL each define an interpretation
plane, we define the line alignment forces in terms of the
alignment of their corresponding interpretation planes (see
Fig. 2b). Given Ni, the normal of the CITL interpretation
plane, and Nm, the normal of the MPL interpretation plane,
the corresponding alignment force can be written as:

fl(uli) = k ‖ Ni − Nm ‖ (13)

Notice that a final transformation maps a line representa-
tion to an observable “normal” on which the line alignment
is actually performed. The corresponding transformation is
given by equation (11), and involves the computation of an-
other [3x6] Jacobian matrix:

LN =
∂N
∂ul

(14)

The Jacobian Ll = ∂N
∂qr

corresponding to the mapping be-
tween the line representation in the model frame and the ob-
servation (the normal of the corresponding line interpretation
plane) is computed via the chain rule in terms of Jacobians
(12) and (14).
The normal alignment forces map the observation error

corresponding to the line, li, to the model’s parameter space
by means of the corresponding line Jacobian, L l(uli). As a
result, the combined generalized forces (due to image gra-
dient and line alignment) acting on the model’s degrees of
freedom sum over both point and line forces mapped by their
corresponding Jacobians:

fq =
∑

i
Lp(ui)!fp(ui) +

∑
lj
Ll(ulj)

!fl(ulj) (15)

4 Experiments
The experiments consist of two sequences, each containing
of 4 seconds of video (200 frames recorded at 50 fps) of a
moving bike and of a space robotics end-effector grapple fix-
ture. Both sequences involve significant translational and ro-
tational motion in the camera frame. Part of the bike frame
is modeled and tracked by means of a model consisting of
3 parts (Fig. 3a), while the grapple fixture consists of only
a square parallelepiped (Fig. 4a). Newly recovered models
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(a) (b)

Figure 3: Initial and Reconstructed Model Tracking

(a) (b)

Figure 4: Initial and reconstructed model, with new su-
perquadrics parts fitted

are displayed in Fig. 3b and Fig. 4b, in which additional de-
formable shapes have been fitted based on 3-D reconstructed
model lines, their covariance, and their corresponding image
contours (an algorithm for such higher-level shape-recovery
and grouping is beyond the scope of this paper, and will be
described in a subsequent paper).
The models have been manually initialized in the first

frame of the sequence, and are displayed in subsequent frames
aligned (overlaid and rendered in flat-shaded grey for the bike
and brown wireframe for the grapple fixture, respectively)
with the part of the object they model (for tracking results,
see Fig. 6). Additional lines, not part of the initial mod-
els, are tracked through the sequence by means of an inde-
pendent gradient-based line tracker, involving interest point-
based tracking, followed by line fitting and re-normalization
in each frame. Lines that are determined to be CITLs are dis-
played in green. The model reconstructed/predicted lines are
displayed in yellow. The consistency check is evaluated, us-
ing a threshold τ = 0.05, based on the lines present in frames
(20, 40, 60) for the bike sequence. For the space shuttle se-
quences, lines are incrementally tracked and recovered (some
are not visible initially) and the consistency checks are per-
formed several times for different lines, in the frames (20, 40,
60), (120, 140, 160) and (160, 175, 190).

It is important that the estimation of the models’ rigid mo-
tion is accurate as it affects both the validity of consistency
checks and the quality of the line reconstruction. In prac-
tice, since the models are initialized manually, there is always
uncertainty associated with their initialization. For this rea-
son, we do not attempt to check and reconstruct lines immedi-
ately after model initialization, but rather allow a slight delay
(around 20 frames in our experiments), such that the model
locks onto the data.
Any initial bias in the linear reconstruction is subsequently

eliminated through the re-estimation of the line representation
jointly with all the rigid and non-rigidmodel parameters in the
deformable model framework.
The least-squares-based reconstruction for the bike se-

quence is based on 12 frames within the interval, 20-60, while
for the grapple fixture, we use 12 frames in 20-60, 120-160,
160-190, respectively. In our experiments, this provided us
with sufficiently important motion and sufficient additional
lines for accurate, constrained reconstruction. The stability
of the reconstruction is checked, as explained in §3.3 by the
ratio of the 2nd and 3rd singular values associated with the
A matrix. We thus employ a principled criteria for selecting
sufficient lines and corresponding informative displacements
for the reconstruction. In both sequences, the frames prior
to new line reconstruction are tracked using the prior model
along with contour-based image forces, while the rest of the
sequence (once the CITLs have been reconstructed) is tracked
using the enhancedmodel (consisting of both the initial model
and the reconstructed lines, and using both contour and align-
ment forces between CITLs and MPLs).
Although no lines are reconstructed until frame 60 in the

bike sequence, their re-projection is displayed over the entire
sequence (note that since they are reconstructed in a model-
centered coordinate frame, they can be transferred backwards,
since the inter-framemotion of the model has already been es-
timated). For the grapple fixture sequence, we avoided plot-
ting the lines over the entire sequence in order to show how
they are incrementally tracked and recovered. Notice that for
both sequences, the reconstructed lines’ projections are cor-
rect.
The tracking results emphasize increased stability, as the

line features are reconstructed and integrated into the tracking
process as additional cues, especially during difficult to track
towards camera motion of the grapple fixture. The number of
iterations in the integration of motion equation (2) decreases
with the integration of additional line cues (see Fig. 5 for
plots). The average per-node error decreased from 0.9 (ini-
tially) to 0.4 pixels (frame 60) in the bike tracking sequence,
and from 1.2 pixels (initially) to 0.8 (frame 60), 0.6 (frame
160) and 0.2 (frame 190) in the grapple fixture sequence, re-
spectively, reflecting improved accuracy due to the integration
of line soft constraints in the deformable model estimation
process.
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Figure 5: Number of iterations per frame (Bezier interpola-
tion) decreases due to the addition of line constraints.

5 Conclusions
We have presented a framework for incremental model ac-
quisition and tracking using deformable models. We have re-
laxed the constraint that the representation of the model has
to be fully known a-priori, and have enhanced its basic dis-
cretization structure in terms of points and lines while pre-
serving higher-level shape information (in terms of paramet-
ric shapes). This has allowed us to formulate geometric con-
straints for feature consistency, reconstruction, and tracking
via cue integration in a flexible manner through the integra-
tion of top-down, unbiased defomable model-based estima-
tion techniques and bottom-up, linear feature reconstruction
techniques. Our initial experimental results are promising and
show that the proposed framework is able to deal with objects
with complex shape and motion, and to track and incremen-
tally recover structure with improved accuracy. Subsequent
work will include more rigorous quantitative evaluation of the
reconstruction and tracking improvement results, as well as
grouping and high-level model abstraction.
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(a) frame 0 (b) frame 40 (c) frame 80

(d) frame 130 (e) frame 170 (f) frame 200

(g) frame 0, no reconstructed lines (h) frame 40, 3 reconstructed lines (i) frame 80, 3 reconstructed lines

(j) frame 120, 4 reconstructed lines (k) frame 160, 7 reconstructed lines (l) frame 190, 10 reconstructed lines

Figure 6: Model Tracking (the bike model in grey flat-shaded and the grapple fixture model in brown wireframe) with CITLs
(green) and MPLs (yellow)
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