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Abstract 
Current methods for shape- based image retrieval are 

restricted to  images containing 2-0 objects. W e  pro- 
pose a novel approach to  querying images conta,ining 
3-0 objects, based on a view-based encoding of a finite 
domain of 3 - 0  parts used to  model the 3-0 objects ap- 
pearing in ,images. To build a quevy, the user manually 
identifies the salient parts of the object in a query im- 
age. The extracted views of these parts are then vsed 
to  hypothesize the 3-0 identities of the parts which, in 
turn, are used to  hypothesize other possible views of 
the parts. The resulting set of part views, along with 
their spatial relations (constraints) in the query im- 
age, form a composite q%ery that is  passed t o  the im- 
age database. Images containing objects ,with the same 
parts (in any viezu) ,with similar spatial relations are 
returned to  the user. The resulting viewpoint invariant 
indexing technique does not require training the system 
for all possible ,views of each object. Rather, the sys- 
t e m  requires only kno,wledge of the possible views for 
a finite vocab,ulary of 3-0 parts f rom which the objects 
are constructed. 

1 Introduction 
Current methods for shape-based image retrieval 

are restricted to 2-D shape, e.g., [l, 11, 17, 8, 18, 191. 
For example, consider a user who is observing an im- 
age of an automobile where the automobile is viewed 
from the side. Next, the user outlines the automobile 
in the image and asks the system to return images 
containing similar objects. The system will interpret 
similar as meaning “looks the same”, and will return 
(at best) only images containing cars that are viewed 
from the side. Images of cars viewed from the front, 
back, top, or bottom will not be returned. Although 
the objects are similar, the views are not. The sys- 
tem has no comprehension that similar 3-D objects 
can appear diferently, depending on viewpoint. 

For content-based image retrieval to be viewpoint- 

invariant requires that we have some way of associat- 
ing Logether the various views of an object. In our 
automobile example. the user-selected view of the car 
should somehow be associated with other views of the 
car, so that indexing is effectively performed with a 
set of view classes of the car. This would mean that 
the system would somehow have to know about all 
possible views of a car, so that the user-selected view 
could index to the set of car views. Each of the car 
views could then be passed as a separate query to the 
image database. 

This approach is impractical for two reasons. First, 
how LS the system to acquire the various views of the 
car, or any other object for that matter’? Such an 
approach would mean training the system on all pos- 
sible views of each object that might be contained in a 
query image. Although possible, this would be an ex- 
tremely tedious and time-consuming process. Further- 
more, novel objects selected by the user would there- 
fore not map to a set of views with which to index the 
image database, precluding a search for objects which 
might be similar in shape. The second problem is due 
to the large number of views required to encode a 3-D 
object. For example, in the system of Muraxse and 
Nayar, 72 views are required to sample a single line 
of latitude around the viewing sphere centered on an 
object [IS]. Even if we were somehow able to encode 
a set of definitive views for each object, the number 
of queries to the image database that we would need 
to make (one for each view) would be intractable for 
complex objects. 

An alternative approach to storing all possible 2-D 
views of a 3-D object is to store a 3-D model of the 
object,. Using a more traditional 3-D from 2-D recog- 
nition framework, e.g., [15, 10, 131, the user-selected 
view of the object could be recognized from a database 
of 3-D objects. Preprocessing of the image database 
would yield a table indexing objects to iniages. so that 
a recognized object in the query image would quickly 
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return a set of images containing that object. Unfor- 
tunately, this approach is equally infeasible, for it re- 
quires that a 3-D model exist for every possible query 
object. How is such a model acquired, and what form 
should such a model take? 

In this paper, we offer a novel viewpoint-invariant 
approach to shape indexing, which supports indexing 
using a set of view classes, but avoids the training 
and complexity issues outlined above. The technique 
is based on our previous work in object representa- 
tion, recovery, and recognition using part-based as- 
pect matching [5 ,  7, 6, 41. The underlying assump- 
tion is that views of objects can be broken down into 
smaller, simpler views of a finite, albeit large, set of 
volumetric part classes. The number of part classes, 
as well as their views, is therefore independent of the 
number of objects that are expected to appear. The 
views are precomputed off-line and stored in a sec- 
ondary, part-view database. 

Imagine the following scenario. Instead of outlin- 
ing the entire object in a query image, the user would 
identify two or three of the object’s constituent parts. 
The views of these parts would then be matched to 
the part view database containing the view classes 
for a large set of simple, volumetric parts. A match 
between a user-identified view and a view from the 
part view database yields the 3-D identity of the part, 
from which its other possible views can be enumer- 
ated. The resulting set of view hypotheses are then 
passed as a composite query to the image database. 
If a user-identified part view is ambiguous, i.e., if it 
maps to more than one volumetric part, then multiple 
sets of view classes, one set per part hypothesis, can 
be matched to the image database. 

To account for the fact that objects are composed 
of multiple parts, we must encode the spatial relation- 
ships between the user-selected parts on the object, 
and relate them to the results of the image database 
query. Simple connectedness in the image is sufficient, 
possibly resulting in false positive matches being re- 
turned to the user. For example, if two user-selected 
parts are connected on the object, then we will assume 
that for any database image in which both parts are 
visible, their respective (part) views will be adjacent 
in the image. 

Finally, one essential requirement of the view-based 
parts representation is that the views be invariant to 
minor deformations in the shapes of the parts. For ex- 
ample, if a part’s dimensions (or relative dimensions) 
change, or the curvature of the part changes, the set 
of views describing the part should be invariant to 
such deformations. Therefore, the views must be de- 

fined qualitatively to support the expected variability 
of the parts appearing in the images. 

2 A Parts-Based View Representation 
The hybrid representation we use to describe ob- 

jects draws on two prevalent object representation 
schools in the computer vision community. The first 
school is called object-centered modeling, wherein 3-D 
object descriptions are invariant to changes in their 
position and orientation with respect to the viewer. 
The second school is called viewer-centered model- 
ing, wherein an object description consists of the set 
of all possible 2-D views of an object, often linked 
together to form an aspect graph. Object-centered 
models are compact, but their recognition from 2-D 
images requires making 3-D inferences from 2-D fea- 
tures. Viewer-centered models, on the other hand, 
reduce the recognition problem from three dimensions 
down to two, but incur the cost of having to store 
many different views for each object. 

In order to meet the goals of qualitative object mod- 
eling and matching, we first model objects as object- 
centered constructions of qualitatively-defined volu- 
metric parts chosen from some arbitrary, finite set [5] .  
It is a t  the volumetric part modeling level that we 
invoke the concept of viewer-centered modeling. Tra- 
ditional aspect graph representations of 3-D objects 
model an entire object with a set of aspects (or views), 
each defining a topologically distinct view of an object 
in terms of its visible surfaces [12]. Our approach dif- 
fers in that we use aspects to represent a finite set 
of volumetric parts from which objects appearing in 
our image database are constructed, rather than rep- 
resenting the entire object directly. The resulting set 
of part aspects is therefore independent of the number 
of objects in the database. 

By having a sufficiently large set of volumetric part 
building blocks, and by assuming that objects appear- 
ing in the image database can be composed from this 
set, our training phase which computes the part views 
is independent of the contents of the image database. 
It is important to note that the part vocabulary need 
not be complete, but only sufficient to describe inter- 
esting portions of most interesting objects. There is 
no reason to describe the whole object as long as we 
can describe enough of it to perform indexing. 

A potential problem with our hybrid representation 
is that, if a volumetric part is occluded from a given 
3-D viewpoint, its projected aspect in the image will 
also be occluded. We must therefore accommodate the 
matching of occluded aspects, which we accomplish 
by use of a hierarchical representation that we call 
the aspect hierarchy. The aspect hierarchy consists of 
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1. Block 2. Tapered 3. Pyramid 4. Bent 5. Cylinder 
block Block 

6. Tapered 7. Cone 8. Barrel 9. Ellipsoid 10. Bent 
Cylinder Cylinder 

Figure 1: The ten modeling primitives. 

three levels: the set of aspects that model the chosen 
volumes, the set of component faces of the aspects, 
and the set of boundary groups representing all sub- 
sets of contours bounding the faces. The ambiguous 
mappings between the levels of the aspect hierarchy 
are captured in a set of upward and downward condi- 
tional probabilities [3], mapping boundary groups to 
faces, faces to aspects, and aspects to volumes. The 
probabilities are estimated from a frequency analysis 
of features viewed over a sampled viewing sphere cen- 
tered on each of the part classes. 

To illustrate the use of our hybrid representation 
in searching image databases, we begin with a small 
vocabulary of ten volumetric part classes, as shown in 
Figure 1 [5, 7, 61. The set of all aspects that model 
the ten volumes constitutes the first level of the aspect 
hierarchy, part of which is shown in Figure 2; each as- 
pect is represented by a graph in which nodes repre- 
sent faces and arcs represent face adjacencies. The set 
of all faces that make up the aspects constitutes the 
second level of the aspect hierarchy, part of which is 
shown in Figure 2. It is important to note that a face 
captures qualitative relationships among qua2itativeZy- 
described contours. The boundary of a face is parti- 
tioned at curvature discontinuities into a set of con- 
tours. Furthermore, each contour is classified as either 
straight, concave, or convex with respect to the face; 
exact curvature, contour lengths, and angles between 
adjacent contours are not represented. Each face can 
thus be represented as a graph in which nodes repre- 
sent bounding contours of a face, and arcs represent 
certain nonaccidental contour relations, including par- 
allelism, symmetry, and intersection. 

The third and lowest level of the aspect hierarchy 
contains the boundary groups (see Figure 2), repre- 
senting all subsets of the contours comprising the faces 
at the second level of the aspect hierarchy, i.e., all pos- 
sible subgraphs of the graphs representing the faces. 
The boundary groups support the inference of faces 

Aspect 
Hierarchy 

Primitives 

Aspects 

Faces 

Boundaty 
Groups 
I 

inks indicate posslble 
arent pnmitives of aspects 

Links indicate possible 
parent aspects of faces 

Links indicate possble 
parent laces 01 boundary 

Figure 2: The aspect hierarchy. 

from incomplete image data, e.g., due to noise or oc- 
clusion, and therefore play a fundamental role in the 
recovery of volumetric shapes from image data. 

The sets of upward (and downward) conditional 
probabilities linking together the layers of the aspect 
hierarchy are derived through an empirical procedure. 
For a given part class, we model the part using a CAD 
system, step through all possible deformations of the 
part within the class, and for each resulting instance, 
generate the set of views of the part over a tesselated 
view sphere centered on the part. Counting each fea- 
ture in each view gives rise to a set of frequency dis- 
tributions which are used to estimate the conditional 
probabilities [7]. In previous work, the aspect hier- 
archy served as the backbone of both bottom-up and 
top-down recognition models [6, 41. As we will show 
in the next section, this same representational frame- 
work can be applied to a part-based query mechanism 
that will ultimately support viewpoint-invariant shape 
indexing. 

3 Generating a Search Index 
At query time, the user outlines complex, unusual, 

or otherwise discriminating portions of a target ob- 
ject, with the goal being to return images from the 
image database that contain similarly-shaped objects. 
Using the mouse, the user will interactively draw the 
salient contours of an object’s part over the image 
being displayed. If the part has multiple component 
faces (forming the aspect of the part), the user must 
outline each component face. For occluded or inter- 
secting parts, the user may draw either the entire part 
(extrapolating to fill in what they believe to be the 
shape of the part) or simply that portion of the part 
which is visible. 
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Primitrvss Piimnives 

+ Aspect Label 
(A1 ,A2,A3 ,.._, An) 

ASpeCtS 

Prob(Ai) >= Prob(Aj). i<j 
Face Label - Face Label (Fl,F2,F3 ,..., Fn) - 

Boundary 
Gmups 

(Fl) 

Figure 5: Generating the aspect labels of a face. 

Figure 3: Labeling an unoccluded face. 

Face Label 
+ (Fl,FZ,F3 ,___, Fn) 

Boundary Prob(Fi) >= Prob(Fj), i<j 
Gmups 

Figure 4: Labeling an occluded face. 

For the selected part, the interactively-drawn part 
aspect will then be matched to the aspect hierarchy. 
Once a face is drawn, its shape is first described by 
the best-fitting set of straight lines, convex elliptical 
curves, and concave elliptical curves, according to a 
minimum description length algorithm [14]. The re- 
sult is a graph in which nodes represent qualitatively 
described bounding contour sections, and arcs rep- 
resent relations including cotermination, parallelism, 
and symmetry. The graph is then matched to the 
faces in the aspect hierarchy using an interpretation 
tree search [9]. Figure 3 illustrates an example where 
an identified face exactly matches a face in the aspect 
hierarchy. 

If, due to occlusion or poorly-drawn contours, an 
outlined face doesn’t match an aspect hierarchy face, 
then parts of the drawn face are matched to the 
boundary group level of the aspect hierarchy. From 
the bottom-up conditional probabilities in the aspect 
hierarchy, each matching boundary group can be used 
to infer one or more faces, weighted by the conditional 
probabilities. The result of face matching, therefore, is 
one or more face interpretations, ranked in decreasing 
order of probability. Figure 4 illustrates an example 
where, due to occlusion, an identified face does not 
match an aspect hierarchy face. We therefore descend 
to the boundary group level and match “subfaces” to 
the boundary groups, with each matching boundary 
group yielding one or more face inferences, each with 
an associated probability. 

For each face in the user-identified part aspect, we 
have a set of face hypotheses. From the aspect hi- 

Primitives - Primitive Label 
(Pl,P2,P3 ,..., Pn) 

Prob(Pi) >= Prob(Pj), i<j 
Aspect Label 

(Ai) - Aspects 

Face* 

Boundary 
Group* 

Figure 6: Generating the primitive labels of an aspect. 

erarchy, as shown in Figure 5 ,  each face can be used 
to infer a set of aspect hypotheses, ranked in decreas- 
ing order of probability. If we accumulate the aspect 
hypotheses for all the faces in the aspect, and weight 
them according to the face to aspect probabilities, we 
can define an ordering on the aspect hypotheses. Us- 
ing an interpretation tree search 191, the hypotheses 
are verified, in turn, until a correct (i.e., high-scoring) 
hypothesis is found. 

From an aspect hypothesis for the user-identified 
part, we can then use the aspect hierarchy to gener- 
ate a volume hypothesis, as shown in Figure 6. If the 
mapping from the aspect to the volume is not unique 
(P(wolume1aspect) < l . O ) ,  then we can first prompt 
the user to select the correct 3-D shape for the out- 
lined part from among the possible inferences (each 
displayed as a small rotating 3-D shape on the user’s 
console).’ Finally, using the probabilities mapping 
volumes to aspects in the aspect hierarchy, we can hy- 
pothesize all possible views for the selected volumetric 
part, ranked in decreasing order of probability. These 
views (part aspects) constitute a set of ranked search 
indices to be sent as queries to the image database. 

4 Preprocessing the Image Database 
Preprocessing a database image to recover the as- 

pects of parts appearing in the image is the most chal- 
lenging component of the system and the major lim- 
iting factor of our approach. In our prior work, e.g., 
[7, 6 ,  41, simple region growing operators were applied 
to an image, resulting in a graph-based description of a 
region’s shape in terms of the shapes of (and relations 

‘Alternatively, if the true shape of the part is not known, 
then all possible volumetric inferences that exceed a given 
threshold, as defined by the user, are retained. 
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between) its bounding contours. However, these tech- 
niques were applied to very simple scenes containing 
objects without significant texture. For images con- 
taining cluttered scenes of complex, textured objects, 
such techniques will not properly segment an image 
into a set of salient regions. 

Even if we had a perfect region segmentation mod- 
ule, it is unlikely that the resulting segmented regions 
would map one-to-one to the faces in an aspect in the 
aspect hierarchy. Particular regions (and other image 
features) may be salient in the image without being 
salient in the workd. For example, the individual re- 
gions resulting from a set of high-contrast stripes on a 
coffee cup are not salient in terms of the cup’s struc- 
ture. Perhaps the most important aspect of segmen- 
tation is region abstraction, or the grouping of regions 
together to form “meta-regions” that correspond to 
salient (either real or abstract) surfaces on an object. 

We are currently developing methods for region ab- 
straction that take, as a starting point, a color region 
segmentation of the image [2]. However, to continue 
to pursue the ideas outlined in this paper, we have 
greatly simplified the problem by having the user an- 
notate the images in the database. Unlike keyword 
annotation of an image, which can be very subjective, 
we have the user annotate the major regions of promi- 
nent part structure in the image in the same manner 
as the query image is annotated. From these user- 
defined regions, captured in a region topology graph, a 
set of aspects is hypothesized and verified. The result 
is a set of verified aspects, with each aspect encod- 
ing the particular regions it encompasses as well as a 
goodness of fit. 

Whatever method is used to recover the regions, 
the result is a table indexed by aspect number (type) 
which lists, in decreasing order by score, all aspects 
of that type appearing in the database. Each such as- 
pect specifies the image in which it appears, along with 
the nodes in that image’s region topology graph that 
it encompasses. Furthermore, an adjacency matrix is 
built for all pairs of aspects in a given image, indi- 
cating whether the aspects are touching, overlapping, 
or disjoint. When a query aspect is received by the 
database, a collection of candidate aspects is returned 
by the aspect table. When a connectivity constraint 
between two aspects in an image must be tested, their 
connectivity is read directly from the adjacency ma- 
trix. 

5 Matching the Query 
As mentioned earlier, a given volumetric part (iden- 

tified in the query image) maps to a set of views, 
ordered by probability. Each of these views is then 

passed to the database for image retrieval. Recall that 
preprocessing of each database image results in a cov- 
ering of the image by a set of possibly overlapping 
aspects, indexed by a table. When a search aspect 
is generated from a user query, its location in the as- 
pect table reveals those images (and locations) where 
the aspect was found in the database. When the as- 
pects belonging to the first part selected by the user 
are sent as queries, the matching images are immedi- 
ately ranked according to a similarity measure based 
on the probability of the query aspect given the volu- 
metric part class and the quality (score) of the image 
database aspect. If the number of matching images is 
small, all can be displayed as thumbnail images on the 
user display. 

In all likelihood, a single part query will result in 
a prohibitively high number of images that contain 
one or more matching parts. The user will then be 
asked to return to the query image and select, in the 
same manner that the first part was selected, a sec- 
ond part belonging to the object, subject to the con- 
straint that the second part must be connected to the 
first part. This second query is then applied only to 
the set of images matching the first query. Further- 
more, the connectedness constraint in the query image 
is passed on to the database images satisfying both 
queries, under the assumption that if parts are visible 
and connected in one view, they are visible and con- 
nected in any other view of the object. This process 
is repeated until a sufficiently small satisfying set of 
matching images is found. Images containing a subset 
of the user-selected parts can also be returned, albeit 
with a lower overall score. 

6 Demonstration of the Approach 
We demonstrate our approach to viewpoint- 

invariant shape indexing using a prototype system 
based on the 10-volume shape vocabulary depicted in 
Figure 1. In Figure 7, we show an image of a table 
lamp, representing the query image with which the 
user will interact to form a 3-D query. The goal will 
be to find instances of a lamp in a set of three im- 
ages (obtained over the Web) of furniture showrooms, 
some of which contain lamps; these images are shown 
in Figure 8. The salient regions in each database im- 
age were all interactively outlined when the image was 
entered into the database. We stress that this is only 
a test in principle; obviously, a much larger database 
is required for real testing. 

Using a mouse, the user first interacts with the 
query image, outlining the various regions belonging 
to a single part. In Figure 9(a), the user has drawn 
the contours of the lamp shade. At this point, the 



Figure 8: Sample image database images consisting of three furniture scenes. 

Part 
Shade 

Figure 7: Query image containing a table lamp. 

Volume Score 
Tapered Cylinder 0.69 

system takes those contours and attempts to recover 
a 3-D part class corresponding to the user-identified 
part view. Table 1 shows the results of interpret- 
ing the contours based on our aspect hierarchy. By 
matching the drawn part aspect to our aspect hierar- 
chy, the shape was unambiguously identified as volume 
6 (tapered cylinder), appearing in aspect 12 in the as- 
pect hierarchy, and having a score of 0.69.2 Those 

2The score of a volume is proportional to the score of the 
aspect used to infer the volume and the conditional probability 
mapping the aspect to the volume. The score of an aspect 
is proportional to the score of the faces(s) used to infer the 
aspect and the conditional probabilities mapping the faces to 
the aspect. Finally, the score of a face is 1.0 if the entire face 
is matched correctly; otherwise, the score is proportional to the 
conditional probability mapping the matched boundary group 
to the face and the proportionof region boundarypixels defining 
the boundary group. 

Table 1: Results of automatic recognition of user- 
drawn lamp shade. 

contours used in the interpretation are shown in Fig- 
ure 9(b). The noisy contour representing the bottom 
of the lamp shade was not used in the inference, re- 
sulting in a matching score less than 1.0. 

From the inferred 3-D identity of the part, we can 
now begin to build our composite query to the image 
database. First, from the aspect hierarchy, we can 
use the conditional probabilities mapping volumes to 
aspects to generate the complete set of possible views 
of the volume. There are five such views, as shown in 
Figure 10. These views can be ranked in decreasing 
order of probability, and represent a set of ordered 
queries to the image database. 

There are two options available to the user. The 
first is to send the query based on the single identified 
part. Without additional constraints, however, this 
would likely return many false positive matches from 
a normally large database. For illustration purposes, 
let us examine the results of generating this single-part 
query, as shown in Figure 11. The volumes in the im- 
ages that matched the query are highlighted in the 
image. Two instances of the “trapezoidal” view of the 
tapered cylinder were found in the database, each cor- 
responding to a lamp shade, and both having the same 

25 



Figure 9: Interpretating the lamp shade: a) User-specified contours; b) Contours used to infer the correct shape 
of the lamp shade. 

0.1 1 0.1 1 0.04 0.37 0.37 II I Bent Block I 0.01 4 
:Figure 10: All possible aspects of the tapered cylin- 
der (volume 6), along with their respective values of 
Prob( aspect I wolume6). 

Table 2: Results of automatic recognition of user- 
drawn lamp neck. 

score due to the fact that the entire bounding contour 
of each region was used in its aspect interpretation. 
This example illustrates the viewpoint invariance of 
our matching strategy, since the viewpoint for which 
the part was identified by the user (4th view from left 
in Figure 10) does not match the viewpoints of the two 
instances found in the database (3rd view from left in 
Figure 10). 

The second option is to build a more discriminating 
query by adding more parts which, in turn, adds more 
constraints to the database query. For example, Fig- 
ure 12(a) shows a second part (the neck of the lamp) 
being added to the original query, while Table 2 shows 
the results of interpretating the second part. In this 
case, there are three interpretations for the part. The 
first is a cylinder (volume 5 in Figure 1) whose end 
face is occluded. The second is an extremely short, 
thick bent cylinder (volume 10) whose concave side is 
facing upwards in the image, and whose concave oc- 
cluding contour is occluded by the lamp shade.3 The 
third interpretation is a bent block (volume 4) oriented 
identically to the bent cylinder with the concave face 
occluded. Since the latter two interpretations have a 

3 N ~ t e  that the bent cylinder volume has parallel end faces. 

very low score, they can be left out of the query, leav- 
ing only the aspects corresponding to the cylinder. 

When the two parts (the lamp shade and neck) are 
combined, we now have an index representing a con- 
junction of two 3-D parts. If each of the two parts 
appears in a particular database image and their two 
respective views in that image are adjacent, then the 
image will be returned to the user, ordered with the 
other returned images according to the scores of the 
matched aspects. In Figure 13, we show the single 
image returned from the database as a result of our 
two-volume query. Of the two lamps returned in our 
first query, only one survives the second query due 
to the added constraint of the lamp neck. Note also 
that the view of the lamp neck in the query (two par- 
allel lines bridged at one end by a convex curve and 
at the other (occluded) end by a concave curve) is 
different from that in the returned database instance 
(two parallel lines bridged at both ends by a straight 
line). Note that in the query image and database im- 
age lamp necks, a portion (one end) of each region 
was not grouped into its defining aspect, due to con- 
tour segmentation and/or grouping errors. 

Instead of querying the image database with the 
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Figure 11: Results of querying the image database using a single-part query based on the lamp shade. Two 
imtances are returned having identical scores. Note that the view of the lamp shade in the query image is 
different from the view found in both database images, illustrating the viewpoint-invariant nature of the search. 

’ Part Volume Score 
J Base Block 1.00 

‘Table 3: Results of automatic recognition of user- 
drawn lamp base. 

lamp shade, the user could query the database with 
the base of the lamp, a part shape which, in this case, 
is much less unique to the lamp. Figures 14(a) and (b) 
show the user-specified contours, along with the con- 
tours used to recognize the part, respectively. In this 
case the system used all the contours to interpret the 
shape as a block. Rather than drawing the occluding 
(contours in the image, the user has extrapolated the 
view of the part to encompass that part of the base 
occluded by the neck. Alternatively, the user could 
have drawn on the visible portion of the base, and the 
system would still have correctly interpreted the part, 
albeit with a score less than that shown in Table 3. 

If we generate a single-part query based only on 
the lamp base (block), then the best three instances 
of the block in the database are shown in Figure 15. 

gion representing the front of the desk was occluded 
while both the top and side were intact. In the second 
instance of the block, two sides of the desk were incom- 

Note that for the best instance of the block, the re- 

plete in the sense that not all the bounding contours 
of the two regions were used in the aspect interpreta- 
tion (e.g., bottom contour of leftmost face and right 
contour of topmost face). In the third instance of the 
block, one whole face of the block was not visible due 
to perspective effects. The diminishing evidence con- 
tributing to the interpretations of the three database 
instances is responsible for their relative ordering. 

Since the indexing power of a single part is low, par- 
ticularly for a commonly occurring part class, more 
parts, along with their connectivity constraints, are 
needed to reduce the number of false positives re- 
turned to the user. In addition, it should be noted 
that none of the database lamps has block bases. If 
we allow query part subsets to match database images, 
then a query consisting of all three lamp parts would, 
for example, yield all database images containing all 
three connected parts, any two connected parts, or any 
one part. 

7 Towards a More Complete Part Vo- 
cabulary 

Ideally, since we can’t anticipate what objects will 
be contained in our images, we need a much richer set 
of volumetric parts that cover a wide range of objects, 
i.e., a limited universe of shapes that we expect can 
model any object (or significant portion thereof) we 
anticipate to be in the image. Work has already be- 
gun on the automatic construction of a much larger 
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Figure 12: Interpretating the lamp neck: a) User-specified contours; b) Contours used to infer the correct shape 
of the lamp neck. 

Figure 14: Interpretating the lamp base: a) User-specified contours; b) Contours used to infer the correct shape 
of the lamp base. 

aspect hierarchy containing hundreds, if not thou- 
sands, of shapes. Working with a deformable su- 
perquadric model with many global deformation pa- 
rameters (e.g., pinching, twisting, tapering, bending, 
shearing, etc.), we will sample the entire parameter 
space of the model. Each part instance will be cen- 
1,ered in a tesselated view sphere, and a view of the 
part will be synthesized from each position. For a 
given view, the resulting synthetic image will be re- 
gion segmented, and the region shapes and adjacen- 
cies will be used to derive an aspect representation of 
the view. 

Once an aspect has been defined for each view, 
neighboring views having identical aspects will be 
merged, resulting in an aspect graph of the part in- 
stance. In a similar fashion, neighboring instances in 
i;he model’s sampled parameter space will be clustered 
if their aspect graphs are identical. The result is an 

automatic partitioning of the parameter space into a 
set of volumetric part classes and their associated as- 
pect graphs. From this information, an aspect hier- 
archy can be automatically constructed, including its 
conditional probabilities. 

8 Conclusions 
The simple demonstration in Section 6 serves only 

to illustrate the concept of viewpoint-invariant 3-D 
shape indexing; it is clearly not practical to require 
that each database image be annotated with a set of 
abstract regions. Until we can more effectively address 
the problems of both region segmentation and region 
abstraction, our idea will remain, a t  best, a promising 
concept realizable only in the long term. Nevertheless, 
we firmly believe that the kind of semantic indexing 
that users will demand cannot be restricted to 3-D ob- 
jects appearing in the same view. We need some kind 
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Figure 15: Results of the single-part lamp base (block) query. The three best-scoring instances are shown left to 
right. 

of model that can resolve two dissimilar views of the 
same object. It is impractical to assume that there 
exists a full 3-D model to relate the different views of 
the same object; web pages contain pictures, not 3-D 
models. And assuming that a complete collection of 
views exists for every query object is equally imprac- 
tical. 

Our approach relies on a large enough set of volu- 
metric “building blocks” such that a significant por- 
tion of any query object can be constructed from mem- 
bers of the set. We believe that this set of building 
blocks not only models objects a t  the right granular- 
ity, but represents an intuitively appealing granularity 
for user interaction. We assume no knowledge of ei- 
ther query object or database object other than that 
such objects can be partially constructed from our set. 
This set, along with its resulting aspect hierarchy, is 
computed once off-line. Furthermore, we have out- 
lined a procedure for its automatic construction which, 
in fact, can be applied to any parameterized class of 
shape. 

The user interface that we have provided is crude, 
providing a set of snake-like interactive tools to out- 
line regions in the image. Much work lies ahead in 
evaluating and improving this interface. For exam- 
ple, should the parts be outlined in the image, or 
perhaps selected from a vocabulary and fitted to the 
image data?4 How should ambiguous inferences be 
presented for selection? How should the matching im- 

4This suggestion was offered by an anonymous reviewer of 
the paper. 

ages be presented to the user, and how should match- 
ing objects be highlighted? Although this paper has 
not focused on user interface issues, we acknowledge 
the importance of conducting proper experiments in 
designing/evaluating the user interface. 

Although much work lies ahead in, for example, 
designing a user interface, constructing a richer set 
of shapes, and devising more efficient algorithms for 
indexing (both into the database of part views and 
the database images), our major challenge will be im- 
proved region segmentation and abstraction. Such 
segmentation need not be perfect, as we have suc- 
cessively dealt with both region under- and over- 
segmentation in previous work [4]. Nevertheless, there 
has been little work to date on region and shape ab- 
straction from 2-D images, and we believe that to be 
the critical component of such a system. We will there- 
fore explore, in parallel, the representational, interac- 
tion, and indexing issues outlined in this paper, as 
well as the problem of region segmentation and ab- 
straction. Together, these ideas represent a promis- 
ing direction for overcoming the 2-D barrier of current 
shape-indexing methods. 
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