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Abstract

In this work, we report on a prototype of a clinical ra-
diograph image database to be indexed by image content.
The underlying content-based search engine is based on
the modal shape description method for characterizing the
shape of a 2-D image region [24]. Using a similarity met-
ric defined in a modal vector space, our system success-
fully classified radiographic images according to the den-
tal pathologies they depicted. This successful classification
demonstrates that the proposed similarity metric effectively
captures clinical similarity between images in the database.
The prototype is implemented in a Web-based environment,
allowing remote users in the field to search a central reposi-
tory of images. Examples of classification performance and
typical queries are provided.

1. Introduction

1.1. Background on Content-based Image
Databases

Computers, mass storage, and digital imaging systems
provide the opportunity to create multimedia electronic
databases of patient records instead of the traditional pa-
per and film records. Currently, most contemporary med-
ical image databases can only be indexed by text fields or
keywords that have been entered manually. These methods

do not directly capture the visual or image properties of the
underlying data. Some visual properties are very difficult
or nearly impossible to describe with text, such as certain
textures or shapes. Also, relations among image objects are
very difficult to define or describe by using textual annota-
tion.

Content-based image retrievalrefers to image retrieval
techniques that are based on visual properties of image ob-
jects rather than textual annotation. For example, “given
an object in image A, find the most similar one in the
database”. Such queries would confer enormous advan-
tages: similarity-based matching, interactive search with
relevance feedback, a rich query language with which to
pose complex queries, and a user-friendly interface. Unfor-
tunately, content-based retrieval is much more challenging
than text-based retrieval, and requires the solution of a num-
ber of difficult problems in computer vision, databases, and
human-computer interaction.

Some automatic image indexing methods have been pro-
posed, based on shape [3, 8, 9, 13, 21, 20], color [2, 7, 25] ,
or combinations of such indices [15]. The general approach
is to calculate some approximate invariant statistic like a
color histogram, invariants of shape moments, parametric
curve distance, or frequency subband decomposition, and
use these to categorize the image database. For example,
IBM’s Query By Image Content system (QBIC) [15], one of
the most advanced 2D image database systems to date, uses
color, texture, and shape of image objects and regions. Un-
fortunately, these methods lack effective models that are ro-
bust to noise, scale, and sampling, and models that roughly



correspond to a human’s notion of perceptual similarity.

1.2. A Dental Radiograph Database

In this work, we develop a prototype of an interactive
system for querying a medical image database by image
content, as well as the traditional text query.

In practice, pathological change is progressive, and
many considerations are needed to help doctors make a di-
agnosis, such as radiograph records, clinical history, signs,
and symptoms. Our ultimate goal is to build a multimedia
database that can provide a fast and convenient mechanism
to keep and retrieve both textual and visual information.

In the prototype database described herein, we have con-
sidered a sufficiently rich but restricted domain of dentistry
and diagnoses based on dental radiographs. The dental
radiograph is the most common radiographic examination
in this country; the radiographic presentation of disease is
based on well-defined image cues (Figure 1). The general
features that describe lesions include shape, radiodensity,
size, borders, location, and architecture, out of which shape
is an important feature for diagnosis and staging disease
progression. Accordingly, shape is selected as our primary
feature in indexing the image database.

1.3. Shape-based Image Retrieval

Retrieval by shape has been one of the most challeng-
ing aspects of content-based image retrieval. No mathe-
matically rigorous definition of shape similarity has been
established to account for the various semantic qualities
that humans assign to shapes [6, 14]. Shape matching is
complicated by the fact that humans will report that shapes
are similar even when the two shapes are non-rigidly de-
formed versions of each other. Especially in the medical
domain, challenges arise in representing both the static and
dynamic properties of anatomical shapes. In terms of their
static shape, anatomical structures can have branches, folds,
wrinkles, holes, pores, hairs, etc. In terms of their dynamic
shape, anatomical shapes can undergo nonrigid deformation
and/or articulated motion; the associated image data sets
can depict organs whose shape deforms over time, over the
progression of a disease, or from patient to patient. Some
examples of shape deformation over time can be found in
Figure 2.

While a wide array of shape-based description and
matching methods have been proposed, few can explic-
itly accommodate the nonrigid deformations that occur fre-
quently in the types of objects appearing in medical im-
ages. For example, in IBM’s QBIC system [15], several
shape features are utilized, including area, circularity, ec-
centricity, major axis of inertia, and higher-order algebraic
moment invariants. These shape features are combined into

Figure 1. A Template Used to Describe a Le-
sion Appearing in a Dental Radiograph.

one feature vector, and shape similarity is measured using a
weighted Euclidean distance metric. However, the shape-
based search used in this system cannot differentiate be-
tween noise and a class-preserving deformation.

Furthermore, it is difficult to objectively validate similar-
ity measures used for indexing, because intuitive similarity
(as perceived by the system designers) may not correspond
well with meaningful similarity in the database. Hence we
conduct an experiment evaluating the ability of our pro-
posed similarity measure to classify shapes into diagnostic
categories as judged by expert clinicians in the field. Good
performance in this experiment provides objective evidence
that the similarity measure corresponds well with clinical
similarity in this medical domain.

Energy-based model formulations, e.g., [27], have pro-
vided a framework for underconstrained shape recovery.
They provide a useful method for interpolating and smooth-
ing raw data, while also capturing information about non-
rigid deformations. In theory, these models also offer the
advantage that they can incorporate prior knowledge about
the physical material properties for a specific anatomical
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Figure 2. The Four Stages of Periapical Dis-
ease: (I) A normal periodontal area; (II) A
widened periodontal ligament space; (III) In-
terruption of lamina Dura; and (IV) Bone re-
sorption

structure. Unfortunately, many of these physical properties
are not available, and most models assume isotropic mate-
rial properties.

Also, current energy-based and statistical shape model-
ing methods are computationally intensive and are therefore
not fast enough to meet the interactivity needs of our prob-
lem domain. In addition, many of these deformable shape
representations cannot be easily used for recognition, be-
cause they are mesh-based. The only general method for
determining if two mesh surfaces are equivalent is to gen-
erate a number of sample points at corresponding positions
on the two surfaces, and observe the distances between the
two sets of sample points. Such methods are costly and can
easily fail when two equivalent surfaces have very different
parameterizations.

1.4. Efficient Shape Description

In formulating anatomic shape representations, we need
to simultaneously ensure that the generated shape descrip-
tions can be efficiently recoveredand that they can be ef-
ficiently employed in shape alignment, comparison, and
recognition. In our system, we draw on modal shape de-
scription [17, 24] to address the above problems. This
is a physically-motivated method for computing canoni-

cal shape descriptions that embodies two main techniques:
the finite element method (FEM) and eigendecomposition.
The FEM provides greater robustness to sampling error and
noise, while the eigendecomposition method results in an
orthogonal and frequency-ordered shape description which
enables efficient shape alignment, comparison, and recog-
nition. The underlying physics of the model makes it par-
ticularly capable in dealing with different types of nonrigid
deformations. Moreover, the deformation parameters corre-
spond qualitatively with those used by humans in describing
shape similarity, and thus provide a meaningful interface for
database query.

1.5. Overview of the Paper

This paper is organized as follows: Section 2 is a review
of the finite element method, a physically-based mechanism
to better deal with sampling and scale problems that exist in
general physical models. Modal shape description, which
provides robust and unique shape representation, is also in-
troduced. In Section 3, we describe several alternatives for
the statistical characterization of the modal shape descrip-
tion of lesions. Several types of similarity (or dissimilarity)
measures are introduced to characterize non-rigid shape de-
formations at various stages of dental disease.

In Section 4, we summarize experiments in using modal
shape descriptors to classify (nonrigid) shape deformations
due to pathological change, as presented on the dental ra-
diograph. The successful classification performance means
that the modal shape descriptors can be used to index the
database based on content. Section 5 outlines the system
design and implementation based on WWW technologies,
including the mechanisms for interactive search. Results
are shown, in the form of a set of snapshots, for a typical
shape query. Section 6 gives a brief conclusion and dis-
cusses future work.

2. Modal Shape Description

2.1. Overview

To better model nonrigid deformation of real-world ob-
jects, their underlying physical properties must be ac-
counted for. This has motivated the use of physically-
based, deformable models to exploit a priori knowledge
about physics to interpolate and smooth raw data based on
prior assumptions about noise, material properties, etc.

The Finite Element Method (FEM) is a standard en-
gineering technique for simulating the dynamic behavior
of an object. It effectively deals with the sampling and
scale problems that exist in the general physical models.
This approach was employed in modeling deformable su-
perquadrics by Pentland and Sclaroff [16, 18] and later by
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Terzopoulos and Metaxas [26]. It has also been applied in
other models, e.g., snakes, blob models, etc. [5, 10, 4, 5].

The Finite Element Method, however, can not be directly
used for comparing objects due to the non-uniqueness prob-
lem. Virtually all spline, thin-plate, and polynomial meth-
ods suffer from an inability to obtain canonical descriptions
because the parameters for these surfaces can be arbitrarily
defined, and therefore are not invariant to changes in view-
point, occlusion, or nonrigid deformations [24].

In the modal analysisintroduced by Pentland and
Sclaroff [18], the FEM is simplified by posing the dy-
namic equations in terms of the equation’s eigenvectors.
These eigenvectors are known as the object’s deformation
modes, oreigenmodes, and together form a frequency-
ordered orthonormal basis set for shape. Modal analysis
subsequently was applied to shape recovery and recognition
[16, 18, 19, 23] and nonrigid motion tracking [17].

The eigenmodes may be thought of as the shape’sgener-
alized symmetry axes[23], in that they describe the prin-
cipal axes of deformation over a training set of shapes.
This generalized coordinate system provides a robust repre-
sentation for establishing correspondence between similar
shapes. Most importantly, the orthogonality of the eigen-
representation ensures that the recovered descriptions will
be unique, thus making recognition problems tractable.

The solution to the problem of nonuniqueness is to dis-
card enough of the high-frequency modes, so that an over-
constrained estimate of shape is obtained. The modes form
an orthonormal basis set; therefore, there is only one way
to represent an object that is in canonical position. Also,
because irregularities in local sampling and measurement
noise tend to primarily affect the high-frequency modes
rather than the low-frequency modes, the reduced-basis
modal representation results in a unique representation of
shape . The modal parameters are also physically meaning-
ful, corresponding to how much bending, tapering, pinch-
ing, etc., is needed to represent an object. The mathemat-
ical formulations of FEM and modal analysis described in
the following sections are taken from [1, 24].

2.2. Finite Element Method

In the FEM, interpolation functions are developed that
allow continuous material properties, such as mass and stiff-
ness, to be integrated across the region of interest. In gen-
eral, the polynomial shape function for each element is writ-
ten in vector form as:

u(x) = H(x)U (1)

whereH is the interpolation matrix,x is the local coordi-
nate of a point in the element where we want to know the
displacement, andU denotes a vector of displacement com-
ponents at each element node.

The polynomial shape function can be used to calculate
the strain due to deformation. Strain� is defined as the ratio
of displacement to the actual length and can be obtained by:

�(x) = B(x)U (2)

whereB is the strain displacement matrix. The rows ofB

are obtained by appropriately differentiating and combining
the rows of the element interpolation matrixH .

To deform an elastic body to match the feature points
requires solving thedynamic equilibrium equation:

M �U +D _U +KU = R (3)

whereR is the load vector andM;D;K are the element
mass, damping, and stiffness matrices, respectively.

Both the mass and stiffness matrices are computed di-
rectly:

M =

Z
V

�HTHdV (4)

and

K =

Z
V

BTCBdV (5)

where� is the mass density, andC is thematerial matrix
that expresses the material’s particular stress-strain law (see
[24] for explicit formulas).

Under the assumption of Rayleigh damping, the damp-
ing matrix is simply a linear combination of the mass and
stiffness matrices:

D = �M + �K (6)

where� and� are constants determined by the desired crit-
ical damping [1].

2.3. Modal Analysis

It turns out that the dynamic equation can be decou-
pled by posing the equation in a basis defined by theM -
orthonormalized eigenvectors ofM�1K [24]. These eigen-
vectors and eigenvalues are the solution(�i; !

2

i ) to the fol-
lowing generalized eigenvalue problem:

K� =M�
2 (7)

where
� = [�1j � � � j�m]


2 =

2
64
!2
1

...
!2m

3
75

The vector�i is called theith mode shape vector, and
!i is the corresponding frequency of vibration. The mode
shape vectors can be thought of as describing the object’s
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generalized (nonlinear) axes of symmetry. Each mode
shape vector�i isM-orthonormal,

�TK� = 
2; �TM� = I (8)

This generalized coordinate transform� is then used to
define displacements~U :

U = �~U (9)

If we rewrite equation 3 in terms of these generalized
or modal displacements, we obtain a decoupled system of
equations:

�~U t + ~D _~U +
2

t
~Ut = �Tt R (10)

where ~D is the diagonal modal damping matrix. By decou-
pling these equations, a closed-form solution to the equilib-
rium problem is obtained [18].

Consider the eigenvectors,�i’s, and eigenvalues,!i’s, of
the matrixM�1K. The!i corresponds to frequency of vi-
bration, allowing us to re-order the eigenvectors by increas-
ing eigenvalue,

� = [�1j : : : j�2m] =

2
666666664

uT
1

...
uTm
vT
1

...
vTm

3
777777775

(11)

wherem is the number of nodes used to build the finite el-
ement model.�i is called theith mode, while the row vec-
torsui andvi are called theith generalized feature vectors.
Together, they describe the feature’s location in the modal
coordinate system [23].

The low-order eigenvectors correspond to the low-
frequency modes. For example, in the two-dimensional
problem, the lowest three modes correspond to the rigid
modes of two translations and one rotation of shape. Also,
because the higher-frequency modes are more sensitive to
noise, we can truncate them in certain circumstances. Af-
ter mode truncation, a unique, over-constrained canonical
shape description is obtained. This shape matrix preserves
many desirable properties, including rotation and scale in-
variance, insensitivity to sampling errors, parameterization
errors, etc.

3. Classifying Shape Using Modal Features

To make content-based search meaningful in a particular
medical domain, the features used in a database query must
have a statistically significant relationship to the patholo-
gies reflected in the images. In our experiment, four groups

of images, each reflecting one state of periapical disease as
judged by an expert clinician, are characterized by modal
description. We study a similarity measure based on defor-
mation alignment energy, and design a classifier to evaluate
the distinction of modal features of the four image groups.
The successful performance of this classifier suggests that
the proposed modal similarity measure is useful for index-
ing the database based on clinical shape content.

3.1. Shape Similarity Measure

Because the modal descriptions are physically-based, we
can compute and compare the amount of deformation en-
ergy needed to align one object with another. All shapes can
be represented as deformations from a standard or prototyp-
ical shape; therefore it is possible to compare two shapes
by comparing their respective deformations from a common
prototype.

We begin by studying the displacement distance between
two shapes. When the correspondence of points from the
two images has been established, the modal deformation
parameters~U can be solved bynodaldisplacementsU that
align corresponding features on both shapes:

ui = x1i � x2i (12)

wherex1i is the ith node on the first shape andx2i is its
matching node on the second shape.

Recalling thatU = �~U , and using Equation 9, we get:

~U = ��1U = �TMU (13)

When strong one-to-one correspondences between fea-
tures cannot be established, we adopt the “physical simu-
lation” method introduced in [24, section 5.1.3]. Basically,
the finite element equations are integrated over time until
equilibrium is achieved. This method drives the unmatched
nodes to move in a manner consistent with the material
properties and the forces at the matched nodes.

Suppose~U1 and ~U2 are two modal descriptions that align
the prototype with each candidate object. The normalized
dot product of two vectors can be used as a shape similarity
metric [18]:

�( ~U1; ~U2) =
~U1 ~U2

k ~U1kk ~U2k
(14)

The similarity measure between two group of images,
sayG1 andG2, is defined as the average point-to-point
shape similarity metric between two groups:

S(G1; G2) =
1

MN

MX
i=1

NX
j=1

�( ~Ui; ~Uj) (15)

where theUi’s belong to groupG1, theUj ’s to groupG2,
andM andN are the number of images in groupsG1 and
G2, respectively.
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3.2. Classification Error Probability

Fundamentally, the statistical characteristics of the
modal shape description are reflected in the separability of
feature distributions, which is independent of the the clas-
sifier. Such probablistic separation measures include Kull-
back distance and divergence, among others [11, 28]. Those
measures usually require a very large amount of sample
data, and indicate only the asymptotics or the limitation of
how fast a classifier can improve its performance given a
large number of data. It is always desirable to find out how
a classifier can perform using the modal features, particu-
larly with a limited number of data or, if possible, find out
what the optimal classifier would be. Next, we present a
general-purpose classfier using the minimum Mahalanobis
distance criterion and then evaluate classifier performance
using the “leave-one-out” method.

We assume the modal displacement vectors are normally
distributed in modal space. The general multivariate normal
density, with dimensiond, is written as

p(x) =
1

(2�)
d

2 j�j
1

2

exp[�
1

2
(x� �)t��1(x� �)] (16)

where x is a d-component column vector,� is the d-
componentmean vector, and� is the d-by-d covariance
matrix. This equation is abbreviated asp(x) � N(�;�).

Samples drawn from a normal population tend to fall in
a single cloud or cluster. The center of the cluster is deter-
mined by the mean vector, and the shape of the cluster by
the covariance matrix. It follows from Eq. 16 that the loci of
points of constant density are hyperellipsoids for which the
quadratic form(x��)t��1(x��) is constant. The princi-
pal axes of these hyperellipsoids are given by the eigenvec-
tors of�, the eigenvalues determining the lengths of these
axes. The quantity

r2 = (x� �)t��1(x� �) (17)

is sometimes called the squaredMahalanobis distancefrom
x to �. Thus, the contours of constant density are hyperel-
lipsoids of constant Mahalanobis distance to�. The volume
of these hyperellipsoids measures the scatter of the samples
about the mean.

We adopt the so-called “leave-one-out” method to max-
imize usage of data in our experiment. In many classifi-
cation problems, one must decide how to use sample data
to both train and test the classifier. If all data are used to
both train and test the classifier, the (estimate of) the per-
formance would be overly optimistic. On the other hand, if
only a small number of the samples is used to train the clas-
sifier, poor estimates of the classifier parameters may result
in inadequate classification performance. Alternatively, if

one uses only a small number of samples for testing, the
estimated error performance may not be reliable.

The “leave-one-out” method is an alternative approach
that yields independent training and test sets, and provides
the upper bound. In this method, a classifier is designed
using all of the available samples except one, and the re-
maining sample is used to test the classifier. This procedure
is then repeated each time, leaving out a different sample.
The basic advantage of this approach is that virtually all of
the samples are used in each design, which should lead to
a good design, and all of the samples are ultimately used in
the test. A Monte Carlo study by Lachenbruch and Mickey
[12] gives evidence for the superiority of this method.

4. Evaluating the Modal Shape Description

In this section, we report the test results of the statistical
analysis of our modal shape description discussed in Sec-
tion 3. Our experimental results strongly support the use
modal shape vectors as features in classifying pathologies
reflected in dental radiographs. Our test results also indi-
cate that, because of orthogonality of modes, the less criti-
cal components can be discarded to obtain overconstrained,
canonical descriptions in order to provide efficient data re-
duction, real-time recognition, and robust reconstruction.

4.1. Test Data

There are a wide variety of diseased states which repre-
sent different concepts in the dental radiographs. Figure 2
in Section1 shows examples that have been selected for
this study: four states, including one normal case and three
levels of progressively diseased states. The first level of dis-
ease is evidenced by a widened periapical ligament space,
the second level shows destruction of the lamina dura, and
the third stage involves resorption of alveolar bone in the
periapical area. The first and second stages of disease are
generally limited to one root, while the third stage may ex-
tend to the roots of the adjacent teeth.

Our test data consist of four groups of radiographs, la-
beledG1 toG4, with each group (8 radiographs) represent-
ing one of the four categories of periapical disease.G1 is
normal,G2 is widened ligament space,G3 is interrupted
lamina dura, andG4 is bone resorption. Each radiograph is
digitized as a256 � 256 pixel image. Each lesion contour
is drawn by an expert dentist, and then a prototype ellipse
is deformed to match the shape of the lesion. The mini-
mum number of modes (eigenvalue of stiffness matrix) in
all groups is 28, and the maximum number is 58. We take
the first 25 modes, and the corresponding modal displace-
ment vector for each shape is used as the input to our clas-
sifier. In Figures 3–6, we show the results of deforming an
ellipse to the outlined lesion region.
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Figure 3. Examples of deformation result,
Group 1

Figure 4. Examples of deformation result,
Group 2

Figure 5. Examples of deformation result,
Group 3

Figure 6. Examples of deformation result,
Group 4

We take one sample from each group. Shown in the left
column are the prototype shape and the deformation target.
In the right column are the shapes after deformation.

4.2. Separation of Test Groups in Modal Space

For the modal space to be a sufficiently powerful repre-
sentation and basis for the proposed content based search
engine, the representations of the classes of pathology must
be well separated. That is, the inter-class variations between
all pairs must be greater than the individual intra-class vari-
ations; this notion is captured by the similarity metric in
Equation 15. The results are shown in Figure 7, in which
Sij denotes the similarity measure between theith andjth

image groups. The inter-group shape similarity measure
distinctively decreases from groupG1 to G4, which indi-
cates that the modal shape description could serve as a good
feature in reflecting the four stages of periapical disease.
This trend is also evidenced in Table 1, where we choose
a mode subset, modes 6 through 9, to calculate the inter-
group similarity measure.
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Figure 7. Inter-group shape similarity varying
with number of modes

groupG1 groupG2 groupG3 groupG4
G1 0.2974 0.1720 -0.3674
G2 0.3274 -0.2791
G3 -0.2423

Table 1. Inter-group similarity measure with
6� 9 mode subset

7



4.3. Classification Error Probability

We built a Minimum Mahalanobis Distance Classifier
following the discussion in section 3.2. First, we estimate
the mean and covariance of each group using the Maximum
Likelihood [29] method. Then, for each test sample, we
find the group that is closest to that sample using the Ma-
halanobis Distance, and classify the test sample into that
group. The “leave-one-out” method is used to maximize
usage of the test sample into that group. Following the dis-
cussion on retaining only low-order modes, we discard the
first 5 modes and take the next 6 modes (6 through 11).
Calculating more modes would have resulted in a singular
covariance matrix estimate due to insufficient sample data.

We computed the performance of the classifier against
the number of modes. LetPji be the probability of an
image in groupi being classified into groupj. We found
that the modal subsets in Table 2 optimize the classifica-
tion probability (Pii’s), and that the subset that maximizes
(
P

4

i=1 Pii) is setf6; 7; 8; 9g, as shown in Table 3. If we
aggregate the 4 groups into normal (groupG1) and abnor-
mal (groupG2,G3,G4) groups, then the classification per-
formance is shown in Figure 8, with the best performance
again from subsetf6; 7; 8; 9g. All these results indicate that
because modal shape descriptions decompose shape infor-
mation into an ordered basis of orthogonal principal com-
ponents, the less critical and often noisy high-order compo-
nents can be discarded to obtain overconstrained, canonical
descriptions. This allows for the selection of only the most
important components to be used for efficient data reduc-
tion, real-time recognition, and robust reconstruction.

characteristic mode setmaxPii
G1 7-9 87.5%
G2 8-9 75.0%
G3 7-9 62.5%
G4 6-8 62.5%

Table 2. Classification Performance based on
individually optimal mode subset

4.4. Summary

We investigated the statistical characteristics of the
modal shape description in classifying nonrigid shape de-
formations due to various pathologies reflected in dental
images. Good classification performance based on modal
features is achieved. There exists some characteristic mode
subset that best characterizes a particular disease stage or
abnormality. Modal shape descriptors seem to provide a

groupG1 groupG2 groupG3 groupG4
G1 87.5% 12.5% 0 0
G2 25% 62.5% 12.5% 0
G3 25% 12.5% 62.5% 0
G4 12.5% 12.5% 12.5% 62.5%

Table 3. Classification Performance based on
the overall optimal mode subset
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Figure 8. Error probabilities for aggregated
normal and abnormal group.

possible search index for retrieving similar lesions from our
dental image database.

5. Prototype Application

5.1. System Implementation

Our prototype image retrieval system is designed for In-
ternet access. Both text-based and content-based search are
supported; For a text-based search, a user can fill in key-
word information, such as patient name, to obtain multime-
dia patient archive records that contain personal informa-
tion, clinical history, and radiographs. For content-based
image search, a user can select (or load) an image for study,
interactively draw a contour around a lesion to be inter-
preted, and request images (and their corresponding patient
records) containing lesions whose shapes are similar to the
query lesion.

The interactive operation is as follows: An outline of a
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lesion contour from the user is tracked, recorded and sent to
a server. The server passes the contour to the content search
engine where the target lesion shape is compared to those in
the database using the modal shape description. The search
engine returns the indicies of the ”most similar” lesions to
the server, which are used to produce a display of the most
similar lesions.

An alternative method for comparing two shapes is to
compute the amount of deformation energy needed to align
an object [23]. When correspondence between two modal
shape features is established, the modal displacement can be
obtained using Equation 13, and the strain energy is simply:

E =
1

2
~UT
2 ~U (18)

Although also not yet implemented, we can utilize the
strain-energy distance metric to order objects based on their
similarity to a prototype [22]. In such a scenario, a few pro-
totypes are selected to span the variation of shape in each
category. Every shape in the database is then aligned with
each of the prototypes using modal matching, and the result-
ing modal strain energy is stored as anm-tuple, wherem is
the number of prototypes. Each shape in the database now
has a coordinate in this low-dimensional space, and shapes
can be compared in terms of their Euclidean distance in this
space.

We now present a few snapshots of our system. Fig-
ure 9 shows the graphical user interface. A user can select
a particular image from the list on the top and then use the
mouse to outline the target lesion in the image. This draw-
ing is recorded and sent to the database server which han-
dles lesion search, including the computation of its modal
description. The query results, in the form of image icons,
are sent back to the user, as shown in Figure 10. Detailed
lesion characterization can be displayed by clicking on a
particular image icon, as shown in Figure 11. From here,
the user can track other related clinical information about
the patient, including clinical history, other radiographs, di-
agnosis notes, etc., although not shown in this paper.

6. Conclusion and Future Work

In this work, we successfully developed a prototype of a
clinical radiograph image database retrieval system indexed
by image content. The underlying content-based search en-
gine is based on the modal shape description method. We
investigated the statistical characteristics of modal shape de-
scription via a number of approaches. Using a similarity
metric defined in the modal vector space, we successfully
classified (nonrigid) shape deformations due to pathologi-
cal changes. This indicates that the modal shape descriptors
can be used to index the database based on content.

Our (more near-term) goal is to build specialized, de-
formable shape models that can learn priors for a particular
organ or tumor type. These “organ agents” would then be
used to segment and track anatomical structures. It would
be of interest to investigate combining other image descrip-
tion methods (such as texture, radiodensity, etc.) with shape
descriptors in order to index the database more effectively.
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