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Abstract 

Many CAD-based recognition systems have relied on 
accurate pose estimation and back-projection in order 
to verify weak correspondences between simple image 
and model features. This coupling of recognition and 
localization requires object models which capture the 
exact geometry of the object, precluding the recogni- 
lion of generic objects in  less restricted domains. In 
this paper, we synthesize a new approach to 3-0 object 
shape recovery which decouples the processes of recog- 
nizing and localizing objects. We  first use qualitative 
shape recovery techniques to  recognize objects. Zf and 
only if detailed shape or pose is  required, we then use 
the recovered qualitative shape to provide strong fitting 
constraints on physics-based deformable model recov- 
ery techniques. 

1 Introduction 
Typical CAD-based vision systems for 3-D ob- 

ject recognition from 2-D images have adopted an 
approach resembling that shown in Figure 1 (e.g., 
[13, 26, lo]). Small groups of three or more sim- 
ple image features such as high curvature points, cor- 
ners, or lines are paired with corresponding features 
on some model which captures the exact geometry of 
the object. Next, a transformation is computed which 
brings the model features into alignment with the im- 
age features. Finally, the correspondence between im- 
age and model features is verified by back-projecting 
other model features into the image and searching for 
image features a t  those locations. If enough image fea- 
tures appear a t  their expected locations, the object’s 
identity and pose are confirmed. 

Despite the popularity of this approach, it is not 
without its limitations. First of all, since simple image 
features such as corners and lines are abundant in any 
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CAD model, there may exist many possible correspon- 
dences between image and model features that must 
be hypothesized. As object complexity increases, or 
as the size of the object database grows, this problem 
becomes even more acute. Another limitation of the 
approach is that  verifying the position and/or orien- 
tation of simple image features requires that the pose 
of the model be accurately estimated with respect to 
the image. Furthermore, such geometric verification 
means that the object models are not invariant to mi- 
nor changes in shape. For example, if the curvature of 
a coffee cup handle changes slightly, or the cup’s di- 
mensions change, an entirely new CAD model may be 
needed. Although this approach has proven effective 
for manufacturing domains where the exact shape of 
the object is known and the domain of the recognition 
system is typically a single object, a new paradigm is 
needed to address less restrictive domains. 

Consider, for example, the domain in which a mo- 
bile robot, equipped with a vision system, moves 
about a household retrieving objects for a handi- 
capped person. Not only must the system be aware of 
a large domain of objects, but it is impractical to  ex- 
pect detailed CAD models to exist for these objects. 
Rather, the system must have knowledge of generic 
object classes like cup, book, glass, lamp, etc., which 
it can use to identify the objects in cluttered scenes. 
For example, the model of a cup should be some sym- 
bolic description such as “bent cylinder attached at  
its ends to  the side of a cylinder.’’ In this manner, 
everyday objects, or at least those which can be de- 
scribed as catenations of simple volumetric parts, can 
be easily acquired by the recognition system without 
complex geometric models. 

Since the introduction of a class of generic 
or qualitatively-defined volumetric primitives, called 
geons [3], interest has  been growing in building 3-D 
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Figure 1: Typical CAD-Based Vision Approach to  Ob- 
ject Recognition 

object recognition systems based on qualitative shape 
[2, 7, 8, 211. One of the primary motivations in these 
systems is t ha t ,  as stated by Biederman [3], the task of 
recognizing (or identifying) an object should be sepa- 
rated from the task of locating i t ,  i.e., determining its 
pose. Furthermore, the exact shape of the object need 
not be recovered to  facilitate recognition; a coarse- 
level description of an object in terms of its parts is not 
only sufficient to  distinguish between different classes 
of objects, but provides an efficient indexing mecha- 
nism for recognition from large object databases. 

While addressing the problem of identifying or rec- 
ognizing generic objects from a large database, the 
above systems have not addressed the problems of ei- 
ther detailed shape extraction or shape localization. 
Referring back t o  our robot vision system, its task 
may be to retrieve the big cup as opposed to the small 
cup, in which case more detailed geometry may need 
to be recovered. Furthermore, since the cup is to  be 
grasped, its dimensions and 3-D location must also be 
recovered. 

Physics-based modeling [20, 25, 24, 15, 14, 161 pro- 
vides a very powerful mechanism for quantitatively 
modeling an object’s shape for recognition. In a typi- 
cal geometry-based model-driven recovery process, im- 
age features are matched to a set of rigid, a priori 
object models which dictate the exact geometry of 
an object and offer few degrees of freedom. In con- 
trast, deformable models offer a less constrained, data- 
driven recovery process, in which forces derived from 
the image deform the model until it fits the data.  How- 

ever, as powerful as these and other active, deformable 
model recovery techniques are, they have some serious 
limitations. Their success relies on both the accuracy 
of initial image segmentation and initial placement of 
the model given the segmented data.  For example, 
such techniques often assume that the entire bounding 
contour of a region belongs to  the object, a problem 
when the object is occJuded. In addition, such tech- 
niques often require a manual segmentation of an ob- 
ject into parts. Clearly, a more robust recovery would 
require more knowledge of the object’s position, ori- 
entation, and shape. 

In this paper, we propose a two-step recovery pro- 
cess that decouples the tasks of recognizing an object 
and localizing the object. The  first step recovers the 
qualitative shape of an object in terms of its volu- 
metric parts [5, 7: 61. If detailed shape or 1oc.aliza- 
tion is needed to  manipulate the object, for example, 
we then use knowledge of a part’s qualitative shape 
and orientation to provide strong constraints in fit- 
ting a deformable model to the part. In tandem, these 
two steps provide a coarse-to-fine approach to  object 
recognition, which is essential for less structured do- 
mains with large numbers of objects. 

2 Related Work 
Recently, several researchers have proposed various 

segmentation techniques to partition image or range 
data,  in order to automate the process of fitting vol- 
umetric primitives to the data. Most of those ap- 
proaches are applied to  range data  only [‘23, 91, while 
Pentland [19] describes a two-stage algorithm to fit su- 
perquadrics to  image data.  In the first stage, he seg- 
ments the image using a filtering operation to  produce 
a large set of potential object “parts”, followed by a 
quadratic optimization procedure that searches among 
these part hypotheses to  produce a maximum likeli- 
hood estimate of the image’s part structure. In the 
second stage, he fits superquadrics to  the segmented 
data  using a least squares algorithm. 

Pentland’s approach is only applicable in case of 
occluding boundary data  under simple orthographic 
projection, as is true of earlier work of Terzopoulos 
et al. [25], Terzopoulos and Metaxas [24], Metaxas 
and Terzopoulos [17], and Pentland and Sclaroff [‘20], 
which address only the problem of model fitting. Tak- 
ing a different approach, Raja and Jain [all segment 
a range image into parts corresponding to  geons, and 
then fit a superquadric to  the part to determine geon 
orientation. 

The  fundamental difference between our approach 
and the above approaches is that  we use a qualitative 
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segmentation of the image to  provide sufficient con- 
straints on our deformable model fitting procedure. In 
addition, we generalize our deformable model fitting 
technique to  accommodate orthographic, perspective, 
and stereo projections. 

3 Object Modeling 
3.1 Qualitative Shape Modeling 

shape modeling technique described in [5, 7, 61. 
In this section, we briefly review the qualitative 

3.1.1 Ob ject-Centered Models 

(iiven a database of object models representing the 
domain of a recognition task, we seek a set of three- 
dimensional volumetric primitives that ,  when assem- 
bled together, can be used to construct the object 
models. Many 3-D object recognition systems have 
successfully employed 3-D volumetric primitives to 
construct objects. Commonly used classes of volumet- 
ric primitives include polyhedra, generalized cylinders, 
and superquadrics. 

To demonstrate our approach to object recognition, 
we have selected an object representation similar to  
that used by Biederman [3], in which the Cartesian 
product of contrastive shape properties gives rise to a 
set of volumetric primitives called geons. For our in- 
vestigation, we have chosen three properties including 
cross-section shape, axis shape, and cross-section size 
variation (Dickinson et al. [7]). The values of these 
properties give rise to  a set of ten primitives ( a  sub- 
set of Biederman’s geons), shown in Figure 2(a). To 
construct objects, the primitives are attached to  one 
another with the restriction that  any junction of two 
primitives involves exactly one distinct surface from 
each primitive. 

3.1.2 V i e w e r - C e n t e r e d  Models 

Traditional aspect graph representations of 3-D ob- 
jects model an entire object with a set of aspects, 
each defining a topologically distinct view of the ob- 
ject in terms of its visible surfaces (Koenderink and 
van Doorn [ l l ] ) .  Our approach differs in that we use 
aspects to  represent a (typically small) set of volumet- 
ric primitives from which each object in our database 
is constructed, rather than representing an entire ob- 
ject directly. Consequently, our goal is to use aspects 
to recover the 3-D primitives that make up the object 
in order to  carry out a recognition-by-parts procedure, 
rather than attempting to  use aspects to recognize en- 
tire objects. The advantage of this approach is that  

since the number of qualitatively different primitives is 
generally small, the number of possible aspects is lim- 
ited and, more important, d e p e n d e n t  of the number 
of objects in the database. The disadvantage is that  
if a primitive is occluded from a given 3-D viewpoint, 
its projected aspect in the image will also be occluded. 
Thus we must accommodate the matching of occluded 
aspects, which we accomplish by use of a hierarchical 
representation we call the aspec t  hzerarchy. 

The aspect hierarchy consists of three levels, con- 
sisting of the set of a s p e c t s  that  model the chosen prim- 
itives, the set of component faces  of the aspects, and 
the set of b o u n d a r y  groups representing all subsets of 
contours bounding the faces. Figure 2(b) illustrates 
a portion of the aspect hierarchy, along with a few of 
the primitives. The ambiguous mappings between the 
levels of the aspect hierarchy are captured in a set of 
conditional probabilities, mapping boundary groups 
to  faces, faces t o  aspects, and aspects to  primitives. 
These conditional probabilities result from a statisti- 
cal analysis of a set of images approximating the set 
of all views of all the primitives. 

3.2 Quantitative Shape Modeling 

In this section we first briefly review the general 
formulation of deformable models; further detail can 
be found in [24, 141. We then extend the formulation 
to  the case of orthographic, perspective, and stereo 
projections. 

3.2.1 G e o m e t r y  

Geometrically, the models used in this paper are closed 
surfaces in space whose intrinsic (material) coordi- 
nates are U = (u,w), defined on a domain R. The 
positions of points on the model relative to an in- 
ertial frame of reference @ in space are given by a 
vector-valued, time-varying function of U: x(u,  t )  = 
( ~ I ( u ,  t ) ,  z ~ ( u ,  t ) ,  Z ~ ( U ,  t))T, where is the transpose 
operator. We set up a noninertial, model-centered ref- 
erence frame q5 [14] and express these positions as: 

x = c + Rp, 

where c ( t )  is the origin of q5 a t  the center of the model, 
and the orientation of d is given by the rotation matrix 
R( t ) .  Thus, p ( u ,  t )  denotes the canonical positions 
of points on the model relative to  the model frame. 
We further express p as the sum of a reference shape 
s(u,  t )  (global deformation) and a displacement func- 
tion d i u ,  t )  (local deformation): 

p = s + d .  (2) 
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parent faces of boundary 
groups 

Figure 2: (a) The Ten Modeling Primitives, (b) The Aspect Hierarchy 

However, since computing 3-D local deformations from 
2-D contour data  is underconstrained, we will consider 
only global deformations, s ,  since they are sufficient to 
represent the shapes of the ten volumetric primitives 
shown in Figure 2(a). Thus, we have: 

p = s .  ( 3 )  

Based on the shapes we want to  recover, we first 
consider the case of superquadric ellipsoids [ 11, which 
are given by the following formula: 

a 1 cu 1 c:, 
(4) 

where -1 5 t 1 , t ~  5 1 are the tapering parameters in 
principal axes 1 and 2, respectively; where b l  defines 
the magnitude of the bending and can be positive or 
negative; -1 5 62  5 1 defines the location on axis 
3 where bending is applied; and 0 < b3 5 1 defines 
the region of influence of bending. Our method for 
incorporating global deformations is not restricted to 
only tapering and bending deformations. Any other 
deformation that can be expressed as a continuous pa- 
rameterized function can be incorporated as our global 
deformation in a similar way. 

We collect the parameters of s into the parameter where - ~ / 2  5 U 5 a12 and - R  5 U < R ,  

and where SW' = sgn(sinw)(sinw('  and CWt = vector: 

sgn(cos w)l cos wl', respectively. Here, a >_ 0 is a scale 
parameter, 0 5 a1, a z ,  a3 5 1 are aspect ratio param- 4 5  = ( a ,  az ,  a3, t i , t z r  t i ,  t z ,  b i ,  b z ,  b3)T. (6) 

The above global deformation parameters are ade- 

primitives shown in Figure 2(a), 

3.2.2 Kinematics and Dynamics 

The velocity of points on the model is given by: 

eters, and 6 1 , ~ ~  2 0 are "squareness" parameters. 

axes 1 and 2 ,  and bending along principal axis 3 of 
the superquadric e1 into a single parameterized defor- 
mation T, and express the reference shape as: 

We then combine linear Principal quate for quantitatively describing the ten modeling 

T(e, t l  , t z ,  b l ,  bz ,  b 3 )  s =  

'These coincide with the model frame axes x,y and z 
respectively. x = ~ : + B B ) + R ~ ,  (7) 
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Material coordinmte 
domain 

and yp as follows: 

xp = x ,  yp = y. (10) 

By taking the derivative of the above equation (10) 
with respect to time, we arrive at the following formu- 
las: 

Figure 3: Geometry of Deformable Models 

where 8 is the vector of rotational coordinates of 
the model, and B = a(Rp) /8 .  Furthermore, S = 
Jqs, where J is the Jacobian of the deformable su- 
perquadric model with respect to the global degrees 
of freedom qs [14]. We can therefore write: 

x = [I B RJ]q = Lq, (8) 
where L is the Jacobian of the superquadric model, 
q = (q:, q:, q:)', with qc = c and q e  = 8. 

When fitting the model to  visual data,  our goal is 
to recover q, the vector of degrees of freedom of the 
model. Our approach carries out the coordinate fit- 
ting procedure in a physically-based way. We make 
our model dynamic in q by introducing mass, damp- 
ing, and a deformation strain energy. This allows us, 
through the apparatus of Lagrangian dynamics, to  ar- 
rive at  a set of equations of motion governing the be- 
havior of our model under the action of externally ap- 
plied forces. In the absence of local deformations, the 
Lagrange equations of motion take the form [24]: 

M q +  Dq = g, +fq ,  (9) 
where M and D are the mass and damping matrices, 
respectively, g ,  are inertial forces arising from the dy- 
namic coupling between the local and global degrees 
of freedom, and f , (u , t )  are the generalized external 
forces associated with the degrees of freedom of the 
model. The generalized external forces will be dis- 
cussed in detail in Section 4.2.2. 

3.2.3 Orthographic Projection 

In the c.ase of orthographic projection, the points on 
the model x = (2, y, z )  project to the image points xp 

xp = x, Yp = Y .  ( 1 1 )  

Rewriting ( 1  1 )  in matrix form and using (8), we arrive 
at  the following matrix equations: 

O O Lq. 1 0 0  
[ : ; ] = [ ( I  1 o ] [ i ] = [ o  l o ]  

(12) 
If we rewrite (12) in compact form, we get 

[ ;; ] = Loill ( 1 3 )  

3.2.4 Perspective Projection 

In the case of perspective projection, points on the 
model x = (x, y, z )  project into image points, xp and 
yp, based on the formula: 

Y 
XP = 3, yp = ;f, 

where f is the focal length. 
By taking the derivative of the above equation (15) 

with respect to time, we arrive at  the following formu- 
las: 

Rewriting (16) in matrix form and using (8), we arrive 
at  the following matrix equations 

r . - l  

If we rewrite (18) in compact form, we get 
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where 

] L. (20) 0 - X / 2 f  

f/. - Y l Z 2 f  
L, = [ f{z 

The above two Jacobian matrices, L, and L,, will 
be used in the calculation of the generalized external 
forces fq from two dimensional external forces f that  
the data  exert on the model. 

3.2.5 Stereo Projection 

In the case of stereo projection, we assume two par- 
allel cameras, each under perspective projection, re- 
sulting in two images, L and R. The model points 
x project on each of the images based on (15) and 
the corresponding Jacobian matrices L,L and L,R are 
calculated using (20). 

To recover the exact location of the model frame c, 
we apply the following procedure: 

0 

0 

0 

0 

4 

We first independently fit the model to  the left 
and right image data.  This results in two model 
instances, m~ and m ~ ,  one per image, having the 
same scale. 

Choosing one of the images, say R, we project the 
locations C L  and CR,  of the left and right model 
frames of the two model instances mL and m ~ ,  
into R. Let the 1oc.ations of the projected model 
centers be C L I  and C R I ,  respectively. 

We then map the difference in the 2: coordinates2 
of CLI and CRI into a force that modifies C L  and 
C R  in the direction of C L  and C R ,  respectively, 
acxording to  the following formula: 

where k = L or k = RI .s = 1 if C L I ~  < C R I ~ ,  and 
s = -1 otherwise. 

Once C L I  = C R I ,  we first sum the forces that 
the left and right image data  exert on the model. 
From their sum, we then compute the generalized 
force fqa that  corresponds t o  the scaling parame- 
ter a (4), and using (9), we modify a .  

Shape Recovery 

qualitative volume is used to  constrain the fitting of 
a deformable model to  the data.  In this section, we 
describe each of these steps in greater detail. 

4.1 Qualitative Shape Recovery 

4.1.1 Face Recovery 

The first step to recovering a set of faces is a region 
segmentation of the input image. We begin by apply- 
ing Saint-Marc, Chen, and Medioni’s edge-preserving 
adaptive smoothing filter to  the image [22], followed 
by a morphological gradient operator [12]. A hystere- 
sis thresholding operation is then applied to  produw 
a binary image from which a set of connected compo- 
nents is extracted. Edge regions are then burned away, 
resulting in a region topology  graph in which nodes rep- 
resent regions and arcs specify region adjacencies. 

From a region topology graph, each region is char- 
acterized according to the qualitative shapes of its 
bounding contours. First, the bounding contour of 
each region is partitioned a t  curvature extrema using 
Saint-Marc, Chen, and Medioni’s adaptive smoothing 
curve partitioning technique [22]. Next, each bound- 
ing contour is classified as straight, convex, or con- 
cave, by comparing the contour to a fitted line. Fi- 
nally, each pair of bounding contours is checked for 
cotermination, parallelism, or symmetry. The result 
is a region boundary  graph representation for a region 
in which nodes represent bounding contours, and arcs 
represent pairwise nonaccidental relations between the 
contours. 

Face labeling consists of matching a region bound- 
ary graph to the graphs representing the model faces 
in the aspect hierarchy. Region boundary graphs that 
exactly match a face in the aspect hierarchy will be 
given a single label with probability 1.0. For region 
boundary graphs that  do not match due to occlu- 
sion, segmentation errors, or errors in computing their 
graphs, we descend t o  an analysis a t  the boundary 
group level and match subgraphs of the region bound- 
ary graph t o  the graphs representing the boundary 
groups in the aspect hierarchy. Each subgraph that 
matches a boundary group generates a set of possible 
face interpretations (labels), each with a correspond- 
ing probability. The result is a f a c e  topology  gruph in 
which each node contains a set of face labels (sorted 
by decreasing order of probability) associated with a 
given region. 

4*1.2 Aspect 

In an unexpected object recognition domain in which 
there is no a priori knowledge of scene content, we 

Recovering a volumetric description from the im- 
age consists of two steps. First, a qualitative 3-D vol- 
ume is recovered from the image. Next, the recovered 

2Siiice the two cameras are parallel, the projections of the 
two model frame centers differ only in the z direction. 
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can formulate the problem of extracting aspects as 
follows: Given a face topology graph with a set of 
face hypotheses (labels) a t  each node (region), find 
an aspect covering of the face topology graph using 
aspects in the aspect hierarchy, such that no region 
is left uncovered and each region is covered by only 
one aspect. Or, more formally: Given an input face 
topology graph, FTG, partition the nodes (regions) 
of FTC: into disjoint sets, 5'1 , 5 ' 2 ,  S3, . . . , S'k , such that 
the graph induced by each set, .Si, is isomorphic to the 
graph representing some aspect, A j ,  from a fixed set 
of aspects, A I ,  A?, A B , .  . . , A , .  

There is no known polynomial time algorithm to 
solve this problem (see [7] for a discussion on the prob- 
lem's computational complexity); however, the condi- 
tional probability matrices embedded in the aspect hi- 
erarchy provide a powerful constraint that  can make 
the problem trac,table. For each face hypothesis (for a 
given region), we can use the face to  aspec.t mapping 
to generate the possible aspect hypotheses that might 
encompass that face3. At each face, we co1lec.t all the 
aspect hypotheses (corresponding to  all face hypothe- 
ses) and rank them in decreasing order of p r ~ b a b i l i t y . ~  

We can now reformulate our bottom-up aspect re- 
covery problem as a search through the space of aspect 
labelings of the faces in the face topology graph. In 
other words, we wish to  choose one aspect hypoth- 
esis from the list a t  each node in the face topology 
graph, such that the instantiated aspec,ts completely 
cover the graph. For our search through the possible 
aspect labelings of the face topology graph, we employ 
Algorithm A (Nilsson [la]) with a heuristic designed 
to meet three objectives. First, we favor selections 
of aspects instantiated from higher probability aspect 
hypotheses. Second, we favor selections whose aspects 
have fewer occluded faces, since we are more confident 
of their labels. Finally, we favor those aspects covering 
more faces in the image; we seek the minimal aspect 
covering of the face topology graph. Since there may 
be many labelings which satisfy this constraint, and 
since we cannot guarantee that a given aspect cov- 
ering represents a correct interpretation of the scene, 
we must be able to enumerate, in decreasing order of 
likelihood, all aspect coverings until the objects in the 
scene are recognized. 

In an expected object recognition domain, in which 
we are searching for a particular object or part ,  we use 
the aspect hierarchy as an attention mec.hanism to fo- 

'The probability of an aspect hypothesis is the product of 
the face to aspect iiiappiiig and the probability of the face hy- 
pothesis from wllich it was inferred. 

4For a detailed discussion of aspect instantiation and how 
occluded aspects are instantiated, see [7]. 

cus the search for an aspect a t  appropriate regions in 
the image. Moving down the aspect hierarchy, target 
objects map to  target volumes which, in turn,  map to 
target aspect predictions which, in turn, map to tar- 
get face predictions. Those faces in the face topology 
graph whose labels match the target face prediction 
provide an ordered (by decreasing probability) set of 
ranked search positions at  which the target aspeck pre- 
diction can be verified. If the mapping from a verified 
aspeck to a target volume is ambiguous, this attention 
mechanism c.an be used to  drive an active recognition 
system which moves the cameras to  obtain a less am- 
biguous view of an objeck's part [4]. 

4.1.3 Primitive Recovery 

In the expected object rec.ognition approach deswibed 
above, volume recovery consists of using the aspect hi- 
erarchy to  map the recovered aspect directly to the 
target volume prediction. Volume recovery for the 
unexpected object recognition case is more complex. 
From an aspect covering of the regions in the image. 
a set of volume labels and their corresponding prob- 
abilities is inferred (using the aspect hierarchy) from 
each aspect. Volume recovery is formulated as a search 
through the space of volume labelings of the aspects 
in the aspect covering, guided by a heuristic based 
on the probabilities of the volume labels. Each so- 
lution, or volume covering, found by the search is a 
valid volumetric part interpretation of the input im- 
age. Encoded in each recovered volume is the aspect 
in which it i t  viewed; the aspect, in turn,  encodes the 
faces that were used in instantiating the aspect. while 
each face specifies those contours in the image used to 
instantiate the face. 

4.1.4 Stereo Correspondence 

In the case of stereo projection, we independently ap- 
ply the qualitative shape recovery process to the left 
and right images. The  correspondence problem then 
consists of matching qualitative primitive descriptions 
in the two images. A pair of volumes represents a cor- 
respondence i f  (i) the volumes have the same label, 
(ii) their aspects have the same label, and (iii) the 
ratio of the vertical intersection of the bounding rect- 
angles of the two volumes to the vertical size of each 
bounding rectangle exceeds some threshold (epipolar 
constraint). Intuitively, volumes from the left and 
right image are said to correspond if they are of the 
same type, they are viewed in roughly the same ori- 
entation, and their vertical disparity is small. Note 
that this provides only a coarse correspondenc,e; di- 
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mensions, orientation. and curvature of the volumes 
may be disparate. During the independent quantita- 
tive shape recovery of the left and right models, ad- 
ditional shape information can be used to prune weak 
correspondences, providing a coarse-to-fine stereo cor- 
respondence scheme. 

4.2 Quantitative Shape Recovery 

4.2.1 Simplified Numerical Simulation 

In computer vision applications [24], we can simplify 
the eqnations while preserving useful dynamics by set- 
ting the mass density p(u) to zero to  obtain: 

Dq = fq (22) 

These equations yield a model which has no inertia 
and comes to rest as soon as all the applied forces 
vanish or equilibrate. Equation (22) is discretized in 
material coordinates U using nodal finite element basis 
functions. We carry out the discretization by tessel- 
lating the surface of the model into linear triangular 
elements. Furthermore, for fast interactive response, 
we employ a first-order Euler method to  integrate (22). 

4.2.2 Applied Forces 

In the dynamic model fitting process, the data  are 
transformed into an externally applied force distribu- 
tion f ( u ,  t ) .  We convert the external forces to general- 
ized forces fq which act on the generalized coordinates 
of the model [‘24]. We apply forces to  the model based 
on differences between the model’s projection in the 
image and the image data.  Each of these forces corre- 
sponds to  the appropriate generalized coordinate that 
has to be adapted so that  the model fits the data.  
Given that our vocabulary of primitives is limited, we 
devise a systematic way of computing the generalized 
forces for each primitive. The computation depends 
on the influence of particular parts of the projected 
image on the model degrees of freedom. Such parts 
correspond to  the image faces (grouped to form an as- 
pect) provided by the qualitative shape extraction. In 
the case of occluded primitives, resulting in both oc- 
cluded aspects and occluded faces, only those portions 
(boundary groups) of the faces used to define the faces 
exert external forces on the models. 

For each of the three projection models, we com- 
pute the generalized forces fq from 2D image forces f ,  
using the following formula: 

where k = o or k = p ,  depending on whether we as- 
sume orthographic or perspective projection, respec- 
tively. For orthographic projection, we assign forces 
from image data points to  points on the model that 
lie on a particular region of the model defined by the 
qualitative shape recovery. For the case of perspective 
projection, we assign forces from image data points to 
points on the model that ,  in addition to satisfying the 
above property, are near occluding boundaries, thus 
satisfying the following formula: 

(24) 
where 11 is the unit normal a t  any model point, i is 
the unit vector from the focal point to a point on the 
model, and r is a small threshold. 

4.2.3 Model Initializatioxi 

One of the major limitations of previous deformable 
model fitting approaches is their dependence on model 
initialization and prior segmentation [25, 24, 201. Us- 
ing the qualitative shape recovery process as a front 
end, we first segment the image into parts, and for 
each part, we identify the relevant non-occluded con- 
tour data belonging to  the part. In addition, the ex- 
tracted qualitative primitives explicitly define a map- 
ping between the image faces in their projected aspects 
and the 3-D surfaces on the quantitative models. Fi- 
nally, although the initial model can be specified at, 
any position and orientation, the aspect that  a primi- 
tive encodes defines a qualitative orientation that can 
be exploited to  speed up the model fitting process. 
Sensitivity of the fitting process to  model initializa- 
tion is also overcome by independently solving for the 
degrees of freedom of the model. By allowing each face 
in an aspect to  exert forces on only one model degree 
of freedom a t  a time, we remove local minima from 
the fitting process and ensure correct convergence of 
the model. 

5 Experiments 
To illustrate the shape recovery approach, consider 

the real image of a toy table lamp, as shown in Fig- 
ure 4; the results of the bottom-up (unexpected) quali- 
tative shape recovery algorithm are also shown in Fig- 
ure 5. At the top, the image window contains the 
contours extracted from the image, along with the face 
numbers. To the left is a window describing the recov- 
ered primitives (primitive covering). The mnemonics, 
PN, PL, and PP, refer to  primitive number (simply an 
enumeration of the primitives in the covering), primi- 
tive label (see Figure 2(a)), and primitive probability, 
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Figure 4: Original Image 

respectively. The  mnemonic,s AN, A L ,  A P ,  and AS re- 
fer to  the aspect number (an enumeration), aspect la- 
bel (see [7]), a s p d  probability, and aspect score (how 
well aspect was verified), respec.tively. The mnemon- 
ics FN, FL, FP,  and P S  refer t o  face number (in im- 
age window), face label (see [7]), face probability, and 
corresponding primitive attachment surface (see [7]), 
respectively, for each component face of the aspect. 

To illustrate the fitting stage, consider the contours 
belonging to the lamp shade (truncated cone). Hav- 
ing determined during the qualitative shape recov- 
ery stage that  we are trying to  fit a deformable su- 
perquadric, to a truncated cone, we can immediately 
fix some of the parameters in the model. In addition, 
the qualitative shape recovery stage provides us with 
a mapping between faces in the image and physical 
surfaces on the model. For example, we know that 
the elliptical face (FN 1) maps to  the top of the trun- 
cated cone, while the body face (FN 0) maps to  the 
side of the truncated cone. For the case of the trun- 
cated cone, we will begin with a cylinder model (su- 
perquadric) and will compute the forces that  will de- 
form the cylinder into the truncated cone appearing in 
the image. Assuming an orthographic projection and 
that the z and y dimensions are equal, we compute 
the following forces: 

1. The  cylinder is initially oriented with its z axis 
orthogonal to  the image plane. The  first step 
involves c.omputing the centroid of the elliptical 
image face (known to correspond to the top of 
the cylinder). The  distance between the centroid 
and the projected center of the cylinder top is 
converted t o  a force which translates the model 
cylinder. Fig. 6(a) shows the image contours cor- 
responding to the lamp shade and the cylinder fol- 
lowing application of this force. Fig. 6(b) shows 
a different view of the image plane, providing a 
better view of the model cylinder. 

F k o v d  M t i v e r  h i t i v e  Comelonr 

Figure 5: Recovered Qualitative Primitives 

responding to  the extrema of the principal axis of 
the elliptical image face and two points that  lie on 
a diameter of the top of the cylinder is converted 
to a force affecting the z and y dimensions with 
respect to the model cylinder. Figs. 6(c) and 6(d) 
show the image and the cylinder following appli- 
cation of this force. 

3. The distance between the projected model con- 
tour corresponding to  the top of the cylinder and 
the elliptical image face corresponds to  a force af- 
fecting the orientation of the cylinder. Figs. 6(e) 
and 6(f) show the image and the cylinder follow- 
ing application of this force. This concludes the 
application of forces arising from the elliptical im- 
age face, i.e., top of the truncated cone. 

4. Next, we focus on the image face corresponding 
to the body of the truncated cone to  complete the 
fitting process. The  distance between the points 
along the bottom rim of the body face and the 
projected bottom rim of the cylinder corresponds 
to  a force affecting the length of the cylinder in 
the t direction. Figs. 6(g) and 6(h) show the im- 
age and the cylinder following application of this 

2. The distance between the two image points cor- force. 
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5. Finally, the distance between points on the sides 
of the body face and the sides of the cylinder cor- 
responds to  a force which tapers the cylinder to  
complete the fit. Figs. 6(i) and S(j) show the im- 
age and the tapered cylinder following application 
of this force. The  result of fitting all three parts 
of the lamp is shown in Figure 7, along with a side 
view in showing how an arbitrary depth must be 
chosen for each part under an orthographic pro- 
jection model. 

In an example illustrating the stereo recovery tech- 
nique, we apply the top-down object recognition algo- 
rithm to the stereo pair shown in Figure 8; the system 
is instructed to  search for high-scoring instances of 
the block volume, i.e , unoccluded instances appear- 
ing as high-probability aspects. Two corresponding 
pairs were found in each image and are highlighted 
in Figure 8. Volume score thresholds were set high 
so that volumes appearing in only the most probable 
aspect and with little or no occlusion were a ~ c e p t e d . ~  
Although the top block on the two-block stack to  the 
right was  recovered by the algorithm, it was rejected 
due to  the fact that ,  due to  region undersegmenta- 
tion, one of i ts  faces was merged with a face from 
the block below, resulting in a lower score. For the 
smaller block, Figure 9 captures the stage in the fit- 
ting process where each block is being fit indepen- 
dently. Projection rays pass from the camera focal 
point, through the image contours, and on to  the fitted 
models whose initial depth is chosen arbitrarily. The  
final step, shown in Figure 10, shows the two models 
converging in depth. Finally, in Figure 11, we can see 
both recovered blocks along with their relative depth. 

6 Limitations 
The  approach outlined in this paper is applic.able to  

objects composed of distinct volumetric parts devoid 
of surface markings or fine structural detail. This is 
a limitation of the region segmentation scheme, and 
in order to  accommodate more realistic objects, we 
are currently looking a t  ways in which salient regions 
can be abstracted from image detail. Both the quali- 
tative and quantitative shape representation schemes 
are general. Tha t  is, any set of qualitative volumetric 
shapes that can be mapped to a recoverable viewer- 
centered aspect hierarchy, and any quantitative shape 

5The rules for fitting a superquad to a block assume that 
the block appears as the most probable aspect, i.e., that aspect 
which provides the maximum information about the shape of 
the block. Figure 6 :  

Shade 
Quantitative Shape Recovery for Lamp 
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Figure 10: Localization of Model in Depth 

Figure 7: Final Recovery of Table Lamp. Note that 
depth information is lost in orthographic projection. 

Figure 11: Rendering of Two Fitted Blocks Showing 
Relative Depth 

Figure 8: Left and Right Stereo Images of a Cluttered 

lighted 

model that can be defined using our physics-based 

it is important to  note that choosing one model will 
constrain the choice of the other, i.e., a quantitative 
shape model must be chosen such that  it accurately 
models every possible instance of the qualitative shape 
model. Finally, it should be noted that the systematic 
rules that govern the way in which a volume’s qualita- 
tive shape is used to  constrain its quantitative shape 
recovery are specific to  each class of volume. Not only 
are we exploring how such rules can be automatically 
extracted through reasoning about the part’s shape, 
but we are also looking a t  which degrees of freedom 
of the model can be simultaneously affected by image 
forces. 

with Corresponding Recovered Blocks High- framework can be deformed by image forces. However, 

7 Conclusions 

The qualitative shape recovery component of the 
approach is able to  capture the coarse shape of objects 
composed of volumetric primitives without solving for 

Figure 9: Independent Fitting of Models to the 
Smaller Block 

exact viewpoint and without a precise geometric, ver- 
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ification of image features. For many tasks, simply 
identifying the class of the object is sufficient and there 
may be no need to  either accurately localize the object 
beyond, for example, “over there”, or accurately de- 
scribe the shape of its components beyond, for exam- 
ple, “cylinder-like” . If, however, we need to  accurately 
locate (in order to  manipulate) the object once it’s 
been identified, or we need to  extract a more detailed 
shape description in order to  distinguish between sub- 
classes of an object, then we c,an apply the quantita- 
tive shape rec.overy component. The important idea 
is that  the processes of recognizing an object and lo- 
cating it are decoupled, and that recognition does not 
require accurate localization. In addition, when lo- 
calization is required, recovered qualitative shape pro- 
vides strong constraints on the fitting of deformable 
models, so that the fitting procedure, supporting or- 
thographic, perspective, and stereo projections, is in- 
sensitive to  both occlusion and initial conditions. 
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