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Abstract

We present an approach to the recovery and recognition
of 3-D objects from a single 2-D image. Given a recog-
nition domain consisting of a database of objects, we
select a set of object-centered 3-D volumetric modeling
primitives that can be used to construct the objects.
Next, we take the set of primitives and generate a hier-
archical aspect representation based on their projected
surfaces; conditional probabilities capture the ambigu-
ity of mappings between levels of the hierarchy. From
a region segmentation of the input image, we present
a novel formulation of the recovery problem based on
grouping the regions into aspects. Once the aspects are
recovered, we use the aspect hierarchy to infer a set of
volumetric primitives and their connectivity. The re-
covered primitives are are then used as indices into the
object database for recognition.

1 Introduction

Significant progress has been made in the feature-
based recognition of three-dimensional objects from
two-dimensional images; some important examples in-
clude Lowe [13], Huttenlocher and Uliman [8], Thomp-
son and Mundy [19], and Lamdan et al. {12}. However,
these approaches restrict the features to simple 2-D
primitives such as line segments, corners, inflections,
and 2-D perceptual structures. These primitives are ap-
pealing because of their viewpoint invariance. However,
due to their simplicity, a typical 3-D model contains a
large number of primitives. Consequently, the process
of searching a large database to recognize a model be-
comes inefficient. Furthermore, the simplicity of the
primitives makes recognition unreliable, and detailed
verification of the model’s pose is required. Such veri-
fication is not only expensive, but restricts the recogni-
tion system to models whose exact geometry is known
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beforehand.

Our approach is to use more complex primitives, so
that indexing for recognition is efficient, and only qual-
itative (topological) verification is required. We have
chosen to model objects as configurations of object-
centered 3-D volumetric primitives such as polyhedra,
generalized cylinders, and superquadrics. This ap-
proach shifts the burden of recognition from the top-
down verification of simple 2-D features to the bottom-
up extraction and grouping of features into volumet-
ric primitives. The recovery of these 3-D primitives
would normally entail a high search cost due to the
their complexity. However, we have been able to avoid
this problem by taking advantage of prebabilistic infor-
mation about whatever set of modeling primitives the
user has chosen.

To obtain the probabilistic information, we choose a
set of primitives and map them into a set of viewer-
centered aspects whose size is fixed and independent of
the size of the object database [5]. The aspects are rep-
resented by a hierarchy of 2-D features whose levels in-
clude the qualitative shapes of the primitives’ projected
surfaces (faces), subsets of the contours that bound the
faces (boundary groups), and groups of faces (aspects).
The relations between these features are then assessed
from all viewpoints, thus generating a table of esti-
mated conditional probabilities for each feature and
primitive as a function of less complex features. For
instance, one entry in this table might be the condi-
tional probability that we are viewing a cylinder prim-
itive given that we have found a rectangular face in the
image.

Given an image of a scene, this table of conditional
probabilities is then used to guide a combinatorial
search that yields a full and consistent interpretation
of the viewed scene. The key idea is that the statistical
properties of the set of user-defined primitives are used
to avoid a combinatorial explosion in the search pro-



cess. Knowledge about how each primitive looks from
all angles makes for a more informed search, and allows
the use of much more complex indexing features than
are typically employed.

From an interpretation of the scene, the final step
involves recognizing the (possibly occluded) objects.
The recovered primitives are in the form of a graph
whose nodes represent the 3-D primitives and whose
arcs represent possible connections between the prim-
itives. From this primitive graph, subgraphs are used
as indices into a precomputed hash table. Candidate
objects are then verified and ranked according to a
goodness of fit measure. In this paper, we describe
the approach and demonstrate its application to both
synthetic and real images.

2 Building the Search Tables

2.1 Choosing the 3-D Primitives

Given a database of object models representing the
domain of a recognition task, we seek a set of three-
dimensional volumetric primitives that, when assem-
bled together, can be used to construct the object mod-
els. Many 3-D object recognition systems have suc-
cessfully employed 3-D volumetric primitives to con-
struct objects. Commonly used classes of volumetric
primitives include polyhedra [13], generalized cylinders
[3], and superquadrics [14]. Whichever set of volumet-
ric modeling primitives is chosen, they will be mapped
to a set of viewer-centered aspects. Consider, for ex-
ample, a rectangular block primitive which might be
a component of many objects in a database. Let us
assume that for each object of which it is a compo-
nent, its dimensions are different. If our aspect defi-
nitions were quantitative, specifying the exact geome-
try of image features, each instance of the block would
map to a different set of aspects. However, if the as-
pect definitions were qualitative, providing stability un-
der minor changes in the shape of the primitives (e.g.,
scale, dimension, and curvature), a single set of aspects
might represent all possible instances of a rectangular
block. Our approach, therefore, has been to select a set
of qualitatively-defined volumetric primitives, so that
their description will be invariant under such changes
in shape.

To demonstrate our approach to primitive recovery,
we have selected an object representation similar to
that used by Biederman [2], in which the Cartesian
product of contrastive shape properties gives rise to
a set of volumetric primitives called geons. For our
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Figure 1: The Ten Primitives

investigation, we have chosen three properties includ-
ing cross-section shape, axis shape, and cross-section
size variation. The values of these properties give rise
to a set of ten qualitative volumetric primitives. To
construct objects, the primitives are attached to one
another with the restriction that any junction of two
primitives involves exactly one attachment surface from
each primitive.

In our system, these ten primitives were modeled us-
ing Pentland’s SuperSketch 3-D modeling tool [14], as
illustrated in Figure 1. We believe that this taxonomy
of volumetric primitives is sufficient to model a large
number of objects; however, nothing in our approach
is specialized for this particular set of primitives. This
is in contrast to Bergevin and Levine’s PARVO system
[1], whose approach is dependent on geons as a basis
for object construction. Our approach can easily ac-
commodate other sets of volumetric primitives.

2.2 Defining the 2-D Aspects

Traditional aspect graph representations of 3-D objects
model an entire object with a set of aspects, each defin-
ing a topologically distinct view of an object in terms
of its visible surfaces [4, 6, 9, 10, 16, 17]. Our approach




differs in that we use aspects to represent a (typically
small) set of volumetric primitives from which each ob-
ject in our database is constructed, rather than rep-
resenting an entire object directly. Consequently, our
goal is to use aspects to recover the 3-D primitives that
make up the object in order to carry out a recognition-
by-parts procedure, rather than attempting to use as-
pects to recognize entire objects. The advantage of
this approach is that since the number of qualitatively
different primitives is generally small, the number of
possible aspects is limited and, more important, inde-
pendent of the number of objects in the database. The
disadvantage is that if a primitive is occluded from a
given 3-D viewpoint, its projected aspect in the image
will also be occluded. Thus we must accommodate the
matching of occluded aspects, which we accomplish by
use of a hierarchical representation we call the aspect
hierarchy. The aspect hierarchy consists of three levels,
based on the faces appearing in the aspect set; Figure 2
illustrates a portion of the aspect hierarchy.

Aspects constitute the top level of the aspect hier-
archy and consist of connected sets of faces. For our
set of ten modeling primitives, there are 37 unique as-
pects [5]. Each aspect is represented by a graph in
which nodes represent faces and arcs represent face ad-
jacencies; arc labels indicate those contours shared by
adjacent faces.

Faces that make up the various aspects form the
second level of the aspect hierarchy. For our set of 37
aspects, there are 16 unique faces. Each face is rep-
resented by a graph in which nodes represent bound-
ing contours and arcs represent certain nonaccidental
contour relations, including parallelism, symmetry, and
intersection, that occur within a particular face. Rea-
soning about the type and arrangement of visible faces
can allow identification of an aspect even when it is
partially occluded.

Boundary Groups are subsets of the faces’ bound-
ing contours and make up the third and lowest level
of the aspect hierarchy. For our set of 16 faces, there
are 31 unique boundary groups. Each boundary group
is represented by a graph in which nodes represent
bounding contours and arcs represent nonaccidental
contour relations. The boundary groups represent qual-
itative relationships among qualitatively-described con-
tours; exact lengths, distances, angles, curvature, etc.,
are not represented. When a face is partially occluded,
its boundary groups provide a mechanism for identify-
ing the face type.
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Figure 2: The Aspect Hierarchy

2.3 2-D Aspects to 3-D Primitives

A given boundary group may be common to a number
of faces. Similarly, a given face may be a component of
a number of aspects, while a given aspect may be the
projection of a number of primitives. To capture these
ambiguities, we have created a matrix representation
that describes conditional probabilities associated with
the mappings from boundary groups to faces, faces to
aspects, and aspects to primitives. For example, con-
sider the mapping between faces and aspects. To de-
scribe this mapping, we create a matrix whose rows
represent faces and whose columns represent aspects.
If a particular face can be a component of ten different
aspects, then those ten column entries corresponding to
the ten aspects contain a value from 0 to 1.0, indicating
the probability that the face is part of that particular
aspect. Thus, the entries along each row sum to 1.0.
To generate these conditional probabilities, we first
model our 3-D volumetric primitives using the Super-
Sketch modeling tool [14]. The next step in generating
the probability tables involves rotating each primitive
about its internal z, y, and z axes in 10° intervals. The
resulting quantization of the viewing sphere gives rise
to 648 views per primitive; however, by exploiting prim-
itive symmetries, we can reduce the number of views
for the entire set of primitives to 688. For each view, we
orthographically project the primitive onto the image
plane, and note the appearance of each feature (bound-
ary group, face, and aspect) and its parent. The result-



ing frequency distribution gives rise to the three con-
ditional probability matrices (which can be found in
[5]). This procedure implicitly assumes that all primi-
tives are equally likely to appear in the image, and that
all spatial orientations are equally likely. However, if
a set of a priori probabilities of occurrence or orienta-
tion are known, they can be factored into the analysis.
In our current system, the process of identifying and
counting the features in each projection is not yet fully
automated; however a number of algorithms exist for
automatically computing aspect graphs under certain
restrictions, e.g., [7, 11, 18].

3 Primitive Recovery

Given an image of one or more objects, the goal of
primitive recovery is to extract instances of the prim-
itives and their connectivity relations. Our approach
first segments the input image into regions and deter-
mines the possible face labels for each region. Next, we
assign aspect labels to the faces, effectively grouping
the faces into aspects. Finally, we map the aspects to
primitives and extract primitive connectivity. The fol-
lowing sections describe the approach in greater detail.

3.1 Face Extraction

Since we characterize faces by their bounding contours,
our first step is to extract a set of contours from the
image; this can be accomplished using either region-
based or edge-based methods. Once a set of contours
has been extracted, the next step is to partition the
contours at significant curvature discontinuities. The
segmented contours are captured in a contour graph in
which nodes represent junctions or significant curva-
ture discontinuities, and arcs are the actual bounding
face contours. Given the contour graph representation
of an input scene, our next task is to construct its cor-
responding face graph in which nodes represent faces
and arcs represent face adjacencies. The algorithm for
transforming a contour graph into a face graph can be
found in [5].

3.2 Face Labeling

Once the faces have been extracted, we must classify
each face according to the faces in the aspect hierarchy.
Recall that a face is represented by a graph in which
nodes represent the face’s contours and arcs represent
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relations between contours.! Thus, the classification

of a face in the image consists of comparing its graph
to those graphs representing the faces in the aspect
hierarchy. If there is an exact match, then we imme-
diately generate a face hypothesis for that image face,
identifying the label of the face. If, due to occlusion,
there is no match, we must descend to the boundary
group level of the aspect hierarchy. We then compare
subgraphs of the graph representing the image face to
those graphs at the boundary group level of the aspect
hierarchy. For each subgraph that matches, we gen-
erate a face hypothesis with a probability determined
by the appropriate entry in the conditional probability
matrix mapping boundary groups to faces.

Thus, from the original contour graph representation
of the image, we first construct a face graph, and then
for each face in the face graph, the classification process
results in a list of hypotheses about the face’s label. In
the simple case of an image face that exactly matches
a face found in the aspect hierarchy, the list contains
a single hypothesis with probability 1.0.2 For an im-
age face that does not exactly match a face found in
the aspect hierarchy, the list contains one or more face
hypotheses listed in decreasing order of probability.

3.3 Extracting Aspects

We now have a face graph with one or more face hy-
potheses at each face. We can formulate the problem
of extracting aspects as follows: Given a face graph
and a set of face hypotheses at each face, find an aspect
covering of the face graph using aspects in the aspect
hierarchy, an aspect covering, such that no face is left
uncovered and each face is covered by only one aspect.

There is no known polynomial time algorithm to
solve this problem (see [5] for a discussion on the prob-
lem’s complexity); however, the conditional probability
matrices provide a powerful constraint that can make
the problem tractable. After the previous steps, each
face in the face graph has a number of associated face
hypotheses. For each face hypothesis, we can use the

1Two adjacent collinear or curvilinear contours bounding a
face may have been separated in the contour graph by a junction.
If so, they are merged to form one node in the graph. In addition,
all nodes are classified as either a straight line, a concave curve,
or a convex curve.

2Due to occlusion, the fact that an image face exactly matches
an aspect hierarchy face does not guarantee that the interpreta-
tion (label) of the image face is correct. A more precise analysis
would go ahead and compare the image face’s boundary groups
to aspect hierarchy boundary groups, ensuring that the correct
face hypothesis is generated. Nevertheless, the hypothesis repre-
senting the matched face would still have the highest probability.




face-to-aspect mapping to generate the possible aspect
hypotheses that might encompass that face; the face
hypothesis becomes the seed face hypothesis of each of
the resulting aspect hypotheses. The probability of an
aspect hypothesis is the product of the face to aspect
mapping and the probability of its seed face hypothesis.
At each face, we collect all the aspect hypotheses (cor-
responding to all face hypotheses) and rank them in
decreasing order of probability. For a detailed discus-
sion of aspect instantiation and how occluded aspects
can be instantiated, see [5].

We can now reformulate our problem as a search
through the space of aspect labelings of the faces in
our face graph. In other words, we wish to choose
one aspect hypothesis from the list at each face, such
that the instantiated aspects completely cover the face
graph. There may be many labelings which satisfy this
constraint. Since we cannot guarantee that a given as-
pect covering represents a correct interpretation of the
scene, we must be able to enumerate, in decreasing or-
der of likelihood, all aspect coverings until the objects
in the scene are recognized. For our search through the
possible aspect labelings of the face graph, we employ
Algorithm A with a heuristic based on the probabilities
of the aspect hypotheses. Details of the algorithm can
be found in [5].

3.4 Extracting Primitives

We can represent an aspect covering by a graph in
which nodes represent aspects and arcs represent as-
pect adjacencies. For two adjacent aspects, A and B,
the arc labels consist of one or more pairs of indices
which represent face adjacencies. For example, arc la-
bel (%, §) indicates that face i in the graph correspond-
ing to A is adjacent to face j in the graph corresponding
to B. Given the graph representing an aspect covering,
the next steps are to map the aspects in the covering
to a set of primitives and to extract their connectivity.
The following sections describe this process in greater
detail.

Algorithm for Enumerating Primitive Cover-
ings. For each aspect in the aspect covering, we can
use the aspect to primitive mapping to hypothesize a
set of primitives. As in the case of aspect hypotheses
generated from face hypotheses, we can rank the prim-
itives in decreasing order of probability. A selection of
primitives, one per aspect, represents a 3-D interpre-
tation of the aspect graph; we call such a selection a
primitive covering. Since we cannot guarantee that a
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given primitive covering represents a correct interpre-
tation of the scene, we must be able to enumerate, in
decreasing order of likelihood, all primitive coverings
until the objects in the scene are recognized. To enu-
merate the selections, we employ a variation on the
search algorithm used to enumerate the aspect cover-
ings. The heuristic evaluation function negates the sum
of the probabilities of the primitive, thereby favoring
higher probability interpretations.

Extracting Primitive Connectivity. A primitive
covering, represented by a graph in which nodes rep-
resent primitives and arcs represent primitive adjacen-
cies, is then compared to the object database during the
recognition process. If two aspects are not adjacent in
the aspect covering, their corresponding primitives are
not adjacent in the primitive covering. However, if two
aspects are adjacent in the aspect covering, this does
not mean that their corresponding primitives are neces-
sarily adjacent in 3-D; one primitive may be occluding
the other without being attached to it. A primitive
connection between primitives P; and P, is said to be
visible if the following condition is satisfied:

o There exists a pair of faces, Fy and Fy, such that
F, belongs to the aspect corresponding to Py and
F, belongs to the aspect corresponding to P2, Fi
and F; are adjacent in the face graph, and F; and
F, share a contour (following collinearity or curvi-
linearity grouping).?

Therefore, we define two types of primitive connectivity
based on connection visibility:

e Two primitives are said to be strongly connected
if their corresponding aspects are adjacent in the
aspect graph, and the primitive connection is visi-
ble; in this case, we assume that the primitives are
attached.

e Two primitives are said to be weakly connected if
their corresponding aspects are adjacent in the as-
pect graph, and the primitive connection is not vis-
ible; in this case, one primitive occludes the other
and it is not known whether or not they are at-
tached.

A strong primitive connection strongly suggests the
existence of a connection between two primitives. We

3Before grouping, two adjacent faces in the face graph share a
contour by definition. However, following collinearity and curvi-
linearity grouping within their respective faces, they may not
have a contour in common.



can enhance the indexing power of a strongly connected
subgraph if the attachment surfaces involved in each
connection are hypothesized. Although it is impossi-
ble to define a set of domain independent rules which
will, for any given set of primitives, correctly specify
the attachment surfaces involved in a connection, we
can define a set of heuristics which will specify a set
of likely candidates. If a strongly connected subgraph
is common to two object models, these heuristics can
be used to rank order the candidates for verification;
details can be found in [5].

4 Segmentation Errors

Until now, the discussion has assumed not only a cor-
rect region segmentation of the input image, but also
a correct partitioning of the.contours bounding the re-
gions. However, often this assumption will not be valid.
Within the context of our system, two types of segmen-
tation errors are possible. In the first case, the image
regions are correctly segmented but their bounding con-
tours are incorrectly segmented or classified. In the sec-
ond case, the image regions are incorrectly segmented.
The following sections discuss our approach to dealing
with these two problems.

4.1 Contour Segmentation Errors

Although an image region may be correctly segmented,
there may be errors in the graph representing its bound-
ing contours. For example, the partitioning of the con-
tours may be incorrect, a given contour may be mis-
classified as straight or curved, or a contour relation
(e.g., parallelism) may be incorrect. Even if we ignore
these errors, a correct interpretation of the scene may
still be possible. For if there exists a subgraph which
is correctly labeled, i.e., a correctly labeled boundary
group, the correct face hypothesis will be generated. Of
course, the smaller the subgraph, the greater the num-
ber of different face hypotheses that will be generated,
thereby increasing the space of labelings that must be
examined during the aspect covering process.*

A more effective approach is to associate probabili-
ties with the labeling of each contour (node) and con-
tour relation (arc) in the graph [13]. Although this
would result in a greater number of face hypotheses for
an inage face, the face labeling would be less sensitive

4The face hypotheses inferred from a smaller subgraph
(boundary group) are likely to have lower probabilities.
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to errors in contour classification and perceptual group-
ing. However, this still assumes that the nodes in the
graph are correct, i.e., the contours bounding the face
have been correctly partitioned.

Therefore our approach to the curve partitioning
problem is to assume an oversegmentation of a face’s
bounding contours and use the aspect hierarchy to per-
form a model-based merging of adjacent contours dur-
ing the face labeling stage. A contour oversegmentation
can normally be obtained by using conservative param-
eters in most curve partitioning algorithms.

If an image face matches an aspect hierarchy face,
we assume that the image face is correct. However, if
no match is possible, recall that we attempt to match
subgraphs of the graph representing the image face to
boundary groups in the aspect hierarchy. Let F be
the graph representing the image face, and let S be a
subgraph of F' that matches some boundary group, B,
in the aspect hierarchy. Consider a contour, ¢y, such
that ¢y is a member of F, ¢, is not a member of S,
and c; is adjacent to a contour, ¢;, in S. We replace ¢,
with the merger of ¢; and c¢,, provided that c; and c;
are similar according to some criteria, and examine the
resulting S.3 If the new S still matches B, we retain the
merge; otherwise, we discard it. The process continues
until no new merges are possible. If, during the merging
procedure, S becomes closed, then we match S to faces
in the aspect hierarchy.

4.2 Region Segmentation Errors

The other type of error we must address is an incor-
rect region segmentation. Our approach to the region
segmentation problem is very similar to our approach
to the the curve partitioning problem: assume an over-
segmentation of the image regions and use the aspect
hierarchy to perform a model-based merging of adja-
cent regions during the aspect labeling stage. A region
oversegmentation can normally be obtained by using
conservative parameters in most region segmentation
algorithms.

Consider a region in the input image such that, due
to oversegmentation, the region is split into two smaller
regions. Let the graph representing the complete region
be F and let those representing the two component
regions be f; and f;. Since each component region is a
subset of the complete region, f; and f; must each have
at least one subgraph in common with F'. Therefore, if

5An example criterion for merging would be that both c;
and c, are concave curves that meet at a discontinuity whose
magnitude does not exceed some threshold.




the correct label of F is I, then f; and f; must have, in
their respective ranked lists of face hypotheses, a face
hypothesis with label {. During the aspect instantiation
phase, a group of neighboring faces, including face f;,
is checked to see whether the faces satisfy the definition
of a particular aspect. If face f; is supposed to contain
(among its face hypotheses) a face hypothesis with label
1, we first examine the faces neighboring face f;. Since
one of these neighboring faces, f;, has (among its face
hypotheses) a hypothesis with the correct label, faces
f: and f; are candidates for a merge. More specifically,
let fh; be the face hypothesis with label [ belonging
to f;. If the face resulting from the merging of faces fi
and f; gives rise to a face hypothesis with label { having
a probability greater than the probability of fh;, then
the merge is retained. If the two faces are merged, we
repeat the process with the new face, terminating when
no merges are performed in a given iteration.

The above model-based region merging algorithm is
based on the probabilities inherent in the aspect hi-
erarchy. Given a label specification for an image re-
gion, we perform a constrained growth on that region
while the probability of that region increases, and ter-
minate when the probability decreases. This algorithm,
in conjunction with the proposed solutions to contour
segmentation errors, enhances our primitive recovery
algorithm by making it less sensitive to image segmen-
tation performance.

5 Object Recognition

Given a primitive graph representation of the scene, in
which nodes represent 3-D volumetric primitives and
arcs represent strong or weak connections between the
primitives, the final task is to identify the object(s) in
the scene. This task consists of two steps: 1) identify-
ing possible candidate models that might be present in
the scene (model indexing), and 2) verifying that these
models appear in the scene. The following subsections
discuss these steps in detail.

5.1 Model Indexing

The most inefficient model indexing strategy is to com-
pare the primitive graph to each model in the object
database; however, for large databases, the cost of ver-
ification may be prohibitive. Our goal has been to re-
construct from the image richer, more complex prim-
itives whose combination offers a more discriminating
index into the object database. Unlike simpler features
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such as lines, points, or corners which may be com-
mon to all objects, a collection of strongly connected
primitives is unlikely to be common to many objects.
Therefore, our model indexing strategy consists of first
identifying all the strongly connected components in
the primitive graph.®

The next logical step would be to construct a hash
table in which each entry listed those models containing
a particular strongly connected component. However,
due to the variety of primitive labels and surface at-
tachment specifications, and without a limit on the size
of a strongly connected component, the size of such a
hash table might be enormous. Consequently, we limit
the size of the strongly connected components to three
primitives.

For a given strongly connected component, the hash
function returns a location in the hash table containing
all object models (candidates) containing those primi-
tive labels contained in the strongly connected compo-
nent. The hash function currently ignores the connec-
tions between the primitives; these are examined dur-
ing the model verification step. A more powerful hash
function which does not limit the size of a strongly con-
nected component and takes advantage of the primitive
connections would result in a much larger hash table,
appropriate for large object databases.

5.2 Model Verification

Given a set of candidate models corresponding to a
given strongly connected component, the next step is
to evaluate how well each model fits the scene (prim-
itive covering). Since the hash function ignores the
connections in the strongly connected component, the
first step is to check that the strong connections in
the strongly connected component exist between the
corresponding primitives in each candidate model; this
may result in some candidate models being discarded.
At this point, for each remaining candidate model, the
strongly connected component in the primitive cover-
ing is isomorphic to a subgraph of the candidate model.
We then grow this correspondence according to the fol-
lowing steps:

1. Given a correspondence between a primitive cov-
ering subgraph PS and a model subgraph MS, we
first choose a model primitive M; that is not con-
tained in the model subgraph, but is connected to
a primitive M; in the model subgraph. In PS, let
the primitive corresponding to M; be P;.

6By strongly connected, we mean connected by strong arcs.




2. Among the neighbors (through strong or weak con-
nections) of P; in the primitive covering not con-
tained in PS, select those whose label matches
that of M;. If more than one such neighbor exists,
we create a new correspondence for each neighbor.

We repeat this sequence of steps for each correspon-
dence until its size stabilizes. The entire process is then
repeated for each strongly connected component in the
primitive graph. The final result is a list of correspon-
dences, each mapping a primitive covering subgraph to
a model subgraph.

The final step ranks the correspondences according
to a goodness of fit based on the probability of the
verified primitives, the confidence of the primitive con-
nections, and the attachment surfaces involved in the
connections. Once the correspondences are ranked we
choose the best correspondence and remove those as-
pects from the image that correspond to the recognized
primitives. For the remaining aspects, we repeat the
entire process. We first apply the primitive covering
algorithm, extract strongly connected components, de-
termine candidate models, and select the most likely
candidate. The process is repeated until no aspects re-
main in the image. At any stage, a primitive covering
may not yield any recognizable objects, i.e., candidate
models. In this case, we generate a new primitive cov-
ering from the aspect covering and repeat the process;
if all primitive coverings are exhausted, a new aspect
covering is generated.

6 Results

We have built a system to demonstrate our approach to
shape recovery and object recognition. The system has
been implemented in LISP on a Symbolics™ 3600. In
the first example, we apply the approach to a manually
segmented line drawing of a scene containing multiple
occluded objects; all graphs representing image faces
and boundary groups have been entered manually. The
correct primitive covering is presented in the large box
to the left of Figure 3; the faces have been shaded ac-
cording to aspect. In this example, the first aspect and
primitive coverings represent the correct interpretation
of the scene. The time required to generate and recog-
nize the recovered primitives was 40 seconds.

Each face in the image is described by a small box
containing some mnemonics. The mnemonics PN, PL,
PP, and PS refer to the primitive number (simply an
enumeration of the primitives in the covering), prim-
itive label (see Figure 1), primitive probability, and
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primitive attachment surface respectively, of the prim-
itive that includes that face. The mnemonics AN, AL,
and AP refer to the aspect number (an enumeration),
aspect label, and aspect probability, respectively, of
the aspect from which the primitive was inferred. The
mnemonics FN, FL, and FP refer to the face number
(an enumeration), face label, and face probability, re-
spectively, of the face from which the aspect was in-
ferred. The smaller box to the upper right indicates the
aspect covering iteration and primitive covering itera-
tion (given the aspect covering). In addition, this box
lists all objects currently (at These iterations) identified
in the image, including their corresponding primitive
numbers (PN) and goodness of fit; the object database
contains 7 objects. Note that the pot handle was in-
terpreted as a separate object; no collinearity grouping
of primitives was performed. Therefore, the pot han-
dle matched all objects in the database containing the
cylinder primitive. The smaller box to the lower right
indicates the primitive connections by primitive num-
ber (PN); if two primitives are strongly connected, a
list of probable attachment surfaces appears in paren-
theses next to the primitive number. Note that this list
is not exclusive, but rather a list of likely candidates.
For the next two examples, we apply the approach
to real images containing objects. The first step in the
process is the segmentation of the image into homoge-
neous regions. To extract regions, we first apply the
Canny edge detector to the input image to detect the
projected surface discontinuities of the object. From
the resulting edge pixels, our goal is to locate cycles of
edge pixels that bound regions. However, since there
may be small gaps in the edge pixel map that break
cycles, we dilate the image to fill the gaps. The result
is then skeletonized to yield an image containing single
pixel width contours. The entire sequence of steps is
executed on a Sun”™ 3 in approximately 140 seconds.

From the image of contours, we apply a connected
components algorithm to extract a set of contours, each
beginning and ending at a junction of three or more
contours; all other contours are discarded. The next
step Is to partition the contours at significant curvature
discontinuities. We first apply Ramer’s [15] algorithm
to produce an initial set of breakpoints. Although effec-
tive for the partitioning of straight lines, the algorithm
overpartitions curves. However, the resulting partition
points are a superset of the correct partition points. To
remove the false partition points, we fit circular arcs
to the left and right neighborhoods of each potential
breakpoint, and discard the breakpoint if the angle be-
tween the tangents to the two circles at the breakpoint
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Figure 3: Correct First Interpretation of Occluded Scene

is near 180°. The resulting set of contours are classified
as lines or curves depending on how well a line can be
fitted to them.

From the set of partitioned contours, we build the
face graph using the algorithm described in [5]. For
each face in the face graph, our next task is to repre-
sent the face by a graph in which nodes represent con-
tours and arcs represent certain nonaccidental relations
among the contours. For a given face, adjacent lines or
adjacent curves which meet at a junction are merged
(according to the criteria used to check initial partition
points) if they are collinear or curvilinear. Any curves
bounding the face are further classified as concave or
convex. Non-adjacent lines are labeled parallel if the
angle between them is small, and symmetric if they are
opposite and non-parallel. Non-adjacent curves are la-
beled parallel if one is concave, the other is convex, and
they face in similar directions, where the direction of
a curve is defined by the vector whose head is at the
midpoint of the line joining the two ends of the curve
and whose tail is that point on the curve whose per-
pendicular distance to the line is maximum. A similar
test is used for curve symmetry if both curves are con-
cave or convex. If, for parallel or symmetric curves, the
radii of the circles fitted to the curves are significantly
different, the relative size of the curves is noted.
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The entire process was first applied to the 256 x 256
image of a table lamp as shown in Figure 6. Figure 5
represents the first primitive covering based on the first
aspect covering. Excluding the time required to trans-
form the raw image into a skeleton image, the time
required to generate and recognize the first primitive
covering was 62 seconds. Despite the underpartition-
ing of the contours (contour 11), the first aspect and
primitive coverings represent the correct interpretation
of the scene.

In the second example, the entire process was ap-
plied to the 256 x 256 image of a padlock as shown in
Figure 6. Excluding the time required to transform the
raw Image into a skeleton image, the time required to
generate and recognize the correct primitive covering
was 66 seconds. Figure 7 represents the first primitive
covering based on the second aspect covering. How-
ever, the first primitive covering based on the first as-
pect covering was incorrect. In the first aspect covering,
Faces FN2, FN3, and FN4 were correctly grouped and
later interpreted as the block primitive (PL1). How-
ever, faces FNO and FN1 were grouped and interpreted
as the truncated ellipsoid primitive (PL8). In face FNI,
the contours have been overpartitioned; therefore, the
face could not be matched to the faces in the aspect
hierarchy. Furthermore, due to noise, contour 2 was
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Figure 5: Correct First Interpretation of a Table Lamp

classified as a line. The strongest face inference, repre-
senting the projection of the body of a truncated ellip-
soid, was generated by the boundary group consisting
of contours 0 and 4. When grouped with the ellipti-
cal face FNO, the resulting aspect was mapped to the
truncated ellipsoid. The second strongest (correct) face
inference, representing the projection of the body of a
bent cylinder, was also generated by contours 0 and 4.
Therefore, the correct aspect label for FN1 was not the
most probable and consequently did not take part in
the first aspect covering.

These examples illustrate the results of applying
our shape recovery and recognition algorithm to real
images. Despite the use of simple, standard tech-
niques for image segmentation and contour grouping,
which resulted in several segmentation errors, the algo-
rithm was able to produce a correct interpretation of
these scenes. With more effective techniques for region
extraction, contour partitioning, perceptual grouping,
and the model-based segmentation scheme of Section 4,
we expect the system’s performance to improve signif-
. icantly. In addition, with a more efficient implemen-
Figure 4: Image of a Table Lamp (256 x 256) tation on a faster target machine (such as a SunTM
Sparcstation 2 with a standard image preprocessor for
operations such as filtering, line finding, etc.) we ex-
pect up to two orders of magnitude speedup.
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7 Discussion

Previous recognition systems have terminated the
bottom-up primitive extraction phase very early, re-
sulting in simple primitives such as lines, corners, and
inflections. These primitives do not provide very dis-
criminating indices, so that there are a large number of
hypothesized matches, each of which must be carefully
verified.

Extracting more complex primitives, however, re-
quires grouping less complex features, and the number
of possible groupings is enormous. Our recovery algo-
rithm uses a statistical analysis of the aspects to rank-
order the possible groupings. The result is a heuristic
that has been demonstrated to quickly arrive at the cor-
rect interpretation. Note, however, that our approach
will, if need be, enumerate all possible interpretations
(or groupings); the correct interpretation of any scene,
no matter how ambiguous or unlikely, will eventually
be generated.

Once a set of primitives has been recovered from the
. scene, visibly connected subsets of primitives offer pow-
Figure 6: Image of a Lock (256 x 256) erful indices to an object database. Furthermore, un-
like typical object recognition paradigms which verify
geometrical image features, thereby requiring accurate
pose determination, our approach performs a topologi-
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cal verification of a graph representing the coarse struc-
ture of the object.
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