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Abstract

The matching of hierarchical (e.g., multiscale or multilevel) image features is a common problem in
object recognition. Such structures are often represented as trees or directed acyclic graphs, where nodes
represent image feature abstractions and arcs represent spatial relations, mappings across resolution
levels, component parts, etc. Such matching problems can be formulated as largest isomorphic subgraph
or largest isomorphic subtree problems, for which a wealth of literature exists in the graph algorithms
community. However, the nature of the vision instantiation of this problem often precludes the direct
application of these methods. Due to occlusion and noise, no significant isomorphisms may exists between
two graphs or trees. In this paper, we review our application of a more general class of matching methods,
called bipartite matching, to two problems in object recognition.

1 Introduction

The matching of hierarchical (e.g., multiscale or multilevel) image features is a common problem in object
recognition. Such structures are often represented as trees or directed acyclic graphs, where nodes represent
image feature abstractions and arcs represent spatial relations, mappings across resolution levels, compo-
nent parts, etc. The requirements of matching include computing a correspondence between nodes in an
image structure and nodes in a model structure, as well as computing an overall measure of distance (or,
alternatively, similarity) between the two structures. Such matching problems can be formulated as largest
isomorphic subgraph or largest isomorphic subtree problems, for which a wealth of literature exists in the
graph algorithms community. However, the nature of the vision instantiation of this problem often pre-
cludes the direct application of these methods. Due to occlusion and noise, no significant isomorphisms may
exists between two graphs or trees. Yet, at some level of abstraction, the two structures (or two of their
substructures) may be quite similar.

In this paper, we review our application of a more general class of matching methods, called bipartite
matching, to problems in object recognition [23, 24, 26, 28, 29]. As shown in Figure 1, given two graphs
(or trees) G1 and G2, H(G1, G2, E) is a weighted bipartite graph with weight matrix W = [wu,v] of size
|G1|×|G2| if, for all edges of the form (u, v) ∈ E, u ∈ G1, v ∈ G2, and (u, v) has an associated weight = wu,v.
Solving the maximum cardinality minimum weight matching in H solves an optimization problem which tries
to minimize total edge weight on one hand while trying to maximize the total number of edges in the solution
set on the other hand. The time complexity for finding such a matching in a weighted bipartite graph with
n vertices is O(n2

√
n log log n) time, using the scaling algorithm of Gabow, Gomans and Williamson [11].

The bipartite matching framework allows us to factor in node similarity (through edge weights) in our
search for a one-to-one correspondence between nodes in two graphs (or trees). Unfortunately, this framework
does not capture the connectivity constraints between the nodes. For graphs or trees that capture hierarchical
image structures, the solution to the bipartite matching problem does not ensure that, for example, a parent
child ordering in one graph (or tree) is not inverted in the matching tree. Clearly, something has to be
added to the framework to preserve the hierarchical ordering of nodes in a graph or tree – information that
is essential and cannot be discarded during the matching process.
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In this paper, we will review algorithms for solving two object recognition problems, one involving
directed acyclic graphs and one involving rooted trees. Each algorithm will, as an integral step, compute
the maximum cardinality, minimum weight matching in a bipartite graph. Furthermore, each algorithm, in
turn, takes a different approach to preserving hierarchical order in the solution. We describe each algorithm
in detail and evaluate its performance on sets of real images.

2 Two Object Recognition Domains

2.1 The Saliency Map Graph

Our first image representation is a multiscale view-based description of 3-D objects that, on one hand, avoids
the need for complex feature extraction, such as lines, curves, or regions, while on the other hand, provides
the locality of representation necessary to support occluded object recognition as well as invariance to minor
changes in both illumination and shape. In computing a representation for a 2-D image, a multiscale wavelet
transform is applied to the image, resulting in a hierarchical map that captures salient regions at their
appropriate scales of resolution. Each such region maps to a node in a directed acyclic graph, in which
an arc is directed from a coarser scale region to a finer scale region if the center of the finer scale’s region
falls within the interior of the coarser scale’s region. The resulting hierarchical graph structure, called the
saliency map graph (SMG), encodes both the topological and geometrical information found in the saliency
map. An example of an image and its corresponding saliency map graph are shown in Figures 2(a) and
(b), respectively. Details of the representation, including its computation and invariance properties, can be
found in [23, 24, 26].

2.2 Shock Trees

Our second image representation describes the generic shape of a 2-D object, and is based on a coloring
of the shocks (singularities) of a curve evolution process acting on simple closed curves in the plane [15].
Intuitively, the taxonomy of shocks consists of four distinct types: the radius function along the medial axis
varies monotonically at a 1, achieves a strict local minimum at a 2, is constant at a 3 and achieves a strict
local maximum at a 4. We have recently abstracted this system of shocks into a shock graph where vertices
are labelled by their shock types, and the shock formation times direct the edges. The space of such shock
graphs is completely characterized by a small number of rules, which in turn permits the reduction of each
graph to a unique rooted tree [28, 29]. Figures 2(c) and (d) show the the 2-D silhouette of a hammer and its
corresponding shock tree, respectively.

3 Matching Two Saliency Map Graphs

Given the SMG computed for an input image to be recognized and a SMG computed for a given model object
image (view), we propose two methods for computing their similarity. In the first method, we compare only
the topological or structural similarity of the graphs, a weaker distance measure designed to support limited
object deformation invariance. In the second method, we take advantage of the geometrical information
encoded in an SMG and strengthen the similarity measure to ensure geometric consistency, a stronger
distance measure designed to support subclass or instance matching. Each method is based on formulating
the problem as a maximum cardinality minimum weight matching in a bipartite graph.

3.1 Problem Formulation

Two graphs G = (V, E) and G′ = (V ′, E′) are said to be isomorphic if there exists a bijective mapping
f : V → V ′ satisfying, for all x, y ∈ V (x, y) ∈ E ⇔ (f(x), f(y)) ∈ E′. To compute the similarity of two
SMG’s, we consider a generalization of the graph isomorphism problem, which we will call the SMG similarity
problem: Given two SMG’s G1 = (V1, E1) and G2 = (V2, E2) and a partial mapping from f : V1 → V2, let E
be a real-valued error function defined on the set of all partial mappings. Our error function, E , incorporates
two components with respect to any partial mapping: 1) we would like to reward corresponding nodes which
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Figure 2: Two Object Recognition Domains: (a) example image; (b) saliency map graph corresponding to
image in (a); (c) example silhouette with computed shocks; (d) shock tree corresponding to silhouette in (c).

are similar in terms of their topology, geometry, and salience; and 2) we would like to penalize a set of
correspondences the more they exclude nodes from the model. Specifically,

E(f) = ε
∑

u∈V1,v∈V2

Mu,v ω(u, v) |s(u) − s(v)| + (1 − ε)
∑

u∈V1,f(u)=∅

s(u) (1)

where ε = |1tM(f)1|/(|V1|+ |V2|) represents the fraction of matched vertices (1 denotes the identity vector),
f(.) = ∅ for unmatched vertices, and s(.) represents region saliency. For the SMG topological similarity,
Section 3.2, ω(., .) is always one, while for the SMG geometrical similarity, Section 3.3, it denotes the
Euclidean distance between the regions.1 A more detailed discussion of the error function is provided in [26].
We say that a partial mapping f is feasible if f(x) = y implies that there are parents px of x and py of y,
such that f(px) = py. Our goal is therefore to find a feasible mapping f which minimizes E(f).

1For perfect similarity E(f) = 0, while E(f) will be
∑

u∈V1
s(u) if there is no match.
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nodes 1 and 8 are paired since 
they have no parents and they 
are the trivial solution to the 
minimum weight, maximum 
cardinality bipartite matching at 
level 0.

level 0

level 1

level 2

nodes 3 and 10 and nodes 4 and 9 are 
paired since they represent the best 
node correspondences in the 
minimum weight, maximum cardinality 
bipartite matching at level 1. Had their 
parents not been in the solution to 
level 0, they would not have been in 
the level 1 solution.

algorithm iteratively descends to 
the leaves of the shallowest 
graph before terminating.

Figure 3: Illustration of the SMGBM Algorithm (see text for explanation).

3.2 A Matching Algorithm Based on Topological Similarity

In this section, we describe an algorithm which finds an approximate solution to the SMG similarity problem.
The focus of the algorithm is to find a minimum weight matching between vertices of G1 and G2 which lie
in the same level. Our algorithm starts with the vertices at level 1. Let A1 and B1 be the set of vertices
at level 1 in G1 and G2, respectively. We construct a complete weighted bipartite graph G(A1, B1, E) with
a weight function defined for edge (u, v) (u ∈ A1 and v ∈ B1) as w(u, v) = |s(v) − s(u)|.2 Next, we find a
maximum cardinality, minimum weight matching M1 in G using [9]. All the matched vertices are mapped
to each other; that is, we define f(x) = y if (x, y) is a matching edge in M1.

The remainder of the algorithm proceeds in phases as follows, as shown in Figure 3. In phase i, the
algorithm considers the vertices of level i. Let Ai and Bi be the set of vertices of level i in G1 and G2,
respectively. Construct a weighted bipartite graph G(Ai, Bi, E) as follows: (v, u) is an edge of G if either
of the following is true: (1) Both u and v do not have any parent in G1 and G2, respectively, or (2) They
have at least one matched parent of depth less than i; that is, there is a parent pu of u and pv of v such
that (pu, pv) ∈ Mj for some j < i. We define the weight of the edge (u, v) to be |s(u)− s(v)|. The algorithm
finds a maximum cardinality, minimum weight matching in G and proceeds to the next phase.

The above algorithm terminates after # phases, where # is the minimum number of scales in the saliency
maps (or SMG’s) of two graphs. The partial mapping M of SMG’s can be simply computed as the union
of all Mi values for i = 1, . . . , #. Finally, using the error measure defined in [26], we compute the error of
the partial mapping M . Each phase of the algorithm requires simple operations with the time to complete
each phase being dominated by the time to compute a minimum weight matching in a bipartite graph. As
mentioned in Section 1, the time complexity for finding such a matching in a weighted bipartite graph with
n vertices is O(n2

√
n log logn) time, using the scaling algorithm of Gabow, Gomans and Williamson [11].

The entire procedure, as currently formulated, requires O(#n2
√

n log log n) steps.
2G(A, B,E) is a weighted bipartite graph with weight matrix W = [wij ] of size |A|×|B| if, for all edges of the form (i, j) ∈ E,

i ∈ A, j ∈ B, and (i, j) has an associated weight = wi,j .
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Figure 4: Illustration of the SMGAT Algorithm (see text for explanation)

3.3 A Matching Algorithm Based on Geometric Similarity

The SMGBM similarity measure captured the structural similarity between two SMG’s in terms of branching
factor and node saliency similarity; no geometric information encoded in the SMG was exploited. In this
section, we describe a second similarity measure, called SMG Similarity using an Affine Transformation
(SMGAT), that includes the geometric properties (e.g., relative position and orientation) of the saliency
regions.

Given G1 = (V1, E1) and G2 = (V2, E2), we first assume, without loss of generality, that |V1| ≤ |V2|.
First, as shown in Figure 4, the algorithm will hypothesize a correspondence between three regions of G1,
say (r1, r2, r3), and three regions (r′1, r′2, r′3) of G2. The mapping {(r1 → r′1), (r2 → r′2), (r3 → r′3)} will be
considered as a basis for alignment if the following conditions are satisfied:

• ri and r′i have the same level in the SMG’s, for all i ∈ {1, . . . , #}.

• (ri, rj) ∈ E1 if and only if (r′i, r′j) ∈ E2, for all i, j ∈ {1, . . . , #}, which implies that selected regions
should have the same adjacency structure in their respective SMG’s.

Once regions (r1, r2, r3) and (r′1, r′2, r′3) have been selected, we solve for the affine transformation (A, b),
that aligns the corresponding region triples by solving the following system of linear equalities:





xr1 yr1 1 0 0 0
xr2 yr2 1 0 0 0
xr3 yr3 1 0 0 0
0 0 0 xr1 yr1 1
0 0 0 xr2 yr2 1
0 0 0 xr3 yr3 1









a11

a12

b1

a21

a22

b2




=





xr′
1

xr′
2

xr′
3

yr′
1

yr′
2

yr′
3




. (2)

The affine transformation (A, b) will be applied to all regions in G1 to form a new graph G′. Next,
a procedure similar to the minimum weight matching, used in the SMGBM is applied to the regions in
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Algorithm 5(a) 5(c) 5(d) 5(e)
SMGBM 9.57 10.06 14.58 23.25
SMGAT 8.91 12.27 46.30 43.83

Table 1: Distance of Figure 5(b) to other images in Figure 5

graphs G′ and G2. Instead of matching regions which have maximum similarity in terms of saliency, we
match regions which have minimum Euclidean distance from each other. Given two regions u and v, the
distance between them can be defined as the L2 norm of the distance between their centers, denoted by
d(u, v) =

√
(xu − xv)2 + (yu − yv)2. In a series of steps, SMGAT constructs weighted bipartite graphs

Gi = (Ri, R′
i, Ei) for each level i of the two SMG’s, where Ri and R′

i represent the set of vertices of G′ and
G2 at the i-th level, respectively. The constraints for having an edge in Ei are the same as SMGBM: (u, v)
is an edge in Gi if either of the followings holds:

• Both u and v do not have any parents in G′ and G2, respectively.

• They have at least one matched parent of depth less than i.

The corresponding edge will have weight equal to w(u, v) = d(u, v). A maximum cardinality, minimum
weight bipartite matching Mi will be found for each level Gi, and the partial mapping f(A,b) for the affine
transformation (A, b) will be formed as the union of all Mi’s. Finally, the error of this partial mapping
E(f(A,b)) will be computed as the sum over each Ei of the Euclidean distance separating Ei’s nodes weighted
by the nodes’ difference in saliency. Once the total error is computed, the algorithm proceeds to the next
valid pair of region triples. Among all valid affine transformations, SMGAT chooses that one which minimizes
the error of the partial mapping.

In terms of algorithmic complexity, solving for the affine transformation (eq. 2) takes only constant time,
while applying the affine transformation to G1 to form G′ is O(max(|V1|, |E1|)). The execution time for each
hypothesized pair of region triples is dominated by the complexity of establishing the bipartite matching
between G2 and G′, which is O(#n2

√
n log logn), for SMG’s with n vertices and # scales. In the worst case,

i.e., when both saliency map graphs have only one level, there are O(n6) pairs of triples. However, in practice,
the vertices of an SMG are more uniformly distributed among the levels of the graph, greatly reducing the
number of possible correspondences of base triples. For a discussion of how the complexity of the bipartite
matching step can be reduced, see [25].

3.4 Experiments

To evaluate our representation and matching framework, we apply it to a database of model object views
generated by Murase and Nayar at Columbia University. Views of each of the 20 objects are taken from a
fixed elevation every 5 degrees (72 views per object) for a total of 1440 model views. The top row of images
in Figure 5 shows three adjacent model views for one of the objects (piggy bank) plus one model view for
each of two other objects (bulb socket and cup). The second row shows the computed saliency maps for each
of the five images, while the third row shows the corresponding saliency map graphs. The time to compute
the saliency map averaged 156 seconds/image for the five images on a Sun Sparc 20, but can be reduced to
real-time on a system with hardware support for convolution, e.g., a Datacube MV200. The average time
to compute the distance between two SMG’s is 50 ms using SMGBM, and 1.1 second using SMGAT (an
average of 15 nodes per SMG).

To illustrate the matching of an unoccluded image to the database, we compare the middle piggy bank
image (Figure 5(b)) to the remaining images in the database. Table 1 shows the distance of the test image
to the other images in Figure 5; the two other piggy bank images (Figures 5 (a) and (c)) were the closest
matching views in the entire database. Table 1 also illustrates the difference between the two matching
algorithms. SMGBM is a weaker matching algorithm, searching for a topological match between two SMG’s.
SMGAT, on the other hand, is more restrictive, searching for a geometrical match between the two SMG’s.
For similar views, the two algorithms are comparable; however, as two views diverge in appearance, their
similarity as computed by SMGAT diverges more rapidly than their SMGBM similarity.
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(a) (b) (c) (d) (e)

Figure 5: A sample of views from the database: top row represents original images, second row represents
saliency maps, while third row represents saliency map graphs.

Algorithm % Hit % Miss % Miss
right object wrong object

SMGBM 89.0 8.4 2.6
SMGAT 96.6 2.9 0.5

Table 2: An exhaustive test of the two matching algorithms. For each image in the database, the image is
removed from the database and compared, using both algorithms, to every remaining image in the database.
The closest matching image can be either one of its two neighboring views, a different view belonging to the
correct object, or a view belonging to a different object.

In a third second experiment, we compare every image to every other image in the database, resulting in
over 1 million trials. There are three possible outcomes: 1) the image removed from the database is closest
to one of its neighboring views of the correct object; 2) the image removed from the database is closest
to a view belonging to the correct object but not a neighboring view; and 3) the image removed from the
database is closest to a view belonging to a different object. The results are shown in Table 2. As we would
expect, the SMGAT algorithm, due to its stronger matching criterion, outperforms the SMGBM algorithm.
If we include as a correct match any image belonging to the same object, both algorithms (SMGBM and
SMGAT) perform extremely well, yielding success rates of 97.4% and 99.5%, respectively.

To illustrate the matching of an occluded image to the database, we compare an image containing the
piggy bank occluded by the bulb socket, as shown in Figure 6. Table 3 shows the distance of the test image
to the other images in Figure 5. The closest matching view is the middle view of the piggy back which is,
in fact, the view embedded in the occluded scene. In a labeling task, the subgraph matching the closest
model view would be removed from the graph and the procedure applied to the remaining subgraph. After
removing the matching subgraph, we match the remaining scene subgraph to the entire database, as shown
in Table 4. In this case, the closest view is the correct view (Figure 5(d)) of the socket.
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Figure 6: Occluded Object Matching: (a) original image; (b) saliency map; and (c) saliency map graph

Algorithm 5(a) 5(b) 5(c) 5(d) 5(e)
SMGBM 9.56 3.47 8.39 12.26 14.72
SMGAT 24.77 9.29 21.19 30.17 33.61

Table 3: Distance of Figure 6(a) to other images in Figure 5. The correct piggy bank view (Figure 5(b)) is
the closest matching view.

4 Matching Two Shock Trees

4.1 Problem Formulation

Given two shock graphs, one representing an object in the scene (V2) and one representing a database object
(V1), we seek a method for computing their similarity. Unfortunately, due to occlusion and clutter, the
shock graph representing the scene object may, in fact, be embedded in a larger shock graph representing
the entire scene. Thus we have a largest subgraph isomorphism problem, stated as follows: Given two
graphs G = (V1, E1) and H = (V2, E2), find the maximum integer k, such that there exists two subsets of
cardinality k, E′

1 ⊆ E1 and E′
2 ⊆ E2, and the induced subgraphs (not necessarily connected) G′ = (V1, E′

1)
and H ′ = (V2, E′

2) are isomorphic [12]. Further, since our shock graphs are labeled graphs, consistency
between node labels must be enforced in the isomorphism.

The largest subgraph isomorphism problem, can be formulated as a {0, 1} integer optimization problem.
The optimal solution is a {0, 1} bijective mapping matrix M , which defines the correspondence between the
vertices of the two graphs G and H, and which minimizes an appropriately defined distance measure between
corresponding edge and/or node labels in the two graphs.

Algorithm 5(a) 5(b) 5(c) 5(d) 5(e)
SMGBM 12.42 14.71 14.24 4.53 9.83
SMGAT 18.91 20.85 17.08 7.19 15.44

Table 4: Distance of Figure 6(a) (after removing from its SMG the subgraph corresponding to the matched
piggy back image) to other images in Figure 5.
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We seek the matrix M , the global optimizer of the following [16, 8]:

min −1
2

∑

u∈V1

∑

v∈V2

M(u, v)||u, v||

s.t.
∑

u′∈V2

M(u, u′) ≤ 1, ∀u ∈ V1

∑

v∈V1

M(v, v′) ≤ 1, ∀v′ ∈ V2

M(x, y) ∈ {0, 1}, ∀x ∈ V1, y ∈ V2

(3)

where ||.|| is a measure of the similarity between the labels of corresponding nodes in the two shock graphs
(see Section 4.3).

The above minimization problem is known to be NP-hard for general graphs [12], however, polynomial
time algorithms exist for the special case of finite rooted trees with no vertex labels. Matula and Edmonds [10]
describe one such technique, involving the solution of 2n1n2 network flow problems, where n1 and n2 represent
the number of vertices in the two graphs. The complexity was further reduced by Reyner [22] to O(n1.5

1 n2)
(assuming n1 ≥ n2), through a reduction to the bipartite matching algorithm of Hopcraft and Karp [14].
Since we can transform any shock graph into a unique rooted shock tree [28, 29], we can pursue a polynomial
time solution to our problem. However, as mentioned in Section 1, the introduction of noise (spurious
addition/deletion of nodes) and/or occlusion may prevent the existence of large isomorphic subtrees. We
therefore need a matching algorithm that can find isomorphic subtrees under these conditions. To accomplish
this, we have developed a topological representation for trees that is invariant to minor perturbations in
structure.

4.2 An Eigenvalue Characterization of a Shock Tree

To describe the topology of a tree, we turn to the domain of eigenspaces of graphs, first noting that any
graph can be represented as a symmetric {0, 1} adjacency matrix, with 1’s indicating adjacent nodes in the
graph (and 0’s on the diagonal). The eigenvalues of a graph’s (or tree’s) adjacency matrix encode important
structural properties of the graph (or tree). Furthermore, the eigenvalues of a symmetric matrix A are
invariant to any orthonormal transformation of the form P tAP . Since a permutation matrix is orthonormal,
the eigenvalues of a tree are invariant to any consistent re-ordering of the tree’s branches. However, before
we can exploit a tree’s eigenvalues for matching purposes, we must establish their stability under minor
topological perturbation, due to noise, occlusion, or deformation.

We begin with the case in which the image tree is formed by either adding a new root to the model tree,
adding one or more subtrees at leaf nodes of the model tree, or deleting one or more entire model subtrees.
In this case, the model tree is a subtree of the query tree, or vice versa. The following theorem relates the
eigenvalues of two such trees:

Theorem 1 (see Cvetković et al. [7]) Let A be a symmetric3 matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥
λn and let B be one of its principal4 submatrices. If the eigenvalues of B are ν1 ≥ ν2 ≥ . . . ≥ νm, then
λn−m+i ≤ νi ≤ λi(i = 1, . . . , m).

This important theorem, called the Interlacing Theorem, implies that as A and B become less similar (in
the sense that one is a smaller subtree of the other), their eigenvalues become proportionately less similar
(in the sense that the intervals that contain them increase in size, allowing corresponding eigenvalues to drift
apart).

The other case we need to consider consists of a query tree formed by adding to or removing from the
model tree, a small subset of internal (i.e., non-leaf) nodes. The upper bounds on the two largest eigenvalues
(λ1(T ) and λ2(T )) of any tree, T , with n nodes and maximum degree ∆(T ) are λ1(T ) ≤

√
n − 1 and

λ2(T ) ≤
√

(n − 3)/2, respectively (Neumaier, 1982 [17]). The lower bounds on these two eigenvalues are
λ1(T ) ≥

√
∆(T ) (Nosal, 1970 [18]) and λ1(T )λ2(T ) ≥ 2n−2

n−2 (Cvetković, 1971 [6]). Therefore, the addition

3The original theorem is stated for Hermitian matrices, of which symmetric matrices are a subclass.
4A principal submatrix of a graph’s adjacency matrix is formed by selecting the rows and columns that correspond to a

subset of the graph’s nodes.
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Figure 7: Computing a Topological Signature of a Tree (Subtree)

or removal of a small subset of internal nodes will result in a small change in the upper and lower bounds
on these two eigenvalues. As we shall next, our topological description exploits the largest eigenvalues of
a tree’s adjacency matrix. Since these largest eigenvalues are stable under minor perturbation of the tree’s
internal node structure, so too is our topological description.

We now seek a compact representation of the tree’s topology based on the eigenvalues of its adjacency
matrix. We could, for example, define a vector to be the sorted eigenvalues of a tree. The resulting index
could be used to retrieve nearest neighbors in a model tree database having similar topology. There are two
problems with this approach. First, the eigenvalues don’t encode the ordering of nodes in the tree; if the tree
was inverted with a leaf becoming the root, the eigenvalues would remain invariant. Second, for large trees,
the dimensionality of the signature would be prohibitively large. Our solution to the first problem will be
to compute an eigenvalue-based description at each node in terms of the eigenvalues of its subtrees, while to
solve our second problem, this description will be based on eigenvalue sums rather than on the eigenvalues
themselves.

Specifically, let T be a tree whose maximum branching factor is ∆(T ), and let the subtrees of its root be
T1, T2, . . . , TS . For each subtree, Ti, whose root degree is δ(Ti), compute the eigenvalues of Ti’s submatrix,
sort the eigenvalues in decreasing order by absolute value, and let Si be the sum of the δ(Ti) − 1 largest
absolute values. As shown in Figure 7, the sorted Si’s become the components of a ∆(T )-dimensional vector
assigned to the tree’s root. If the number of Si’s is less than ∆(T ), then the vector is padded with zeroes. We
can recursively repreat this procedure, assigning a vector to the root of each subtree in the tree for reasons
that will become clear in the next section.

Although the eigenvalue sums are invariant to any consistent re-ordering of the tree’s branches, we have
given up some uniqueness (due to the summing operation) in order to reduce dimensionality. We could have
elevated only the largest eigenvalue from each subtree (non-unique but less ambiguous), but this would be
less representative of the subtree’s structure. We choose the δ(Ti) − 1-largest eigenvalues for two reasons:
1) the largest eigenvalues are more informative of subtree structure, 2) by summing δ(Ti) − 1 elements, we
effectively normalize the sum according to the local complexity of the subtree root.
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To efficiently compute the submatrix eigenvalue sums, we turn to the domain of semidefinite program-
ming. A symmetric n × n matrix A with real entries is said to be positive semidefinite, denoted as A , 0,
if for all vectors x ∈ Rn, xtAx ≥ 0, or equivalently, all its eigenvalues are non-negative. We say that U , V
if the matrix U − V is positive semidefinite. For any two matrices U and V having the same dimensions,
we define U • V as their inner product, i.e., U • V =

∑

i

∑

j

Ui,jVi,j. For any square matrix U , we define

trace(U) =
∑

i Ui,i. Let I denote the identity matrix having suitable dimensions. The following result, due
to Overton and Womersley [19], characterizes the sum of the first k largest eigenvalues of a symmetric
matrix in the form of a semidefinite convex programming problem:

Theorem 2 (Overton and Womersley [19]) For the sum of the first k eigenvalues of a symmetric ma-
trix A, the following semidefinite programming characterization holds:

λ1(A) + . . . + λk(A) = max A • U
s.t. trace(U) = k

0 - U - I,

The elegance of Theorem (2) lies in the fact that the equivalent semidefinite programming problem can be
solved, for any desired accuracy ε, in time polynomial in O(n

√
nL) and log 1

ε , where L is an upper bound on
the size of the optimal solution, using a variant of the Interior Point method proposed by Alizadeh [1]. In
effect, the complexity of directly computing the eigenvalue sums is a significant improvement over the O(n3)
time required to compute the individual eigenvalues, sort them, and sum them.

4.3 The Distance Between Two Vertices

The eigenvalue characterization introduced in the previous section applies to the problem of determining
the topological similarity between two shock trees. This, roughly speaking, defines an equivalence class of
objects having the same structure but whose parts may have different qualitative or quantitative shape. For
example, a broad range of 4-legged animals will have topologically similar shock trees. On the other hand,
when one is interested in discriminating between a bear and a dog, or between a short-legged Dachshund
and “Loki”, a particular Siberian Husky, geometric properties will play a significant role.

This geometry is encoded by information contained in each vertex of the shock tree. Recall from Sec-
tion 2.2 that 1̃’s and 3̃’s represent curve segments of shocks. We choose not to explicitly assign label types
2 and 4, because each may be viewed as a limit case when the number of shocks in a 3̃, in the appropriate
context, approaches 1 (see Section 2.2). Each shock in a segment is further labeled by its position, its time
of formation (radius of the skeleton), and its direction of flow (or orientation in the case of 3̃’s), all obtained
from the shock detection algorithm [27]. In order to measure the similarity between two vertices u and v, we
interpolate a low dimensional curve through their respective shock trajectories, and assign a cost C(u, v) to
an affine transformation that aligns one interpolated curve with the other. Intuitively, a low cost is assigned
if the underlying structures are scaled or rotated versions of one another (details can be found in [28, 29]).

4.4 Algorithm for Matching Two Shock Trees

As stated in Section 1, large isomorphic subtrees may not exist between an image shock tree and a model
shock tree, due to noise and/or occlusion. A weaker formulation of the problem would be to find the
maximum cardinality, minimum weight matching in a bipartite graph spanning the nodes between two
shock trees, with edge weights some function of topological distance and geometrical distance. Although
the resulting optimization formulation is more general, allowing nodes in one tree to match any nodes in
another tree (thereby allowing nodes to match over “noise” nodes), the formulation is weaker since is doesn’t
enforce hierarchical ordering among nodes. Preserving such ordering is essential, for it makes little sense for
a node ordering in one tree to match a reverse ordering in another tree. Unfortunately, we are not aware of
a polynomial-time algorithm for solving the bipartite matching problem subject to hierarchical constraints.
To achieve a polynomial time approximation, we will embed a bipartite matching procedure into a recursive
greedy algorithm that will look for maximially similar subtrees.

Our recursive algorithm for matching the rooted subtrees G and H corresponding to two shock graphs
is inspired by the algorithm proposed by Reyner [22]. The algorithm recursively finds matches between
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vertices, starting at the root of the shock tree, and proceeds down through the subtrees in a depth-first
fashion. The notion of a match between vertices incorporates two key terms: the first is a measure of the
topological similarity of the subtrees rooted at the vertices (see Section 4.2), while the second is a measure of
the similarity between the shock geometry encoded at each node (see Section 4.3). Unlike a traditional depth-
first search which backtracks to the next statically-determined branch, our algorithm effectively recomputes
the branches at each node, always choosing the next branch to descend in a best-first manner. One very
powerful feature of the algorithm is its ability to match two trees in the presence of noise (random insertions
and deletions of nodes in the subtrees).

Before stating our algorithm, some definitions are in order. Let G = (V1, E1) and H = (V2, E2) be the
two shock graphs to be matched, with |V1| = n1 and |V2| = n2. Define d to be the maximum degree of
any vertex in G and H, i.e., d = max(δ(G), δ(H)). For each vertex v, we define χ(v) ∈ Rd−1 as the unique
eigen-decomposition vector introduced in Section 4.2.5 Furthermore, for any pair of vertices u and v, let
C(u, v) denote the shock distance between u and v, as defined in Section 4.3. Finally, let Φ(G, H) (initially
empty) be the set of final node correspondences between G and H representing the solution to our matching
problem.

The algorithm begins by forming a n1×n2 matrix Π(G, H) whose (u, v)-th entry has the value C(u, v)||χ(u)−
χ(v)||2, assuming that u and v are compatible in terms of their shock order, and has the value ∞ otherwise.6
Next, we form a bipartite edge weighted graph G(V1, V2, EG) with edge weights from the matrix Π(G, H).7
Using the scaling algorithm of Goemans, Gabow, and Williamson [11], we then find the maximum cardinal-
ity, minimum weight matching in G. This results in a list of node correspondences between G and H, called
M1, that can be ranked in decreasing order of similarity.

From M1, we choose (u1, v1) as the pair that has the minimum weight among all the pairs in M1, i.e., the
first pair in M1. (u1, v1) is removed from the list and added to the solution set Φ(G, H), and the remainder
of the list is discarded. For the subtrees Gu1 and Hv1 of G and H, rooted at nodes u1 and v1, respectively, we
form the matrix Π(Gu1, Hv1) using the same procedure described above. Once the matrix is formed, we find
the matching M2 in the bipartite graph defined by weight matrix Π(Gu1, Hv1), yielding another ordered list
of node correspondences. The procedure is recursively applied to (u2, v2), the edge with minimum weight in
M2, with the remainder of the list discarded.

This recursive process eventually reaches the leaves of the subtrees, forming a list of ordered correspon-
dence lists (or matchings) {M1, . . . ,Mk}. In backtracking step i, we remove any subtrees from the graphs
Gi and Hi whose roots participate in a matching pair in Φ(G, H) (we enforce a one-to-one correspondence
of nodes in the solution set). Then, in a depth-first manner, we first recompute Mi on the subtrees rooted
at ui and vi (with solution set nodes removed). As before, we choose the minimum weight matching pair,
and recursively descend. Unlike in a traditional depth-first search, we dynamically recompute the branches
at each node in the search tree. Processing at a particular node will terminate when either subtree loses all
of its nodes to the solution set. We can now state the algorithm more precisely:

procedure isomorphism(G,H)
Φ(G, H) ← ∅
d ← max(δ(G), δ(H))
for u ∈ VG compute χ(u) ∈ Rd−1 (Section 4.2)
for v ∈ VH compute χ(v) ∈ Rd−1 (Section 4.2)
call match(root(G),root(H))
return(cost(Φ(G, H))

end

procedure match(u,v)
do

{
let Gu ← rooted subtree of G at u

5Note that if the maximum degree of a node is d, then excluding the edge from the node’s parent, the maximum number of
children is d− 1. Also note that if δ(v) < d, then then the last d − δ(v) entries of χ are set to zero to ensure that all χ vectors
have the same dimension.

6If either C(u, v) or ||χ(u) − χ(v)||2 is zero, the (u, v)-th entry is the other term.
7G(A, B,E) is a weighted bipartite graph with weight matrix W = [wij ] of size |A|×|B| if, for all edges of the form (i, j) ∈ E,

i ∈ A, j ∈ B, and (i, j) has an associated weight = wi,j .

13



let Hv ← rooted subtree of H at v
compute |VGu | × |VHv |
weight matrix Π(Gu, Hv)
M ← max cardinality, minimum weight

bipartite matching in G(VGu , VHv )
with weights from Π(Gu, Hv) (see [11])

(u′, v′) ← minimum weight pair in M
Φ(G, H) ← Φ(G, H) ∪ {(u′, v′)}
call match(u′,v′)
Gu ← Gu − {x|x ∈ VGu and (x, w) ∈ Φ(G, H)}
Hv ← Hv − {y|y ∈ VHv and (w, y) ∈ Φ(G, H)}
}

while (Gu '= ∅ and Hv '= ∅)

In terms of algorithmic complexity, observe that during the depth-first construction of the matching
chains, each vertex in G or H will be matched at most once in the forward procedure. Once a vertex is
mapped, it will never participate in another mapping again. The total time complexity of constructing the
matching chains is therefore bounded by O(n2

√
n log log n), for n = max(n1, n2) [11]. Moreover, the con-

struction of the χ(v) vectors will take O(n
√

nL) time, implying that the overall complexity of the algorithm
is max(O(n2

√
n log logn), O(n2√nL).

The approximation has to do with the use of a scaling parameter to find the maximum cardinality,
minimum weight matching [11]; this parameter determines a tradeoff between accuracy and the number of
iterations untill convergence. The matching matrix M in Eq. (3) can be constructed using the mapping set
Φ(G, H). The algorithm is particularly well-suited to the task of matching two shock trees since it can find
the best correspondence in the presence of occlusion and/or noise in the tree.

4.5 Experiments

To evaluate our matcher’s ability to compare objects based on their prototypical or coarse shape, we begin
with a database of 24 objects belonging to 9 classes. To select a given class prototype, we select that object
whose total distance to the other members of its class is minimum.8 We then compute the similarity between
each remaining object in the database and each of the class prototypes, with the results shown in Table 5.
For each row in the table, a box has been placed around the most similar shape. We note that for the 15 test
shapes drawn from 9 classes, all but one are most similar to their class prototype, with the class prototype
coming in a close second in that case.

Three very powerful features of our system are worth highlighting. First, the method is truly generic:
the matching scores impose a partial ordering in each row, which reflects the qualitative similarity between
structurally similar shapes. An increase in structural complexity is reflected in a higher cost for the best
match, e.g., in the bottom two rows of Figure 5. Second, the procedure is designed to handle noise or
occlusion, manifest as missing or additional vertices in the shock graph. Third, the depth-first search
through subtrees is extremely efficient.

5 Selected Related Work

Multiscale image descriptions have been used by other researchers to locate a particular target object in the
image. For example, Rao et al. use correlation to compare a multiscale saliency map of the target object
with a multiscale saliency map of the image in order to fixate on the object [21]. Although these approaches
are effective in finding a target in the image, they, like any template-based approach, do not scale to large
object databases. Their bottom-up descriptions of the image are not only global, offering little means for
segmenting an image into objects or parts, but offer little invariance to occlusion, object deformation, and
other transformations.

Wiskott et al. [31] use Gabor wavelet jets to extract salient image features. Wavelet jets represent an
image patch (containing a feature of interest) with a set of wavelets across the frequency spectrum. Each

8For each of the three classes having only two members, the class prototype was chosen at random.
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Table 5: Similarity between database shapes and class prototypes. In each row, a box is drawn around the
most similar shape (see the text for a discussion).

collection of wavelet responses represents a node in a grid-like planar graph covering overlapping regions of
the image. Image matching reduces to a form of elastic graph matching, in which the similarity between
the corresponding Gabor jets of nodes is maximized. Correspondence is proximity-based, with nodes in one
graph searching for (spatially) nearby nodes in another graph. Effective matching therefore requires that
the graphs be coarsely aligned in scale and image rotation.

Another related approach is due to Crowley et al. [4, 3, 5]. From a Laplacian pyramid computed on
an image, peaks and ridges at each scale are detected as local maxima. The peaks are then linked together
to form a tree structure, from which a set of peaks paths are extracted, corresponding to the branches of
the tree. During matching, correspondence between low-resolution peak paths in the model and the image
are used to solve for the pose of the model with respect to the image. Given this initial pose, a greedy
matching algorithm descends down the tree, pairing higher-resolution peak paths from the image and the
model. Using a log likelihood similarity measure on peak paths, the best corresponding paths through the
two trees is found. The similarity of the image and model trees is based on a very weak approximation of
the trees’ topology and geometry, restricted, in fact, to a single path through the tree.

Graph matching is a very popular topic in the computer vision community. Although space prohibits
us from providing a comprehensive review, we will mention some particularly relevant related work. A
graduated assigment algorithm has been proposed for subgraph isomorphism, weighted graph matching,
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and attributed relational graph matching [13]. The method was applied to matching non-hierarchical point
features and performs well in the presence of noise and occlusion. Cross and Hancock [2] propose a two step
matching algorithm for locating point correspondences and estimating geometric transformation parameters
between 2-D images. Point correspondence is achieved via maximum a posteriori graph-matching, while
expectation maximization (EM) is used to recover the maximum likelihood transformation parameters. The
novel idea of using graph-based models to provide structural constraints on parameter estimation is an
important contribution their work. This, combined with the EM algorithm, allows their system to impose
an explicit deformational model on the feature points.

The matching of shock trees has been addressed by a number of other groups. In recent work, Pelillo et al.
[20] introduced a matching algorithm which extends the detection of maximum cliques in association graphs
to hierarchically organized tree structures. They use the concept of connectivity to derive an association
graph, and prove that attributed tree matching is equivalent to finding a maximum clique in the association
graph. They applied their algorithm to articulated and deformed shapes represented as shock trees. In a
related paper, Tirthapura et al. [30] present an alternative use of shock graphs for shape matching. Their
approach relies on graph transformations based on the edit distance between two graphs, defined as the
“least action” path consisting of a sequence of elementary edit transformations taking one graph to another.
The first approach can handle occlusion, but does not accommodate spurious noise in the graphs; the second
approach handles spurious noise, but cannot effectively deal with occlusion. Both approaches focus solely
on graph (tree) structure, and would have to be modified to include the concept of node similarity.

6 Conclusions

In this paper, we have reviewed three different algorithms for object recognition, each based on solving
a bipartite matching formulation of a particular problem. The formulation is both very general and very
powerful. We have shown edge weights that encode difference in region saliency, Euclidean distance in the
image, and a function of topological and geometric distance. We have also seen different ways in which
hierarchical ordering of nodes in a graph/tree can be enforced. In the case of saliency map graph matching,
parent/child relationships are used to bias edge weights at lower levels of the matching, while in the case of
shock tree matching, a depth-first procedure is used to ensure hierarchical consistency. It should be noted
that the method by which we enforce hierarchical ordering in the matching of saliency map graphs is not
applicable to the matching of shock graphs (DAGs or trees), since the method assumes that corresponding
nodes in the hierarchy are at comparable scales. In a shock graph, a leaf child of the root may be as small in
scale as a leaf further down the tree. However, we are exploring the application of our shock tree matching
and indexing methods to multiscale DAG representations.

Finally, we have shown how matching complexity can be managed in a coarse-to-fine framework. In the
case of saliency map graph matching, solutions to the bipartite matching problem at a coarser level are used
to constrain solutions at a finer level, while in the case of shock tree matching, large corresponding subtree
roots (found through a solution to the bipartite matching problem) are used to establish correspondence
between their descendents. Furthermore, in the case of shock tree matching, our eigencharacterization of a
tree’s topological structure allows us to efficiently compare subtree structures in the presence of noise and
occlusion.

References

[1] F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial
optimization. SIAM J. Optim., 5(1):13–51, 1995.

[2] A. Cross and E. Hancock. Graph matching with a dual-step em algorithm. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(11):1236–1253, 1998.

[3] J. Crowley and A. Parker. A representation for shape based on peaks and ridges in the difference of
low-pass transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(2):156–169,
March 1984.

16



[4] J. L. Crowley. A Multiresolution Representation for Shape. In A. Rosenfeld, editor, Multiresolution
Image Processing and Analysis, pages 169–189. Springer Verlag, Berlin, 1984.

[5] J. L. Crowley and A. C. Sanderson. Multiple Resolution Representation and Probabilistic Matching of
2–D Gray–Scale Shape. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(1):113–121,
January 1987.
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