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Abstract

This paper describes a novel method for performing spa-
tially coherent motion estimation by integrating region and
boundary information. The method begins with a layered,
parametric flow model. Since the resulting flow estimates
are typically sparse, we use the computed motion in a novel
way to compare intensity values between images, thereby
providing improved spatial coherence of a moving region.
This dense set of intensity constraints is then used to ini-
tialize an active contour, which is influenced by both motion
and intensity data to track the object’s boundary.

The active contour, in turn, provides additional spatial
coherence by identifying motion constraints within the ob-
ject boundary and using them exclusively in subsequent
motion estimation for that object. The active contour is
therefore automatically initialized once and, in subsequent
frames, is warped forward based on the motion model. The
spatial coherence constraints provided by both the motion
and the boundary information act together to overcome
their individual limitations. Furthermore, the approach is
general, and makes no assumptions about a static back-
ground and/or a static camera. We apply the method to im-
age sequences in which both the object and the background
are moving.

1. Introduction

The motion estimation community has typically focused
on the problems of optical flow computation and motion
layer segmentation, yet has paid relatively little attention to
recovering accurate boundaries of moving objects. Layered
motion approaches generally code no information about the
motion of neighboring pixels and, as such, often yield sup-

port maps that are highly sparse. On the other hand, the ob-
ject tracking community has typically focused on tracking
the shape of a moving object, often assuming manual ini-
tialization of the tracking region, active contour, or model
pose (in the case of model-based tracking). Trackers that do
not assume an a priori object motion model typically fo-
cus on object boundaries while ignoring the rich motion in-
formation encoded in the region.

Each of these paradigms assumes a model of spatial co-
herence. The motion community seeks to label the pix-
els defining the region of the moving object, while the
boundary-based tracking community seeks to label the pix-
els defining the boundary of the moving object. Each ap-
proach is not without its limitations. Motion constraints can
be weak in areas of limited texture, while boundary con-
straints can be weak in areas of limited contrast. We attempt
to bring together these two components in a novel manner
to detect, track, and recover the shape of a moving object,
effectively drawing on the strength of each component to
overcome the weakness of the other.

In the following sections, we review related work, pro-
vide an overview of the approach, describe the components
in detail, and demonstrate the approach on image sequences
in which both the object and the background/camera are
moving. We conclude with a discussion of the limitations of
the approach, along with our directions for future research.

1.1. Previous Work

Previous work can be divided into region-based ap-
proaches [22, 21, 5, 20, 13, 9, 18, 10] and boundary-
based approaches [11, 2, 17]. Among the region-based ap-
proaches, some [5, 20, 13, 18, 10] can be classified as lay-
ered approaches, with the latter two using models to de-
scribe image regions. Our own layered motion technique is
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very similar to that proposed in [18], where robust dom-
inant motion estimation is applied to recursively recover
motion estimates for independently moving layers in a se-
quence. Notably, this approach does not attempt to intro-
duce any kind of spatial coherence constraints, and is thus
not able to distinguish among objects in a scene that move
with identical 2-D image motion. Moreover, general mo-
tion layer techniques of this type do not aim to recover ac-
curate object boundaries or accommodate non-rigid object
motion.

In [13], a method is described that adds a type of spa-
tial coherence to a layered flow method by using octagonal-
shaped regions to limit the region of support for motion con-
straints for a particular motion. In addition to the param-
eters for each motion, parameters for the size, shape and
pose of each region are also computed, as well as a visi-
bility ordering. While this method seeks to localize the ef-
fect of motion constraints, it does not attempt to fit an accu-
rate boundary to any region. A model-less layered approach
is taken in [9], where the authors perform spatial segmen-
tation independently of motion, and derive a motion model
for each region. Regions with like motions are labeled the
same, and the union of all regions with a particular label
gives the motion-based segmentation. Here, the challenge
is updating the initial spatial segmentation between frames,
and it is treated as a problem in graph manipulation. In this
case, motion assumes a subservient role as it is used only
to label regions. Another model-less approach is found in
[22, 21], where a method for non-parametric flow estima-
tion is given. A Markov random field model is used to pro-
vide a prior encoding of the notion that neighboring im-
age points are likely to be related. A mean-field approxi-
mation can be used to make the method computationally
feasible, but the method gives no explicit estimate of the re-
gion boundaries.

The use of normalized cuts for motion segmentation is
introduced in [19], in which graph cutting techniques are
used to recover a motion-related grouping of patches in the
image sequence. The relationship between patches is de-
fined on the basis of their motion similarity, as well as their
spatial and temporal proximity in the image sequence. The
method imposes a high computational overhead, and is thus
restricted to very small image sizes in order to minimize the
graph cutting complexity. As a result, it does not attempt to
provide accurate shape recovery.

Boundary-based approaches fall into two categories:
probabilistic contour tracking [11, 2] and active con-
tour approaches [1, 17]. A probabilistic formulation of
curve tracking known as Condensation is presented in
[11] that propagates a set of sampled states to approxi-
mate a posterior distribution on the possible states given the
observed data. The method requires a learned curve tem-
plate and an additional learning phase to acquire a motion

model, after which it can operate uninitialized on new im-
age sequences. Our system can optionally incorporate
elements of the Condensation tracker for boundary es-
timation while employing active contours and motion
estimation to provide an on-line shape template and mo-
tion model to avoid off-line learning requirements.

Early attempts to integrate region information with an
active contour boundary model include [1]. Here, the au-
thors use a constant, affine or homomorphic warp computed
through a correlation approach to compute the displace-
ment of the entire region and then update the active contour
between frames. Motion information is not used between
frames to update the contour after the initial warp, and as
such is not expected to discover evolving object structure
except through image edges. A more holistic approach is
proposed in [4], which uses level set techniques to minimize
an objective function defined over the motion surfaces in a
sequence, attempting to recover spatially coherent motion
surfaces with the minimum area in the image. This approach
does not propose any techniques to estimate the number of
independently moving objects in the scene, and does not at-
tempt to provide automatic initialization.

Perhaps the closest work to that described in this paper is
the geodesic active contour formulation, proposed in [17],
which assumes a static background, so that an image differ-
encing approach can be used to detect motion. The geodesic
active contour has elegant properties for splitting and merg-
ing different contours based on a single energy function.
Difference images, local intensity statistics and intensity
warping within the active contour region are all used to con-
trol the active contour. Whereas the geodesic active contour
framework focuses on a more elegant active contour formu-
lation while assuming a simpler motion model, we opt for
a more elegant motion formulation while assuming a stan-
dard active contour model. As a result, while our active con-
tour implementation is not currently topologically adaptive
(although, in principal, we could also employ geodesic ac-
tive contours), our approach does not assume a static back-
ground or a static camera.

2. Overview of the Approach

Our appoach to combining region (layered motion es-
timation) and boundary (active contour estimation) infor-
mation is summarized in Figure 1. We begin by estimating
the motion in successive frames using a parametric motion
model, as described in Section 2.1. This process generates
motion constraints by assuming brightness constancy, and
classifies them according to a parametric motion model us-
ing the EM (Expectation Maximization) algorithm. Due to
the aperture problem, these constraints are relatively sparse,
and do not provide a good basis for object boundary recov-
ery. We improve the density of segmentation constraints by
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Figure 1. This figure illustrates the basic struc-
ture of our approach. Region-based information
is used to derive flow constraints, which are typ-
ically sparse. This information can be made more
dense by warping image pixels to find pixels with
matching intensities in the two images. These con-
straints provide data for the active contour, and
the contour is warped between frames according
to the motion parameters. The contour reinforces
spatial coherence by allowing us to consider only
motion constraints within the contour.

warping the image according to the recovered motion, and
comparing the intensities of corresponding pixels, as de-
scribed in Section 2.2. Matching intensity values provides
a sufficiently dense set of constraints to initialize an active
contour whose shape is then governed by both motion and
image gradient information, as described in Section 2.3. In
subsequent frames, motion information is used to warp the
recovered boundary (active contour) to the next frame in a
motion feedforward step, described in Section 2.4.

Finally, the spatial coherence of the object boundary in-
fluences the next round of motion estimation by exclud-
ing motion constraints that fall outside the boundary. This
boundary feedback step is described in Section 2.5.

2.1. Motion Estimation

Our approach begins with a multiscale layered motion
estimation technique that is similar to the methods de-
scribed in [10, 18]. In particular, we adopt a robust mixture
model approach related to that described in [12], but in prin-
ciple, any other layered motion approach that generates ei-
ther a parametric motion or a dense, non-parametric motion
can be used instead. The process is described here for ap-
plication at a single scale to simplify its presentation. The
brightness constancy constraint (BCC), ∇T

�x I�u + It = 0,
is well-known, and is the starting point for the estimation of
2-D image velocity �u = [ux uy]T . Each image location pro-
vides a constraint vector �c(�x) = [Ix Iy It]T that satisfies (in
the absence of noise) �c(�x)T �uh = 0, where �uh = [�uT 1]T is
a homogeneous representation of �u, and �u is assumed to be
the motion experienced by the pixel at �x = [x y]T . The in-
ner product of a constraint with a motion vector from an-
other layer will be expected to yield a non-zero value, in
general.

Each motion layer has an associated parametric model
that is either constant or affine, although any parametric
model can be used. Associated with each parametric model
and its associated parameters �θ is a likelihood function
p(�c(�x)|�θ, �x) that indicates how well a constraint �c matches
the motion. For example, for the constant motion model,
we have pconstant(�c(�x)|�u, σ) = G(�c(�x)T �uh; 0, σ). Here,
the notation G(x;µ, σ) represents a Gaussian density over
x with mean µ and standard deviation σ. The likelihood of
a particular constraint �c(�x) with respect to all motion lay-
ers is p(�c(�x)) =

∑n
j=1 πjpj(�c(�x)|�θj , �x), where the πj are

called mixing parameters and satisfy 0 ≤ πj ≤ 1 for all
j and

∑
j πj = 1. An outlier layer is used to model con-

straints not accounted for by other motion layers.
The probability that a constraint comes from any partic-

ular layer j can be computed as

O(�c(�x)|j) =
πjpj(�c(�x)|�θj), �x)

∑n
k=1 πkpk(�c(�x)|�θk), �x))

(1)

and is called its ownership by that layer. Finally, the likeli-
hood of the entire model with respect to a set of measured
constraints {�c(�xq)}m

q=1 is given by

L(�Θ) = Πm
q=1p(�c(�xq)) , (2)

where �Θ = [�θT
1 . . . �θT

n π1 . . . πn]T is the collection of all
model parameters. The EM algorithm [6] is an iterative
technique for maximizing a model’s likelihood with respect
to the observed data. Since, in general, the likelihood is a
non-linear function, the method may find a local minimum
as opposed to the desired global minimum.

Each iteration of the EM algorithm requires that the
number of models n be known, so it is necessary to de-
termine this from the input sequence. Following [16], we
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start by computing a model for a single motion plus an out-
lier process designed to catch constraints not well modeled
by the single motion. This can be considered a robust pro-
cedure for estimating the dominant image motion. By ex-
amining constraints owned by the outlier process, we can
decide whether or not to add another motion to the model
[18]. This continues until no further processes are added, or
newly added processes become identical to existing ones.

2.2. Intensity Constraints

Motion constraints recovered and used in Section 2.1 are
usually sparse, since areas with little or no texture will not
produce motion constraints. While we can expect good con-
straints along the leading edge of the object, edges parallel
to the motion may produce few or no constraints due to the
BCC only detecting motion in the direction normal to im-
age edges. It should be noted that this is not a problem spe-
cific to the BCC; any gradient-based motion constraint will
suffer this fate. As such, motion constraints alone are insuf-
ficient for generating boundary estimates.

We have developed a new technique to improve the den-
sity of constraints for boundary estimation that directly em-
bodies the notion of spatial coherence. Based on knowl-
edge of the object’s motion, recovered from a sparse set
of motion constraints, we warp pixel intensities from one
frame to the next and compare them. This makes intuitive
sense, as we do not expect object appearance to change
radically between successive frames. For each motion, we
warp each pixel in the first image, I1(x, y), and compare it
to its associated pixel in the next image, I2(x′, y′), where
[x′ y′]T = [x y]T + �uq(�x). The likelihood of the two pix-
els having the same intensity is computed as Lq(x, y) =
G(I(x′, y′, tn) − I(x, y, tn−1); 0, σccd), where G is a nor-
mal probability density, with σccd related to expected noise
levels in the CCD sensor. The subscript q indicates this is
the likelihood for motion layer q. A high value indicates a
high likelihood that the pixel intensity has been matched,
whereas a low value suggests the pixel under consideration
is not moving with the assumed motion.

Of course, it is possible to get a good match even for pix-
els that are not moving with the assumed motion. For ex-
ample, pixels in a region with uniform intensity values will
show a good match with any assumed motion. Because of
this, we take the further step of combining these likelihood
values for each pixel across all layers to get the probabil-
ity that the pixel belongs to each layer. If Lq(�x) is the like-
lihood that the pixel at �x matches the motion specified by
motion layer q, then we compute this probability as

Pq(�x) =
Lq(�x)∑n
i=1 Li(�x)

, (3)

where n is the number of motion layers. This equation

Figure 2. The right image shows the intensity
ownerships for the horizontal motion of a cup and
hand from the frame shown at the left. The gray
levels in the right image represent intensity own-
ership estimates, black is 0.0, white is 1.0, and val-
ues in between are given by levels of gray. Values
around 0.5 are considered “neutral”.

shows a strong similarity to the computation of ownership
values in the EM algorithm, and as such, we refer to the re-
sulting probabilities as intensity ownerships.

This computation combines information across multiple
motion layers, a fact which may facilitate extensions to our
method to deal with objects with holes. It has the effect
of assigning equal layer ownership for regions where lit-
tle texture exists, while forcing regions with higher texture
to show strong ownership by one of the motion layers. For
example, in a sequence with two recovered motions, we ex-
pect the ownership of pixels in constant intensity regions
to be 0.5. Regions with constant intensity values will show
strong ownership if they are in close proximity to leading
or trailing edges of an object in motion. In practice, re-
gions with too-little texture to generate good motion con-
straints still have enough intensity variation to give denser
clusters of high ownership values. An example of the recov-
ered ownership maps for a two-layer sequence is shown in
Figure 2. Finally, while we are applying this technique to in-
tensity values, it is equally applicable to other features, such
as pixel color, or phase values returned from a complex fil-
tering of the image.

While both Bascle & Deriche [1] and Paragios et al. [17]
warp image intensities, they only apply the warp to pix-
els already within the object boundaries and do not com-
bine the information across motion layers to determine in-
tensity ownership probabilities. By combining information
across motion layers we are able to use information from
other layers, including a possibly moving background, to
increase our certainty about pixels in the object layer. This
further assists in growing the object region if it deforms, and
it allows us to deal with holes in objects. Jepson et al. [13]
also warp intensity values to choose among possible mo-
tion models, but not for the purpose of determining inten-
sity ownerships or accurate region boundaries.
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2.3. Active Contour Implementation

Once motion and intensity constraints have been com-
puted for a pair of image frames, we can initialize the ac-
tive contour to track the object’s boundary. Active contours
are introduced in [15], and have been widely used in vi-
sion applications. For our experiments, we have adopted the
distance transform-based (DT) active contour [3]. This ap-
proach was chosen to improve convergence when the active
contour is not initialized close to the boundary, and to al-
low the active contour to quickly descend into deep concav-
ities in the boundary. In those respects, the performance of
the distance transform-based active contour closely matches
that of the Gradient Vector Flow [23] active contour [7].
Since the active contour is initialized in the first frame us-
ing a convex hull of recovered intensity constraints (see be-
low), effective concavity descent is essential.

Following [15], our active contour has an objective func-
tion with both internal and external terms. For active con-
tour control points {�xi}s

i=1, where �xi = [xi yi]T , we have

Econtour =
s∑

i=1

[Eint(�xi) + Eext(�xi)] . (4)

The internal energy term maintains even spacing of the con-
trol points and smooth curvature over the length of the con-
tour [15], while image edges, motion constraints, and inten-
sity constraints are represented in the external term,

Eext(i) = γEDT (�xi) + δEmo(�xi) + κEinten(�xi) . (5)

In our formulation, image edges are represented by their
DT field [3]. Motion constraints are incorporated by us-
ing them to identify corresponding image edges, and sub-
sequently providing an additional DT-based attractive force
Emo to those edges. When a motion edge is aligned with an
image edge, the influence of that edge is boosted through
this term. Image edges normal to the object’s motion di-
rection, which do not have motion constraint support, have
their influence attenuated, as presumably they belong to a
different motion layer. The DT fields corresponding to the
edge-based terms are generated as described in [23], with
weighting terms γ and δ.

Information from intensity constraints is incorporated by
adding a “balloon force” [3] on the active contour points
based on the intensity constraints at that point. The force
acting on contour point �xi is

�finten(�xi) = κM(�xi)�n(�xi) (6)

where �n(�xi) represents the vector normal to the active con-
tour at �xi and

M(�xi) = 2Pq(�xi) − 1 . (7)

Recalling that
∑

i Pi(�x) = 1, we see that M(�xi) will
be positive when the object being tracked has an own-
ership > 0.5, negative when the ownership is < 0.5, and
zero when the ownership is 0.5. Having a zero-force for
Pq(�xi) = 0.5 is somewhat geared toward a two-layer
model. For a model with more layers it may be appropri-
ate to have this force positive only when Pq(�xi) exceeds the
individual ownership by all other layers.

The sign of of M(�xi) indicates the direction of the in-
tensity constraint force (expansion or contraction), and its
magnitude indicates the strength of the force, scaled by
weighting factor κ. So assuming �n(�xi) is directed toward
the exterior of the closed contour, a positive M(�xi) value
encourages expansion, a negative value contraction, and a
zero value neither. Note that in regions where this force is
zero, the active contour moves to the nearest motion con-
straint supported edge. The active contour’s optimization
follows [15, 23], which describes an iterative solution to
the active contour energy minimization problem, incorpo-
rating the two internal force terms described above, and ex-
ternal force maps.

The active contour’s initialization in the first frame is
based on a convex hull contour placed around the target ob-
ject’s estimated bounding pixels. This is accomplished by
thresholding the intensity constraints, and performing a lo-
cal clustering by applying connected components analysis.
The clustering is necessary because we do not want to al-
low outlier constraints to adversely affect the convex hull.

In addition, an alternative Condensation-based curve
tracker [11] can be adopted in place of the active con-
tour module after initialization. We use the shape template
provided by the active contour to initialize this alterna-
tive boundary estimation technique, which is appropriate
for objects undergoing any parametric deformation, al-
though our current implementation employs an affine mo-
tion model.

2.4. Motion Feedforward

Information from the motion estimation step is used to
move the active contour between subsequent frames. Since
the active contour lies on the object boundary, it should
move with the same velocity as the object, such that each
boundary control point, �xi, moves with velocity �u(�xi),
given by the object’s motion parameters and the control
point’s location. As each new frame is acquired and the in-
terframe motion is computed, the active contour is moved
from its final position in the previous frame to its expected
position in the new frame, by moving each of its control
points according to the estimated flow at their locations.
During the initial frames of the sequence, the active con-
tour is then updated again by the active contour optimiza-
tion techniques, iteratively minimizing its energy function
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Frame 31 Frame 50

Figure 3. This figure shows two frames from a se-
quence with a toy tow truck moving down a ramp.
The camera is hand-held and undergoing consid-
erable and erratic motion. The active contour posi-
tion is shown by the bold black line around the toy
truck. The intensity constraints for the tow truck’s
motion layer are shown in the bottom row, with the
tow truck assigned high ownership shown by the
white areas, and the background in black.

with respect to the intensity constraints for the current frame
and local image edges. It is possible that new intensity con-
straints will appear outside the active contour boundary.
Whenever the active contour finds itself in the interior of
a region of intensity constraints, it will expand in order to
“collect” the new constraints outside the boundary.

2.5. Boundary Feedback

In the first frame, when the active contour has not yet
been initialized, all motion constraints are used in the mo-
tion computation. However, once the active contour has
been initialized, we use it to improve the motion estima-
tion step by using only motion constraints found inside the
active contour. In this way, the inside/outside spatial coher-
ence provided by the boundary is used to improve the spa-
tial coherence of the region (motion) model. As a result, we
limit the effect of constraints that are not derived from the
object of interest.

3. Results

Results from our technique are demonstrated in Figure 3.
This sequence shows a toy tow truck rolling down a ramp.

Frame 31 Frame 50

Figure 4. The bulldozer truck illustrates the seg-
mentation of an object that possesses deep con-
cavities and also transparency, through the oper-
ator window. The motion-directed active contour
descends into the deep concavities created by the
backhoe, while the background area that is visi-
ble through the operator window is correctly seg-
mented in the intensity constraint maps shown in
the lower row.

The camera is hand-held, and the background region under-
goes motions that are roughly horizontal, and in both left-
ward and rightward directions. Our motion estimation com-
ponent automatically fits two affine motion layers to the first
two frames to start the algorithm running. The background
motion is detected first due to the fact that it generates many
more motion constraints than the truck. The motion layer of
the truck object is recovered by estimating motion parame-
ters based on constraints marked as outliers and inserting a
new layer into the model.

The active contour is able to effectively describe the
shape of the tow truck through the sequence, demonstrating
the ability to consistently segment an independently moving
object against a moving background. One apparent problem
is that the active contour does not fully enter the concav-
ity between the truck’s wheels initially. However, this is not
incorrect, as the lack of texture seen in this region during
the first few frames makes it as likely to belong to the truck
as to the background. In later frames, any background tex-
ture that appears in this region is identified as belonging to
the distinct background motion layer, and the active contour
is able to move inward due to the negative value of M(�xi)
in this region.
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Frame 2 Frame 28

Figure 5. This figure shows two frames from the
flower garden sequence with the active contour
indicated as a bold black line. The lower images
show the respective intensity constraint maps for
the foreground tree object, indicated by the white
areas. The motion-detected background areas are
shown as the black regions.

A second image sequence of a more complicated bull-
dozer shape is shown in Figure 4, with front and rear scoops
that form deep concavities in its shape. Our active contour
is able to descend completely into the large concavities, no-
tably recovering the shape of the rear scoop. Also of interest
is the ownership of background structure through the win-
dow of the operator’s compartment, which is correctly iden-
tified by the region-based segmentation technique. This fea-
ture will facilitate future work in tracking interior holes in
objects while they move. One notable flaw in the active con-
tour’s shape can be seen in the area between the front wheel
and the front scoop, where the small concavity is not re-
covered, primarily due to the small size of this concavity,
which prevents the effective motion segmentation of this
small area, as can be seen in the intensity constraint maps.

Figure 5 illustrates the application of our segmentation
system to the flower garden sequence. The motion estima-
tion process effectively segments the foreground tree ob-
ject from the slower moving background area, and the ac-
tive contour successfully recovers the tree’s shape. It can
also be seen that the active contour has difficulty descend-
ing into the small concavities created by the thin branches at
the top left of the tree trunk. Although the active contour ap-
pears to be aligned to the edges created by the clouds, the
contour is in fact forced to remain in this position by the nor-
mal forces that push the contour outwards to accommodate
the thin branches of the tree. These branches are clearly in-
dicated in the intensity constraint maps. The relatively small

Frame 2 Frame 15

Figure 6. The walking sequence illustrates a
scene in which two men walk toward each other.
Motion segmentation-based intensity constraint
maps (lower row) provide an effective coarse seg-
mentation of the image, assisting the active con-
tours to recover each man’s profile.

width of the concavities prevent the the active contour from
descending into them, and this is visible in both frames of
the flower garden sequence.

A walking sequence [14, 8] is shown in Figure 6, in
which two men approach each other against a stationary but
noisy background. Both independently moving objects are
correctly segmented from the background and from each
other by the motion segmentation process, while the result-
ing active contours correctly recover their moving outlines.

The results shown by these image sequences demon-
strate two other important strengths of this segmentation
technique: first, the use of the active contour to generate the
final segmentation result incorporates local edge informa-
tion into the boundary estimate that would only be included
implicitly in a purely motion-based technique, in the form
of the spatiotemporal gradient constraints that by their defi-
nition require smoothing of the region. Secondly, the inter-
frame propagation of the active contour imposes an implicit
short-term smoothness constraint on the final shape esti-
mate, but allows for smooth deformation within the well
defined constraints of the active contour.

4. Summary and Conclusions

In this paper, we show how motion layer estimation and
boundary tracking offer separate but complementary forms
of spatial coherence that can be combined to yield improved
object boundary detection. The main advantages of our ap-
proach are its low complexity, its ability to accurately re-
cover the closed boundaries of moving objects, and its gen-
erality in terms of allowing for multiple moving objects,
moving backgrounds, or a moving camera. The approach

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’04) 
1063-6919/04 $ 20.00 IEEE 



is novel in its use of intensity constraints to provide driv-
ing forces for the active contour, as well in its feedforward
and feedback relationships between the motion estimation
and boundary estimation steps. The derivation of intensity
constraints is not specific to intensity, and other local im-
age properties such as color and phase can be used to im-
prove the density of constraints used by the active contour.

In future work, we plan to incorporate topologi-
cally adaptive active contours to accommodate holes in the
boundary recovery, incorporate on-line shape learning for
the Condensation algorithm to accommodate non-rigid pa-
rameterized deformation beyond the affine range, and
explore other image features such as color and phase to im-
prove our region-based segmentation results.
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