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Abstract— A production system model of problem solving is applied
to the design of a vision system by which an autonomous land vehicle
(ALYV) navigates roads. The ALV vision task consists of hypothesiz-
ing objects in a scene model and verifying these hypotheses using the
vehicle’s sensors. Object hypothesis generation is based on the local nav-
igation task, an a priori road map, and the contents of the scene model.
Verification of an object hypothesis involves directing the sensors toward
the expected location of the object, collecting evidence in support of the
object, and reasoning about the evidence. Constructing the scene model
consists of building a ic network of object frames exhibiting com-
ponent, spatial, and inheritance relationships. The control structure is
provided by a set of communicating production systems implementing a
structured blackboard; each production system contains rules for defin-
ing the attributes of a particular class of object frame. The combination
of production system and object-oriented programming techniques re-
sults in a flexible control structure able to accommodate new object
classes, reasoning strategies, vehicle sensors, and image analysis tech-
niques.

I. INTRODUCTION

The development of an autonomous land vehicle (ALV) involves
the development of computer vision techniques by which a vehicle
can autonomously navigate itself through the environment. Although
the goals for the ALV are broad, including both on- and off-road
navigation, the work presented here is primarily concerned with the
road-following task. Fig. | presents a view as seen from a camera
mounted on top of the ALV. From images such as these, the ALV vi-
sion system constructs a model of the environment; this scene model
contains the objects visually identified by the ALV. Based on this
collection of objects. the vehicle plans a course and moves through
the environment.

For the road-following task, the scene model contains either ob-
jects that represent the road or objects from which the location of
the road can be deduced. Obviously, the direct detection of a patch
of road would be most useful; however, in the event that the ALV
vision system cannot directly identify the road, the detection of other
objects may suggest the location of the road. For example, telephone
poles and ditches often run parallel to the road; their presence may
thus provide clues as to its location and direction. In certain cases,
major landmarks contained in a road map such as buildings may be
used to infer the road location; however, such information is more
useful in registering the vehicle to some absolute location.

Faced with the task of building a scene model, the ALV vision
system must decide which of the above objects should be sought in
order to locate the road. Hence, the first step in constructing the
scene model is the joint decision of what object to search for in the
world and where to search for it. The second step performed by the
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Fig. 1.

Typical ALV road image.

ALV vision system is to gather evidence confirming the existence
of the specified object at the hypothesized location. The third and
final step involves reasoning about the evidence. If the confirming
evidence is sufficient, the object is inserted into the scene model;
otherwise, the object may be hypothesized elsewhere or a different
object may be hypothesized.

Construction of the scene model is complex. The selection of
which object to track depends on the navigation goals of the ALV,
the history of object tracking, the contents of the scene model, and
information from the road map. Verifying the existence of an object
requires directing vehicle sensors towards the object, fusing data
from different sensors, and selecting algorithms for image analy-
sis. Methods for performing all these tasks are continually evolving
as the road-following task becomes better understood. New objects
must be tracked by the ALV, new sensors are made available to
track objects, and new image processing techniques are identified
for sensor image feature extraction. The successful evolution of an
ALV vision system hinges on the ability of its control structure and
knowledge representation schemes to accommodate these changes.

ALV road following under arbitrary conditions has not yet been ac-
complished; however, under certain environmental restrictions, suc-
cess can be achieved. Previous work [14] describes the design of
an ALV system that met very specific objectives. Under constrained
conditions, the system proved to be both successful and efficient.
As the goals of the ALV program evolved, we required a flexible
tool to test new road-following strategies, including new sensors and
object classes. However, the specific control structure inherent in
the original system failed to accommodate such prototyping. As a
result, we propose the design of a system for constructing an ALV
scene model offering a unique implementation based on a set of
communicating production systems. A production system model of
computation is particularly effective when the system is expected
to undergo many changes by many software engineers. Although
intended to support the tracking of many objects through a variety
of sensors, the immediate goal has been to emulate the feedforward
capability of the system discussed in [14]. Hence, we restrict our
domain of objects to patches of road, and we restrict our sensors to
a single video camera.

In the following section, we provide an overview of the system
before exploring in detail the representation and control schemes.
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Fig. 2. Scene model builder dataflow.

In Section III, we discuss object modeling and describe the object
classes currently available in the system, whereas in Section IV,
we discuss the scene model network. Sections V and VI discuss the
control strategies involved in the selection and verification of objects,
respectively. We conclude with a series of results demonstrating the
system’s capabilities and discuss the evolution of the system.

II. SysteM OVERVIEW

The task of building a scene model for the ALV consists of two
major subtasks: 1) deciding what object to look for and where to
look for it and 2) verifying that the object exists in the world.

These two functions are performed by the scene model planner
(planner) and scene model verifier (verifier), respectively; together,
they form the scene model builder (builder). The data flow diagram
for the builder is presented in Fig. 2. The planner, in addition to
interpreting and updating the scene model, is aware of the local
navigation task and initiates queries to the @ priori road map. The
verifier controls the movement of the sensors and acquires the sensor
image data. In a hypothesize-and-test paradigm, the planner sends
object hypotheses to the verifier, and the verifier returns verified
objects to the planner.

The local navigation task is a function of the global navigation
task and the location of the vehicle; for example. a local naviga-
tion task might be to follow the road for 100m or turn right at the
first intersection after a certain landmark is identified. The road map
contains @ priori information about the ALV environment, including
the approximate locations, sizes, and compositions of roads, inter-
sections, and landmarks. Neither the navigator (module defining the
local navigation task) nor the road map have been implemented; they
are not the focus of this research. However, for demonstration pur-
poses, a simplistic version of both exists to answer queries from both
the planner and verifier.

The dataflow of the builder proceeds as follows. The planner first
determines the scene model requirements of the local navigation task:
for example, following a straight road requires that the left and right
road boundaries be contained in the scene model. Next, the planner
looks at the road map and the partial scene model and decides what
objects may be useful in locating the road; for example, it might
decide that a road patch, a ditch, or even a row of telephone poles
is sufficient to define a road boundary. The planner then decides the
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Fig. 3. Road patch/planar ribbon frames.
type and expected location of the object to be tracked. hypothesizes
the object, and passes the hypothesis to the verifier.

The verifier attempts to verify the hypothesis by directing the ve-
hicle’s image sensors towards the expected location of the object.
The object is then located in the sensor images. and its image lo-
cation is mapped to a three-dimensional (3D) location based on a
fixed point of reference. The confidence with which the object is
found becomes a measure of its verifiability. Once the confidence is
defined, the hypothesis is returned to the planner for inspection. If
the object is deemed sufficiently verified. it is added to the scene
model. Otherwise, the planner determines the next course of action;
for example, the object may be hypothesized in a different location,
or a new object may be hypothesized.

III. MopeLING WoRLD ORIECTS

Objects in the ALV scene model exhibit the following relation-
ships:

o Component Relationships: For example. an intersection is
made up of four connecting roads, stop lights, etc. These com-
ponent objects, in turn, can be decomposed into their com-
ponent objects, e.g.. a road may be defined as a pair of left
and right segments, where each segment represents the border
between road and shoulder or shoulder and background. Primi-
tive objects such as lines and surfaces extracted from an image
cannot be decomposed.

« Spatial Relationships: For example. telephone poles are often
located near the road and run parallel to the road.

o Property Inheritance: For example. a 3D line segment may be
defined by a pair of endpoints. The edge separating the road
surface from the shoulder is a specialization of a 3D line seg-
ment; thus, in addition to its properties specific to a road edge,
it inherits the endpoint properties of the 3D line segment.

To accommodate these relationships, frames have been chosen to
model objects [9]. A frame is a data structure containing a set of
slots (or attributes) that encapsulate the relevant knowledge pertain-
ing to an object. Slots may contain values. e.g.. the width of a road
patch, or pointers to related frames, ¢.g.. component and spatially
related frames. Property inheritance among frames is accomplished
by supplementing a frame’s slots with the inherited frame’s slots. The
following sections describe the object frames defined in the system.

A. The Road Patch

A planar ribbon is defined as a pair of facing and parallel 3D line
segments. A road patch is a specialization of a planar ribbon whose
3D line segments represent the left and right features of the road.
Thus, a road patch frame inherits the attributes of a planar ribbon.
The road patch and planar ribbon frames are depicted in Fig. 3.
Road patches are oriented and may be connected together to form
a piece of road; the front of one road patch may be connected to
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the back of another. The orientation of a road patch is based on the
assigned orientation of the initial road patch; typically, the back end
of the initial road patch is closest to the ALV, whereas the front
end is furthest from the ALV. The left and right features, i.e., 3D
segments, are oriented looking from the back to the front of the road
patch. Fig. 4 depicts the vehicle with respect to a series of road
patches. The following attributes comprise the road patch frame:

e search location: The search location specifies the expected lo-
cation of the road patch in terms of a 3D line segment. The orientation
of this segment, which is called a rib, is such that the left and right
boundaries of the road are expected to pass through the left and right
endpoints, respectively; hence, the direction of the line segment is
perpendicular to the expected direction of the road in that vicinity.
Fig. 4 shows the search location for the next road patch.

o search strategy: The search strategy specifies the manner in
which the road patch is to be verified. It is assumed that the vehicle
is initially located on an a priori verified road patch. Road patch 1 in
Fig. 4 is the initial road patch. From that point on, each road patch
is verified according to one of the following strategies:

1) connected: The connected search strategy is used to verify a
road patch that is connected in the front and/or the back to
another road patch. Road patches 2, 3, and 4 in Fig. 4 are
examples of connected road patches.

disconnected: The disconnected search strategy is used to ver-
ify a road patch that is connected in neither the front nor the
back to another road patch. Road patch 5 in Fig. 4 is a discon-
nected road patch.

2

~

o front (back) connected planar ribbons: If the road patch is
front (back) connected to the back (front) of another road patch, this
attribute points to the connected road patch.

e has part left (right) world segment: This attribute points to
the frame representing the left (right) road patch segment, which is
a boundary of the road.

o expected width: The expected width is based on the actual
width of the road patch in closest proximity.

o actual width: The actual width is defined as the average per-
pendicular distance from the endpoints of the left road patch segment
to the ray defined by the right road patch segment. This is illustrated
in Fig. 5.

o actual width confidence: The actual width confidence is de-
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Calculation of actual width confidence.

fined as follows:

ActualWidth — ExpectedWidth
ExpectedWidth

max <0.0, 1.0 —

) .

Intuitively, the fractional term represents the deviation of the actual
width from the expected width.

o parallelism confidence: The parallelism confidence is defined
as follows:

90 — ¢
90

where 0 is the acute angle between the left and right road patch
segments. The maximum confidence is achieved when the two seg-
ments are parallel, whereas minimum confidence is achieved when
the segments are orthogonal.

o total confidence: The total confidence is a function of the width
confidence, the parallelism confidence, and the total confidence of the
left and right component features. The function used in our experi-
ments was

0.40 ParallelismConfidence + 0.20 WidthConfidence
+ 0.20 LeftRoadPatchSegmentTotalConfidence
+ 0.20 RightRoadPatchSegmentTotalConfidence.

The total confidence function has been empirically determined and
gives added weight to road patches whose left and right road patch
segments are parallel.

o prior road straightness: The prior road straightness specifies
the length (in meters) of straight road from the front of the last
verified road patch extending back into the scene model. The prior
road straightness of the hypothesized patch in Fig. 4 is given by the
arrow.

o left (right) world segment type: The left (right) world segment
type specifies whether the component left (right) road patch segment
defines the edge between the road surface and the road shoulder
surface (road edge) or the edge between the road shoulder and the
vegetation or background (shoulder edge).

B. The Road Patch Segment

A world segment is defined as a 3D line segment. A road patch
segment is a specialization of a world segment representing a road
feature, i.e., the boundary between the road surface and the shoul-
der surface, or the boundary between the shoulder surface and the
vegetation or background. Thus, a road patch segment frame inher-
its the attributes of a world segment. The road patch segment and
world segment frames are depicted in Fig. 6. Road patch segments
are oriented and may be connected together to form a continuous lin-
ear feature; the front of one road patch segment may be connected to
the back of another. The orientation of a road patch segment is based
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Fig. 6. Road patch segment/world segment frames.

on the orientation of its parent road patch. The following attributes
comprise the road patch segment frame:

o search location: The search location specifies the expected lo-
cation of the road patch segment in terms of a 3D point through
which the road patch segment is expected to pass. This point is one
of the endpoints belonging to the search location of its parent road
patch.

o search strategy: The search strategy specifies the manner in
which the road patch segment is to be verified. Each road patch
segment is verified according to one of the following strategies:

1) connected: The connected search strategy is used to verify a
road patch segment that is connected in the front and/or the
back to another road patch segment.

2) disconnected: The disconnected search strategy is used to ver-
ify a road patch segment that is connected in neither the front
nor the back to another road patch segment.

o endpoint A (B): Endpoint A specifies the 3D coordinates of
endpoint 4 (B). It is calculated by applying a flat earth inverse per-
spective transformation [4] to endpoint A (B) of its component road
patch camera segment frame.

o endpoint A (B) connected world segment: If the road patch
segment is connected at endpoint A (B) to another road patch seg-
ment, this attribute points to the connected road patch segment.

o part of planar ribbon: This attribute points to the parent road
patch frame.

o has part camera segment: This attribute points to the frame
representing the component road patch camera segment.

« total confidence: The total confidence is a function of the conti-
nuity confidence (defined below) and the total confidence of its com-
ponent road patch camera segment. The total confidence is calculated
as follows:

0.30 ContinuityConfidence + 0.70 RoadPatchSegmentTotalConfidence

o world segment feature: The world segment feature specifies
whether the road patch segment defines the edge between the road
surface and the road shoulder surface (road edge) or the edge between
the road shoulder and the vegetation or background (shoulder edge).

« endpoint A (B) orientation: This attribute defines the orien-
tation of endpoint A (B) as front or back.

« continuity confidence: The continuity confidence, which is de-
fined only when the road patch segment is connected, measures the
degree to which the road patch segment and its connected neighbor
lic on the same vector. The continuity confidence is calculated as
follows:

_ 1804
180

where 8 is the angle between the two road patch segments.
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C. The Road Patch Camera Segment

A camera segment is defined as a two-dimensional (2D) line seg-
ment extracted from a camera image. A road patch camera segment
is a specialization of a camera segment representing the 2D projec-
tion of a 3D road feature. Thus, a road patch camera segment frame
inherits the attributes of a camera segment frame. The road patch
camera segment and camera segment frames are depicted in Fig. 7.
Road patch camera segments are oriented and may be connected to-
gether to form a continuous 2D linear feature; the front of one road
patch camera segment may be connected to the back of another. The
orientation of a road patch camera segment is based on the orientation
of its parent road patch segment. The following attributes comprise
the road patch camera segment frame:

o search window: The search window specifies the expected loca-
tion of the road patch camera segment in terms of a two-dimensional
rectangular window defined over a camera image. If the road patch
camera segment is to be verified using the connected search strategy.
the window is located adjacent to that from which the connected road
patch camera segment was extracted. However. if the road patch cam-
era segment is to be verified using the disconnected search strategy,
the window is centered around the point defined by applying a flat
carth direct perspective transformation [4] to the search location of
its parent road patch segment.

o search strategy: The search strategy specifies the manner in
which the road patch camera segment is to be verified. Each road
patch camera segment is verified according to one of the following
strategies:

1) connected: The connected search strategy is used to verify a
road patch camera segment that is connected in the front and/or
back to another road patch segment.

2) disconnected: The disconnected search strategy is used to ver-
ify a road patch camera segment that is connected in neither
the front nor the back to another road patch camera segment.

« endpoint A (B): The two endpoints are the result of applying
a linear feature extractor to the search window. The endpoints are
constrained to lie on the border of the search window and define a
2D line segment.

« endpoint A (B) connected camera segment: If the road patch
camera segment is connected at endpoint A (B) to another road patch
camera segment, this attribute then points to the connected road patch
camera segment.

o part of world segment: This attribute points to the parent road
patch segment frame.

e camera image: This attribute points to the camera image on
which the search window is defined.

o method of extraction: Currently. the linear features (and their
confidence) are entered by hand; however, the authors plan to in-
tegrate the image processing techniques outlined in [8]. In that ap-
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proach. the method of linear feature extraction depends on the search
strategy. If the search strategy is connected, a method based on a one-
dimensional Hough transform is applied to the search window using
the connected endpoint as a pivot. If the search strategy is discon-
nected, a method based on a 2D Hough transform is applied to the
search window. In both cases, the confidence would be a function of
the size of the Hough peak, which in turn is weighted by the gradient
magnitude.

o total confidence: The total confidence ranges from O to 1 and
is based on the strength of the extracted linear feature.

o camera segment feature: The camera segment feature specifies
whether the road patch camera segment defines the edge between
the road surface and the road shoulder surface (road edge) or the
edge between the road shoulder and the vegetation or background
(shoulder edge).

e endpoint 4 (B) orientation: This attribute defines the orien-
tation of endpoint A (B) as front or back.

The addition of attributes describing photometric properties of the
image might improve the extraction of linear features from the im-
age. For example. an expected contrast attribute, which measures
the change in brightness across the road boundary, could assist in se-
lecting from among the possible methods of extraction or determine
the parameters of a particular method.

IV. Tue Scexe MobpEL

The scene model is central to the ALV vision system. It is accessed
by the planner in determining what object to search for and by the
ALV navigator when plotting a course through the scene model ob-
jects. As the domain of scene model objects grows larger, so does
the variety of requests to the scene model. It is important that the
semantics of the access commands be stable while the structure of
the scene model evolves to accommodate new object classes. Hence,
the structure of the scene model is transparent to those modules that
access it. As in the case of the scene model objects, the scene model
is a frame defining a set of query functions and hiding all imple-
mentation details. For example, queries can be made to determine
the length of straight road at the end of the scene model or what
road boundary, i.e., road or shoulder edge, has been verified most
successfully.

Given the present limited domain of scene model objects, i.¢. road
patches and their components, a connected graph of road patches
serves as an adequate scene model. However, as more object classes
are defined, such an implementation may become insufficient; a struc-
ture accommodating both spatial and symbolic data would be pre-
ferred. Lawton e af. {7] propose a spatial grid in which each grid
element (or pixel) contains a vector of pointers to objects that occupy
that position; such a scene model supports both structural and geo-
metric queries. Because the domain of objects does not yet include
intersecting roads. the current implementation of the scene model is
quite simple. The road patches are kept in a list ordered by their oc-
currence along the road; successive road patches in the scene model
are not necessarily connected. When inserted into the scene model,
each road patch is “trimmed” so that the front and back endpoints
of its component road patch segments are square.

The frames comprising the road patches can be divided into two
layers. The upper layer, including the road patch frame and its two
road patch segment component frames, contains objects and their
components as they are defined in the world. The lower layer, in-
cluding the road patch camera segment frames, contains objects as
they are defined in the sensor images. This division facilitates the
incorporation of new sensors to the vehicle. For example, if we add
a range scanner to the ALV, a road patch segment frame would then
be given an additional slot defining a component road patch range
segment. Aside from the additional attribute, the only impact on the
road patch segment frame would be an alteration of the endpoint A
(B) calculation to include the data from the road patch range segment
and an alteration of the total confidence function to include the road
patch range segment total confidence.
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V. THE SciNE MopeL PLANNER

The function of the ALV navigator is to examine the scene model
and plot a course for the vehicle with respect to the objects. If the
local navigation task is to navigate the vehicle down the center of
the road. in order for the navigator to be successful, the scene model
must contain a sufficient number of relevant objects. For example,
a scene model containing a series of connected road patches would
be sufficient; the navigator need only plot a smooth curve between
the left and right components of each road patch. However, a scene
model containing houses would not provide sufficient information for
the navigator to plot a path down the road; the navigator would be
unsure of the proximity of the houses to the road. It is up to the
planner to decide, based on the local navigation task, what objects
should appear in the scene model. However, the planner’s decision
to track a particular object depends on more than the relevance of
the object to the local navigation task. Choosing an object for verifi-
cation should also depend on the history of tracking that object. For
example, if the planner repeatedly fails to verify a particular class
of object, it should hesitate to attempt further verification; however,
if verification fails due to the object being far from the vehicle, this
should not prevent the planner from attempting to verify the object
as the vehicle moves closer to the object.

The planner is implemented as a frame whose slots point to the
modules with which the planner communicates, i.e., the scene model,
the @ priori road map, the local navigation task, and the verifier. The
unique aspect of this frame is that it inherits the capabilities of a pro-
duction system and provides a rule database, a factual database, and
a conflict resolution strategy. Based on the local navigation task, the
a priori map, and the scene model, the planner decides what type
of object to track and verify. To simplify the initial implementation
of the planner, we have assumed a constant local navigation task of
following the road and an a priori road map, which contains the ap-
proximate locations of intersecting roads along with an approximate
road width, ad infinitum. Hence, the production system consistently
selects a road patch for verification by instantiating a road patch
frame whose attributes are undefined.

The next task of the production system is to choose the search
location of the road patch hypothesis. The production system first
queries the scene model for the directional history of the road. If
the direction has varied erratically, the planner’s confidence as to the
location of the road patch is low. Imposing the constraint that the
hypothesized road patch must be connected to the last road patch in
the scene model improves the likelihood of verifying the road patch
hypothesis. Hence, the production system defines the search strategy
as “‘connected’’; the search location is defined to be the leading edge
of the connected road patch.

The architecture of the planner has been designed to facilitate the
prototyping of new road-following strategies. The connected search
strategy is just one possible strategy and is based on the feedforward
algorithm described in [14]. However, in that system, the architec-
ture was based on the feedforward algorithm: no alternate strategies
could be easily accommodated. To demonstrate the flexibility of our
system, we provide an alternate road-following strategy called the
disconnected search strategy. If a section of road has been analyzed
in a previous image, rather than systematically reverifying the road
with connected search locations, the planner can hypothesize the
search locations at larger intervals of, say, 10 m. A second applica-
tion of the disconnected strategy is to hypothesize the search locations
at larger intervals if the planner is confident that the road is straight
based on prior tracking. To demonstrate the integration of the two
road-following strategies, we combine the connected search strategy
with the second application of the disconnected search strategy. The
planner applies the connected strategy until it has accumulated at
least 10 m of straight road in the scene model. Hypothesizing that
the upcoming road is straight, it extrapolates the next search location
a distance of 10 m from the end of the scene model.

Before the road patch hypothesis is transmitted to the verifier, the
planner must decide which left and right features should define the
road patch. This decision is based on the features defining the nearest
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verified road patch and the confidence with which those features were
verified. The expected road width is defined as the actual road width
of the nearest verified road patch in the scene model.

The planner is now ready to send the road patch hypothesis to the
verifier, where evidence is gathered in support of it. Once complete.
the verifier returns the hypothesis to the planner: all the attributes
in the road patch frame are now defined. If the evidence is deemed
acceptable by the planner, it will add the verified object to the scene
model. However, if the evidence is considered unacceptable, several
options are available to the planner:

1) hypothesize the object at a different location:
2) hypothesize a different object:
3) retain the verified components of the unverified object.

Currently, only option 1) is implemented and proceeds as follows: If
the unverified road patch hypothesis is disconnected, i.e., the planner
ventured out beyond the end of the scene model to hypothesize the
road patch, the hypothesis is abandoned. and a connected road patch
is hypothesized back at the end of the scene model. If the unveri-
fied road patch hypothesis is connected, the planner aborts the road
following task. Fig. 8 summarizes the actions taken by the planner.

When additional object classes become defined, the planner may
take advantage of option 2); for example, the planner may choose to
hypothesize a ditch beside the road if it was unsuccessful in verifying
the road. When different search strategies become defined, the plan-
ner may take advantage of option 3). For example, although a road
patch may not have been successfully verified, one of its component
road patch segments may yield a high confidence; the planner may
choose to insert this component into the scene model.

We chose to implement the planner as a production system to pro-
vide the flexibility required to accommodate the many changes it is
expected to undergo. Granted, the control inherent in our current
planner is quite simple, and a production system mode! of com-
putation appears to offer little advantage. However, as more road-
following strategies are introduced and more object classes defined,
we feel that a production system will better accommodate the in-
creased complexity and evolution.

The current implementation of the planner is strictly top-down,
i.e., the planner decides what to look for and directs the verifier to
find it; no accommodation has been made for unexpected objects in
the field of view such as obstacles or holes in the road. Although
this capability is essential for a successful road-following system,
we have chosen to separate the top-down and bottom-up tasks. It is
felt that an additional component is required to identify unexpected
objects and deposit them into the scene model; this component is
beyond the scope of this paper.

VI. Tue ScENE MODEL VERIFIER

The role of the verifier is to receive an object hypothesis from
the planner, collect evidence in support of the object, and return
the verified object to the planner. More specifically, when the veri-
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fier reccives an object hypothesis in the form of a sparsely defined
frame, it proceeds to fill in the empty attributes; if the object has
component parts, €.g., a road patch segment, the verifier must create
and define these frames. To accomplish this task, a separate black-
board has been assigned to each class of object. In Section VI-A,
we describe the structure of an object blackboard; the mechanism by
which blackboards communicate to verify an object is presented in
Section VI-B.

A. The Object Blackboard

When an object hypothesis is posted on the blackboard corre-
sponding to its class, knowledge sources are activated to fill the
empty attributes of the hypothesis. As in the case of the planner,
each blackboard is implemented as a frame, providing a set of at-
tributes and inheriting the capabilities of a production system. The
attributes provide links to other blackboard frames and system mod-
ules. e.g., vehicle pilot and image processor. The production system
rules control the activation of knowledge sources, i.e., when the left-
hand side of a rule matches the contents of the factual database, the
right-hand side activates a knowledge source. Ties are resolved by
the conflict resolution strategy.

Blackboard frames, like object frames, possess both component
and inheritance relationships; spatial relationships are undefined for
blackboard frames. For example, the road patch blackboard has an
attribute pointing to the road patch segment blackboard; although
there are two component road patch segments for each road patch,
there is only one road patch segment blackboard on which every
instance of a road patch segment object is posted. When an object
blackboard is instantiated, it may inherit the attributes and rules of
other object blackboards. Consider, for example, the instantiation of
a road patch blackboard; the blackboard now contains the attributes
and rules of both the road patch and planar ribbon blackboard. Thus,
for every attribute of a road patch object, there exists one or more
rules invoking knowledge sources defining that attribute.

If we look carefully at the rule(s) corresponding to the fotal con-
fidence attribute, we find that they originate in the planar ribbon
blackboard since this attribute was inherited from the planar rib-
bon object. These rules control how the confidence is defined for a
generic planar ribbon. For some objects that may inherit the planar
ribbon attributes, a simple, generic confidence measure may be suffi-
cient; however, in the context of a road patch, an alternate confidence
measure may be more appropriate. Since there is no way for the pla-
nar ribbon to anticipate which objects may inherit its attributes, it is
impossible to provide a set of rules in the planar ribbon blackboard
that define the total confidence of a road patch object. Instead, the
planar ribbon blackboard retains the generic rules, whereas the road
patch provides its own rules. When the road patch blackboard in-
herits the planar ribbon blackboard, the redundant total confidence
rules originating from the planar ribbon blackboard are automatically
deactivated.

B. Top-Down Hypothesis Verification

When the planner hypothesizes an object, the verifier invokes a
top-down approach to verify the object. In Fig. 9, this approach has
been applied to the verification of a road patch hypothesis. Once
the planner creates the road patch hypothesis, it posts it on the road
patch blackboard (a specialization of a planar ribbon blackboard).
The rules belonging to the road patch blackboard, acting as demons,
invoke knowledge sources to define the attributes of the now sparsely
defined road patch hypothesis. The rule antecedents ensure that the
attributes are defined in a specific order. When rules fire to define
the has part left world segment component, the activated knowl-
edge source creates a road patch segment object hypothesis, defines a
subset of its attributes, and posts it on the road patch segment black-
board. At this point, control is transferred to the road patch segment
blackboard, whereas the road patch blackboard is put to sleep.

Responding to a new object hypothesis on their blackboard. the
rules belonging to the road patch segment blackboard proceed to de-
fine the attributes of the road patch segment object. When rules fire
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Top-down hypothesis verification.

to define the has part camera segment attribute, the activated knowl-
edge source creates a road patch camera segment hypothesis, defines
a subset of its attributes, and posts it on the road patch segment
blackboard. Control is transferred to the road patch camera segment
blackboard, and the road patch segment blackboard is put to sleep.

The rules at the road patch camera segment blackboard proceed
to define where and how the road patch camera segment is to be
scarched for in the camera image. When the rules fire to define end-
point A (B), a knowledge source applies the method of extraction
to the search window contained in the camera image. The method
of extraction returns the predominant linear feature (endpoint A
(B)) in the search window along with a confidence measure (fotal
confidence). A more powerful approach would return a set of seg-
ments that would lead to multiple competing road patch hypotheses.
Although such a bottom-up strategy has been designed, it has not
been implenfented: as a result, only one road patch hypothesis is
active at any time.

At this point, all the attributes are defined, and control is passed
back up to the road patch segment blackboard, where the remain-
ing road patch segment hypothesis attributes are defined. Similarly.
when its attributes are defined, control is passed up to the road patch
blackboard. The next attribute, has part right world segment, re-
peats the entire process until eventually control is once again at the
road patch blackboard. Once the last attribute, the road patch total
confidence, is defined, the completed road patch hypothesis is re-
turned to the planner for evaluation. Note that since the size of the
image search windows is constant, the size of the road patch will
vary according to the effects of perspective projection.

This system of communicating blackboards offers many advan-
tages to the system builder. Each modular blackboard controls the
definition of a single object class; as new classes are created, new
blackboards are defined. If the definition of a class is changed. i.e.,
attributes are added or deleted, new sets of rules are added or deleted.
Since rules map to single attributes, the alteration of one set of rules
will have little or no impact on rules corresponding to other at-
tributes. Within each blackboard. the inherent advantages of a rule-
based system are clear. Rule-based activation of knowledge sources
provides a data-driven, flexible control structure, whereas English-
like rules provide readability and support maintainability.

VII. ExPERIMENTAL RESULTS

In this section, we demonstrate the system on a sequence of images
taken from the Martin Marietta ALV test track in Denver, CO. The
system was not tested on the vehicle; rather, the simulation moves the
vehicle through the discrete positions from which the images were
acquired. In addition. the location and confidence of all road patch
camera segments was input manually; no image processing was per-
formed. The lack of image sequences with ground truth information
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Fig. 10. Tracking a straight road— Frame 1.

prevented extensive testing of the system, particularly in cases where
the road is obscured or ambiguous in the image.

The current implementation runs in the Maryland Franz Lisp envi-
ronment {1], under UNIX' 4.3BSD on a VAX" 11/785. As described
earlier, all system modules are frames implemented using the Mary-
land Franz Flavors package [15]; the production system frames inher-
ited by the planner and verifier blackboards are implemented using
YAPS [2]. YAPS is an antecedent-driven production system similar
to OPSS5 [5]. but it offers more flexibility. All communications be-
tween modules (e.g., verifier, planner, scene model, road map, nav-
igation task) and between blackboard layers is accomplished through
the message passing facility included in the Maryland Franz Flavors
package. Functions bound to the frames are implemented in Lisp;
C routines are called from the Lisp environment for numerically
intensive processing. All image display functions are provided by a
Vicom image processor.

The first sequence is shown in Fig. 10 and demonstrates the con-
struction of a scene model containing a straight road. It is assumed
that the vehicle is initially seated on the road with known position
and orientation. If the initial position and orientation were unknown,
a bottom-up road patch hypothesis generation strategy could be used
to find the road in the field of view; again, this strategy has been
designed but not implemented. At the bottom of the image, the initial
search windows are placed according to the expected location of the
road in the image; the search windows are indicated by the rectan-
gular boxes. which contain the extracted line segments. From then
on, the road patch connected search strategy is repeatedly invoked to
verify successive connected road patches. Following the insertion of
the eighth road patch into the scene model, over 10 m of straight road
have been accumulated. In this case, the disconnected search strategy
is invoked, resulting in a search location 10 m beyond the end of the
scene model. Because the road was correctly predicted to be straight,
the road patch is successfully verified. With approximately 20 m of
straight road in the scene model, the disconnected search strategy is
again invoked; however, when the 3D search location of the third
road patch is mapped to the current image, the search windows are
out of bounds (off the top of the image). Subsequently, as depicted
in Fig. 11, a new image is acquired. Since the vehicle is aware of
the distance it has traveled since the last image was acquired, it can
predict the expected projection of the road patch search location in
the new image; subsequent processing continues as before.

In the second sequence, which is shown in Fig. 12, the ALV
attempts to track a curved road. As in the previous sequence, the
initial portion of the road is straight; the same steps are used to build
the initial eight road patches, and the search strategy is changed from
connected to disconnected. However, because the vehicle could not
predict the upcoming curve in the road, the predicted search location

" UNIX is a trademark of Bell Laboratories.
> VAX is a trademark of Digital Equipment Corporation.
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Fig. 1t. Tracking a straight road— Frame 2.

Fig. 12. Tracking a curved road— Frame 1.

Fig. 13.

Tracking a curved road— Frame 2.

is off the road. ultimately yielding a road patch with very poor total
confidence (due to lack of parallelism and poor width). The planner
aborts the disconnected search strategy and invokes the connected
search strategy from the previously verified road patch in the scene
model. As a result, the curve is successfully navigated. as is shown
in Fig. 13.

VIII. System EvoruTion

In Section VII. we demonstrated two search strategies invoked
by the planner to verify a road patch. Because these strategies are
rather simplistic, we expect that they will evolve with time and have
designed the control structure to accommodate such evolution. In
this section. we demonstrate the flexibility of the control structure

by exploring the effects of altering the search strategics used by the
planner. For each proposed change, we discuss the necessary modi-
fications to the code and present the results of running the modified
system on sample images. The first two examples discuss trivial mod-
ifications and are intended to familiarize the reader with the notation:
the third and final example presents a more interesting modification.
Although, in this section, we discuss modifications to the planner.
the control structure also facilitates modifications to the verificr. as
is briefly discussed in Section VI-B.

A. Reducing the Static Road Projection

When the scene model has accumulated at least 10 m of straight
road, the planner switches from a connected search strategy to a
disconnected search strategy; the next road patch is hypothesized at
a distance of 10 m from the last road patch in the scene model.
In this section, we demonstrate the changes required to alter this
distance from 10 to 5 m. Among the YAPS rules that collectively
define the road patch search strategy, the following rule defines the
search strategy as disconnected:

(defp define-disconnected-search-strategy
(hypothesized object -object)
(goal (define search strategy for road patch -object))
test (null (<- -object "search-strategy))
(cond ((not (null (<- -object “prior-road-straightness)))
(>>— (<- -object “prior-road-straightness)
MIN-ROAD-STRAIGHTNESS)))
—>

(<- -object “set-search-strategy ‘disconnected)).

The antecedent of the rule (the four expressions preceding the
“*—>") is a conjunction of conditions that must be satisfied in order
for the consequent (the expression following the ““—>"") to be ex-
ecuted. The first expression in the antecedent matches a road patch
hypothesis created by the planner. The second expression represents
the current goal of the planner; in this case, the planner is attempt-
ing to define the search strategy of the road patch hypothesis. The
next two expressions, called test clauses. specify further conditions
that must be met: The search strategy must be previously unde-
fined, and the prior road straightness must exceed 1000 cm (the
value of MIN-ROAD-STRAIGHTNESS). The symbol **<-" indi-
cates message passing between objects; for example, in the first test
condition, a message is passed to the road patch hypothesis, which
is bound to the variable object, requesting the value of the search
strategy attribute. If both these conditions are met, the search strat-
egy is defined as disconnected. With our new strategy. we wish to
invoke the disconnected search strategy after accumulating 5 m of
straight road. Thus. the required change to the system is simply
to redefine the global variable (MIN-ROAD-STRAIGHTNESS) to
equal 500 cm.

The next step in modifying our strategy involves the following
rule, which defines the search location of the road patch hypothesis:

(defp define-disconnected-search-location
(hypothesized object -object)
(goal (define search location for road patch -object))
test (null (<- -object "search-location))
(eq (<- -object “search-strategy) "disconnected)
—>
(<- -object “set-search-location
(list (<- (<- *xyaps-db x “scene-model)
*:predict-extended-left-feature-seed
MAX-EXTENDED-SEARCH-DISTANCE)
(<- (<- *yaps-db * “scene-model)
“:predict-extended-right-feature-seed
MAX-EXTENDED-SEARCH-DISTANCE)))).

In this rule, the consequent defines the search location as a value
resulting from sending two queries to the scene model and request-
ing points extrapolated from the left and right road patch segments.
respectively, of the last road patch in the scene model. To support
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Fig. 14.

Reducing the static road projection.

our new strategy, the global variable MAX-EXTENDED-SEARCH-
DISTANCE must be redefined to equal 500 cm. Having altered the
MIN-ROAD-STRAIGHTNESS and MAX-EXTENDED-SEARCH-
DISTANCE global variables, we obtain the results depicted in Fig.
14.

B. Dynamic Road Projection

With our last modification, the planner repeatedly hypothesizes
the next road patch 5 m out, provided that the last road patch was
successfully verified. We now demonstrate how to make the planner a
little braver by having it move out 10 m after the first 5-m extension.
The reasoning, of course, is that as we accumulate more straight
road, we expect more to lie ahead. At some point, however, the
verifier has trouble verifying road patches that are too far ahead; we
choose 10 m as our limit. To accommodate this dynamic projection
search strategy, we add the following YAPS rule to the planner:

(defp deﬁne-dynamica]ly-disconnecled~search—slrategy
(hypothesized object -object)
(goal (define search strategy for road patch -object))
test (null (<- -object “search-strategy))
(cond ((not (null (<- -object “prior-road-straightness)))
(>= (<- -object "prior-road-straightness)
MIN-ROAD-STRAIGHTNESS)))
(eq (<- (<- (<- *yaps-db * “scene-model)
":retrieve-most-recent-road-patch) ‘search-strategy)
"disconnected)
—>
(<- -object 'set-search-strategy 'dynamically-disconnected)).

In the test clauses, we check that the search strategy of the road
patch hypothesis is undefined and make sure that we have accumu-
lated sufficient straight road in the scene model. In addition, we
check that the previously verified road patch was verified using the
disconnected search strategy. If all these conditions hold, the search
strategy is defined to be dynamically disconnected.

To define the search location for this new strategy, we add the
following YAPS rule:

(defp define-dynamically-disconnected-search-location
(hypothesized object -object)
(goal (define search location for road patch -object))
test (null (<- -object “search-location))
(eq (<- -object 'search-strategy) "dynamically-disconnected)
—>
(<- -object ’set-search-location
(list (<- (<- *yaps-db * 'scene-model)
":predict-extended-left-feature-seed
MAX-EXTENDED-SEARCH-DISTANCE)
(<- (<- xyaps-db * 'scene-model)
*:predict-extended-right-feature-seed
MAX-EXTENDED-SEARCH-DISTANCE)))).
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In this rule, the rule consequent defines the search location to be 10
m (the value of MAX-EXTENDED-SEARCH-DISTANCE) from the
last road patch in the scene model. The results of this new strategy
are depicted in Fig. 15.

C. Dynamically Decreasing Road Projection

Returning to our original search strategy, the planner aborts the
disconnected search strategy in the event of an unverifiable road patch
hypothesis. Rather than returning to the connected search strategy,
we might try to relax our projected search location and rehypothesize
the road patch halfway between the unverified road patch and the last
verified road patch in the scene model. We have as our original rule

(defp road-patch-disconnected-to-connected-retry
(hypothesized object -object)
(goal (process road patch hypothesis -object))
test (eq (<- -object 'search-strategy) “disconnected)
(cond ((not (null (<- -object "total-confidence)))
(< (<- -object 'total confidence)
MIN-ROAD-PATCH-CONFIDENCE)))
—>
(<- -object 'set-search-strategy "connected)
(<- -object ’set-back-connected-planar-ribbon
(<- (<~ x=yaps-db * 'scene-model)
*:retrieve-most-recent-road-patch))
(<- -object ’set-search-location
(list (<- (<- (<- -object "back-connected-planar-ribbon)
"has-part-left-world-segment) "endpoint-B)
(<- (<- (<~ -object back-connected-planar-ribbon)
“has-part-right-world-segment) “endpoint-B)))
(<- -object 'set-has-part-left-world-segment nil)
(<- -object ’set-has-part-right-world-segment nil)
(<- -object 'set-actual-width nily
(<- -object 'set-actual-width-confidence nil)
(<- -object 'set-parallelism-confidence nil)
(<- -object “set-total-confidence nil)).

The antecedent of this rule checks that the confidence of the road
patch was too low, i.e., that the road patch was unverified, and
that the disconnected search strategy was invoked to verify the road
patch. The consequent of the rule clears the contents of the road patch
hypothesis, resets the search strategy to be connected, sets the back
connected planar ribbon to the last road patch in the scene model,
and sets the search location to the end of the scene model. Our new
search strategy results in the following rule:

(defp disconnected-to-halfway-retry
(hypothesized object -object)
(goal (process road patch hypothesis -object))
test (eq (<- -object 'search-strategy) 'disconnected)
(cond ((not (null (<- -object "total-confidence)))
(< (<- -object 'total-confidence)
MIN-ROAD-PATCH-CONFIDENCE)))
—>
(<- -object 'set-search-location
(<- -object “set-search-location (halfway
(<- (<- (<- +yaps-db * “scene-model)
":retrieve-most-recent-road-patch)
"search-location)
<~ -object 'search-location))))
(<- -object set-has-part-left-world-segment nil)
(<~ -object 'set-has-part-right-world-segment nil)
(<- -object “set-actual-width nil)
(<- -object “set-actual-width-confidence nil)
(<- -object 'set-parallelism-confidence nil)
(<- -object set-total-confidence nil)).

In this case, the search location is calculated by a function finding
the midpoint between the last road patch in the scene model and the
unverified road patch. The new rule bears close resemblance to the
original rule; we have simply removed the first two components of




IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION. VOL. 6. NO. 2. APRIL 1990

Fig. 15. Dynamically increasing road projection.

Fig. 16. Dynamically decreasing road projection.

the rule consequent and have provided a new definition of the search
location. Applying this strategy to the unverifiable road patch in Fig.
12, we obtain the results depicted in Fig. 16.

IX. RELATED WORK

As mentioned earlier, the system described in this paper function-
ally resembles previous work at the University of Maryland [14]. In
particular, the road is represented by a series of road patches de-
fined by their left and right boundaries. Although Waxman et al.
address the initial location of the road (bootstrap procedure) as well
as successive road following (feedforward procedure) [14], we focus
only on the road-following task. The improved architecture accom-
modates the prototyping of new road-following strategies and vision
techniques much better than its predecessor.

The decomposition of an object both by component and by level
of abstraction, and the construction of hierarchical frame networks,
bear close resemblance to techniques used in the VISIONS system
[6]. In the VISIONS system, the long term memory (LTM) contains
a priori visual knowledge of the world, whereas the short term mem-
ory (STM) represents the interpretation of the scene. Both the LTM
and STM are structured as a hierarchy of levels of representation
defining the levels of object abstraction. The control strategy first
decides which partial model (frame network) to focus on, expands
(hypothesizes) a node, and finally verifies the node. Although origi-
nally defined for outdoor house scenes, this work has been extended
to the road-following task [3].

Lawton et al. [7] describe a system also resembling the VISIONS
system. The STM acts as a dynamic scratchpad for the vision sys-
tem, which contains object hypotheses, incoming imagery, and the
results of feature extraction. When hypotheses accumulate sufficient
evidence, they are moved to the LTM, which includes @ priori ter-
rain representations. The control structure provides both top-down
and bottom-up hypothesis instantiation over the network hierarchies.
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The VITS vision system [13] running on the ALV at Martin
Marietta classifies the pixels of a color image as on-road or off-road
and builds a road representation consisting of points in three space
that form a polygonal approximation of the road boundary. Although
the image processing techniques to extract the road boundary have
yielded impressive results, the system lacks any reasoning ability
concerning the shape of the road. In addition, the vision system
is strictly bottom up. Sets of boundary points (scene models) are
continually generated and passed to the reasoning subsystem, where
a trajectory is computed; the higher level reasoning processes appear
to have little effect on the lower level image processing.

As in the case of VITS, the Navlab mobile robot at Carnegie-
Mellon [11] classifies the pixels of a color image as either on road
or off road. A Hough voting procedure is then applied to determine
the location of the road’s vanishing point, whereas a calibrated flat-
earth model yields the 3D location of the road’s centerline. Obstacle
detection and terrain analysis are performed by region growing on
overlapping maps of surface normals; each resulting region (limited
by surface discontinuities) is fitted by a plane or quadric surface. The
framework within which the vision system is executed is provided by
a blackboard system referred to as CODGER (for details, see [12]).
The modules (obstacle avoidance, pilot, helm, color vision, display,
and a central database) communicate by posting and retrieving tokens
from the database; CODGER provides extensive synchronization fa-
cilities and is suited to execution on multiple processors.

Smith and Strat [10] describe an information manager that is the
core of a sensor-based autonomous system. A centralized knowl-
edge database, which is accessible to a community of independent
asynchronous processes, is proposed. The representation scheme or-
ganizes data tokens in both an octree and a semantic network, thus
supporting both spatial and semantic queries. The independent asyn-
chronous processes can be activated by demons embedded in the
database or by procedure call.

X. CONCLUSIONS

The system described in this report provides a flexible architecture
for constructing an ALV scene model. The representation of objects
as networks of frames offers a natural grouping of knowledge; the
multiple layers of abstraction facilitate the addition of new sensor fea-
tures in support of existing world objects. Construction of the frame
network is provided by a set of modular blackboards providing top-
down instantiation of the frames in the network. Each blackboard,
implemented by a production system, is an ‘“‘expert” in defining a
particular class of frame; the English-like rules governing the invo-
cation of knowledge sources are easy to understand and narrow the
gap between control specification and implementation. From a system
maintenance standpoint. all object frames. blackboards, production
system tools, and object-oriented programming tools are off the shelf;
these facilities are documented, tested, and readily accessible. The
implementation languages supporting the system cover the needs of
the programmer; YAPS offers high-level encoding of control strat-
egy, Lisp provides symbolic manipulation, C speeds up numerical
processing. and Flavors facilitates interobject communication.

The system is currently being expanded to support new planning
and verification strategies. The planner is being supplemented with
strategies for road following in the event that a connected road patch
cannot be verified. This includes proceeding past an unverified road
patch, provided that it contains a verified component, and invoking
an exhaustive search for road patches in a given area; the latter
strategy will be accomplished using bottom-up verification in which
road patch camera segments posted at lower levels generate instances
of road patches at upper levels. This integration of top-down and
bottom-up verification will remove some of the burden placed on the
planner of accurately predicting the location of an object.
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Abstract—The emulation of pick-and-place machines, in order to
compute their throughput rate for different products, is a key ingredient
for capacity planning and scheduling of high-volume assembly lines
where these machines are used.
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In this communication it is shown how an emulator can be built in the
framework of Petri nets and how it can be instantiated for a particular
setup and sequence of placements.

Three advantages are argued for the proposed emulator. First, the
emulation code can be generated automatically. Second, the model
graphically represents the concurrency and synchronization aspects of the
machine’s operations. Third, it allows a formal representation of the
machine’s operations.

I. INTRODUCTION

The activity reported in this communication is part of a research
project aimed at establishing a framework in which to develop
modeling and simulation tools for an important class of CNC
machines, namely, pick-and-place machines, whose use is becoming
increasingly important in high-volume/low-cost production of printed
circuit boards.

Typically, these machines have a very high throughput potential or
burst rate resulting from a highly concurrent design. This very
feature makes them vulnerable to severe performance degradation
when the sequence of placements and the arrangement of the
components on the delivery carrier are not interrelated so as to exploit
the concurrency of the machine.

In order to plan the capacity of the assembly line and to schedule
the production, an accurate estimation of the machine cycle time for a
given product is required before the start of production.

Unfortunately, creating a setup and sequencing for a new board
requires extensive and time-consuming machine reprogramming and
components loading. The elimination of this trial-and-error method
on the machine is the main reason behind the need to develop
emulators for these machines. DPERT, an emulator of a specific
machine of this class, has been written in PL/1 and extensively tested
and validated for different setups and pick-and-place sequences [2].

In this communication, a different approach, first suggested in [4],
based on Petri net models and the use of a software tool called
MEGAS [10] for their analysis and simulation, is shown to be a
general framework for the development, validation, and numerical
utilization of an emulator for this machine.

Petri nets that represent asynchronous concurrent systems [9],
have been increasingly used recently to model manufacturing systems
[1], [3], [6] and their control [7], [11]}-[13].

One advantage of Petri net based models over other design
languages is that they can be analyzed for structural properties of the
system-like boundedness and liveness, i.e., absence of deadlocks.

Petri net-based models are executable. This feature is particularly
important for the problem considered in this communication because
it allows the emulation to be generated automatically, using a package
such as MEGAS, from the Petri net and the production data streams
without the need of writing more software for the specific emulation
instance.

The challenge in emulation by Petri nets for this machine is to
model. in a dynamic environment, the concurrency, synchronization,
and control of the machine’s operations. One wants to keep the model
complete yet easy to understand and modify, executable and yet with
a good run-time performance.

In Section II, the structure of the machine is briefly outlined
stressing the role of concurrency and the situations which may
adversely affect the throughput rate. In Section HI, after a brief
reminder of the basic definitions and properties of Petri nets, the
model of the machine is presented. To the authors’ knowledge, this
model is considerably more complex than many presented in the
literature. This section is written not only to describe a specific model
but also to outline a general methodology for building Petri nets
models. In Section IV, it is explained how the Petri net model can be
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