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Abstract

We present a new technique for tracking 3D ob-
jects from 2D image sequences through the in-
tegration of qualitative and quantitative tech-
niques. The deformable models are initialized
based on a previously developed part-based qual-
itative shape segmentation system. Using a
physics-based quantitative approach, objects are
subsequently tracked without feature correspon-
dence based on generalized forces computed from
the stereo images. The automatic prediction of
possible edge occlusion and disocclusion is per-
formed using an extended Kalman filter. To cope
with possible occlusion caused by a previously
undetected object, we monitor the magnitude
and direction of the computed image forces ex-
erted on the models. Abrupt changes to these
forces trigger scene re-segmentation and model
re-initialization through the qualitative shape
segmentation system. Tracking is subsequently
continued using only local image forces. We
demonstrate our technique in experiments involv-
ing image sequences from complex motions of 3D
objects.

Introduction

Research in 3D model-based object tracking from im-
age sequences 1s typified by approaches which at-
tempt to recover the six degrees of freedom of an ob-
ject in each frame, e.g., (Thompson & Mundy 1988;
Verghese, Gale, & Dyer 1990; Lowe 1991; Gennery
1992).  Once correspondences between image and
model features are determined, changes in the posi-
tions of image features in successive frames are used to
update the pose of the object. Although these tech-
niques provide accurate pose of the object at each
frame, they require an exact geometric specification
of the object; they do not allow models to deform as
they move. Recently, to cope with the challenges of
nonrigidity, several researchers have adopted a physics-
based approach to estimate the shapes and motions of
nonrigid 3D objects from visual data to different lev-
els of accuracy (Terzopoulos, Witkin, & Kass 1988;
Huang 1990; Pentland & Horowitz 1991; Metaxas &

Terzopoulos 1993). The 2D problem has received
similar attention (Kass, Witkin, & Terzopoulos 1988;
Duncan, Owen, & Anandan 1991; Szeliski & Terzopou-
los 1991; Blake, Curwen, & Zisserman 1993).

In this paper, we develop a new approach to tracking
shapes and motions of objects in 3D from 2D 1image se-
quences. Our method makes use of both the framework
of qualitative shape segmentation (Dickinson, Pent-
land, & Rosenfeld 1992b; 1992a) and the physics-based
framework for quantitative shape and motion estima-
tion (Terzopoulos & Metaxas 1991; Metaxas & Ter-
zopoulos 1993). To be able to track multiple objects,
initialization of the models is performed in the first
frame of the sequence based on a shape recovery pro-
cess that uses recovered qualitative shapes ' to con-
strain the fitting of deformable models to the data
(Metaxas & Dickinson 1993). For successive frames,
the qualitative shape recovery process can be avoided
in favor of a physics-based model updating process re-
quiring only a gradient computation in each frame. As-
suming no occlusion and small deformations between
frames, local forces derived from stereo images are suf-
ficient to update the positions, orientations, and shapes
of the models in 3D.

Kalman filtering techniques have been applied in
the vision literature for the estimation of dynamic fea-
tures (Deriche & Faugeras 1990) and rigid motion pa-
rameters (Dickmanns & Graefe 1988; Broida, Chan-
drashekhar, & Chellappa 1990) of objects from image
sequences. We use a Kalman filter for the estima-
tion of the object’s shape and motion, which conse-
quently allows the prediction of possible edge occlu-
sion and disocclusion. The occurrence of these situa-
tions may be due to changes of an object’s aspect from
frame to frame or due to motions of other indepen-
dently moving objects (situations where most tracking
approaches based on feature correspondence may not
work robustly). By predicting the occurrence of these
situations in our approach, we can confidently deter-
mine which part of an object will be occluded and sup-
press their contributions to the net forces applied to

1We assume that objects are constructed from a finite
set of volumetric part classes.



the model. In fact, an advantage of our technique is
that we do not need to perform costly feature corre-
spondence during 3D tracking.

Our approach also allows the detection of object oc-
clusion due to a previously undetected object by moni-
toring changes to the image forces exerted on the mod-
els. In such an ambiguous situation, we invoke the
qualitative shape segmentation module for scene re-
segmentation and model re-initialization. Tracking can
then be continued by using only local images forces.
Our technique 1s robust and can handle scenes with
complex motions and occlusion due to the triggering of
the qualitative shape segmentation system when nec-
essary.

Dynamic Deformable Models

This section reviews the formulation of the deformable
model we adopted for object modeling and the physics-
based framework of visual estimation (see (Metaxas &
Terzopoulos 1993) for greater detail).

Geometry of Deformable Models

The positions of points on the model relative to
an inertial frame of reference @ in space are given
by a vector-valued, time varying function x(u,t) =
(z(u,t), y(u,t), 2(u,t))T, where T denotes transposi-
tion and u are the model’s material coordinates. We
set up a noninertial, model-centered reference frame ¢
and express the position function as x = ¢+ Rp, where
c(t) is the origin of ¢ at the center of the model and
the rotation matrix R(t) gives the orientation of ¢ rel-
ative to ®. Thus, p(u,t) gives the positions of points
on the model relative to the model frame.

We further express p = s + d, as the sum
of a reference shape s(u,f) and a displacement
d(u,?). We define the reference shape as: s =
T(e(u; ag,ai, . ..); bo,b1,...). Here, a geometric prim-
itive e, defined parametrically in u and parameterized
by the variables a;(t), is subjected to the global de-
formation T which depends on the parameters b;(¢).
Although generally nonlinear; e and T are assumed to
be differentiable (so that we may compute the Jacobian
of s) and T may be a composite sequence of primitive
deformation functions T(e) = T1(Ta(...Tp(e))). We
concatenate the global deformation parameters into
the vector q; = (ao,ay,...,bo,b1,...)7. To illustrate
our approach in this paper, we will use as a reference
shape a deformable superquadric ellipsoid that can also
undergo parameterized tapering deformations, as de-
fined in (Metaxas & Terzopoulos 1993).

Model Kinematics and Dynamics

The velocity of a 3D point on the model is given by
= 1Lq, (1)

where L 1s the Jacobian matrix that converts g¢-

dimensional vectors to 3D vectors (Metaxas & Ter-
zopoulos 1993). The vector q(t) represents the general-

ized coordinates of the model consisting of the transla-
tion, rotation, global and local deformations. To make
the model dynamic, we assume that 1t is made of a sim-
ulated elastic material that has certain mass distribu-
tion. From Lagrangian mechanics, we obtain second-
order equations of motion which take the form (see
(Terzopoulos & Metaxas 1991) for derivations):

Mg+ Dq+Kq=g, +1,, fq:/Ldeu, (2)

where f; are generalized external forces associated with
the components of q, and f(u,?) is the image force
distribution applied to the model. Here M is the mass
matrix, D is the damping matrix, K is the stiffness
matrix and g, is the vector of the generalized coriolis
and centrifugal forces.

Multiple Object Tracking

This section describes our new approach for track-
ing multiple objects in the presence of occlusion. Tt
is based on the intelligent use of a qualitative shape
segmentation system (Metaxas & Dickinson 1993) and
techniques for quantitative shape and motion estima-
tion (Metaxas & Terzopoulos 1993). The deformable
models are first initialized based on the qualitative seg-
mentation system. Objects are subsequently tracked
using a physics-based approach by applying image
forces simultaneously derived from the stereo images.
We can handle partial edge occlusion and disocclu-
sion due to the object’s own motion or occlusion by
another object by predicting their occurrences using
an extended Kalman filter. We handle more complex
cases of object occlusion due to a previously undetected
object by monitoring changes to the image forces ex-
erted on the models. These changes trigger the use
of the qualitative shape segmentation system for scene
re-segmentation and model re-initialization, and track-
ing is subsequently continued using local image forces
only.

Qualitative Shape Recovery and Model
Initialization

We employ the methodology developed in (Metaxas
& Dickinson 1993) to initialize our deformable mod-
els. We start by assuming that objects are constructed
from a finite set of volumetric part classes (Dickinson,
Pentland, & Rosenfeld 1992b; 1992a). The parts, in
turn, are mapped to a set of viewer-centered aspects.
During the qualitative shape recovery process, the sys-
tem first segments the image into parts using an aspect
matching paradigm. Each recovered qualitative part
defines: 1) the relevant non-occluded contour data be-
longing to the part, 2) a mapping between the image
faces in their projected aspects and the 3D surfaces
on the quantitative models, and 3) a qualitative ori-
entation that is exploited during model fitting. Based
on these constraints, we assign forces from monocu-
lar image data points to the corresponding points on



the 3D model. The model is then fitted dynamically
to the image data under the influence of the image
forces. In the following sections, we will discuss how
we handle sequences of stereo images taken under non-
parallel geometry without requiring the continuous use
of qualitative constraints.

Short Range Forces from Image Potentials

For each frame in the image sequence, we create an im-
age potential such that the “valleys” of this potential
correspond to the locations in the image where there
are sharp changes in intensity or edge features. If we
denote the intensity image by I(z, y), the image poten-
tial can be computed as follows (Terzopoulos, Witkin,

& Kass 1988):
Wz, y) = =B[V(Gs * I)(z,y)] (3)

where ¢ determines the width of the Gaussian function
(G, * denotes the convolution operation, and 3 deter-
mines the “steepness” of the potential surface. The
corresponding 2D force field induced by this potential
is given by:

f(z,y) = —VI(z,y). (4)
The model’s degrees of freedom respond to the 2D
force field through a process which first projects the
model’s nodes into the image. As the projected nodes
are attracted to the valleys of the potential surface, the
model’s degrees of freedom are updated to reflect this
motion. The mapping of 2D image forces to general-
ized forces acting on the model requires the derivation
a Jacobian matrix.

Jacobian Computation for Perspective
Projection

Let x = (z,y,2)7 denotes the location of a point j
with respect to the world coordinate frame. Then we
can write

X =c.+ chca (5)
where ¢. and R. are respectively the translation and
rotation of the camera frame with respect to the world
coordinate frame, and x. = (z., y., z.)7 is the position
of the point j with respect to the camera coordinate
frame.

Under perspective projection, the point x. projects
into an image point x, = (zp,z,)7 based on the for-
mulas: . "

xp—ch, yp—zc ) (6)
where f is the focal length of the camera.

By taking the derivative of (6) with respect to time,
we arrive at the following matrix equation:

b\ _[ /e 0 i ] te
(i) =170 o S0 ( )0
Based on (5) and (1) we get
x. = R7'x = R;'Lq. (8)

Rewriting (7) in compact form using (8), we get

flze 0 —wz /Zif
0 f/zc _yc/zczf

By replacing the Jacobian matrix in (2) by L,, two
dimensional forces f derived from image data can be
appropriately converted into generalized forces f; mea-
sured in the world coordinate frame.

X, = R;'Lg=1L,q. (9)

Forces from Stereo Images

By computing generalized forces in the world coordi-
nate frame, the 2D image forces in a pair of stereo
images can be simultaneously transformed into gener-
alized forces f; measured in a common world coordi-
nate frame. Measurements from two different views are
sufficient to determine the scale and depth parameters
of the model. If we define as active nodes those model
nodes on which image forces are exerted, then the gen-
eralized forces are computed by summing the image
forces exerted on all the active nodes of the discretized
model. More precisely, if we denote the position of
the jth active node on the model surface by x;, then
the generalized force on the model can be computed as
follows:

f, = > LT (f.(P(R(x; — c.,)))
JEAL
+ 30 LT (fR(P(R(x) — c.p)))), (10)
JEAR

where A is the set of indices of active nodes. Here
the subscripts L and R denote dependence on the left
and right images respectively and P(z,y,2) = (£ f, £ f)
describes the perspective projection equation.

Determining Active Model Nodes

When our measurements are 2D images, as opposed to
3D range data, only a subset of the nodes on the model
surface are selected to respond to forces. From a given
viewpoint, we can compute this active subset of model
nodes based on the model’s shape and orientation. In
particular, a model node is made active if at least one
of the following conditions is true:

1. it lies on the occluding contour of the model from
that viewpoint, 2

2. the local surface curvature at the node is sufficiently
large and the node is visible.

(Note that it is possible that a model node is active
with respect to one view, but not to another.). Instead
of calculating analytically the positions of the active
nodes on the model surface, we “loop” over all the
nodes on the discretized model surface and check if
one of the above two conditions is true. Condition 1
is true if: |i; - ;| < 7, where n; is the unit normal
at the jth model node, i; is the unit vector from the

%See also (Terzopoulos, Witkin, & Kass 1988).



focal point to that node on the model, and 7 is a small
threshold. Condition 2 is true if

dk e K; st. ng -nj| >k & Ik € Kj st.ng -1 <0,

(1)
where Kj; is a set of indices of the nodes adjacent to
the jth nodes on the model surface. « in (11) is a
threshold to determine if the angle between adjacent
normal vectors 1s sufficiently large.

Tracking and Prediction

We incorporate into our dynamic deformable model
formulation a Kalman filter by treating their differen-
tial equations of motion (2) as system models. Based
on the use of the corresponding extended Kalman filter,
we perform tracking by updating the model’s general-
ized coordinates q according to the following equation

u=Fu+g+PH'V I (z—h(w), (12)

where u = (¢, q%)?T and matrices F,H,g, P,V are
assoclated with the model dynamics, the error in
the given data and the measurement noise statistics
(Metaxas & Terzopoulos 1993). Since we are measur-
ing local short range forces directly from the image
potential we create, the term z — h(u) represents the
2D image forces. Using the above Kalman filter, we
can predict at every step the expected location of the
data in the next image frame, based on the magnitude
of the estimated parameter derivatives q.

Self Occlusion and Disocclusion

As an object rotates in space, or as the viewpoint of
the observer changes substantially, certain faces of the
object will become occluded or disoccluded by itself (a
visual event). Hence, the corresponding line segment
or edge feature in the image will appear or disappear
over time. By using the Kalman filter to predict the
position and orientation of the model in the next time
frame, we can quantitatively predict the occurrence of
a visual event. In other words, we can determine by
using our active node determination approach, which
subset of the model nodes will be active in the next
image frame, and suppress their contributions to the
net forces applied to the model. For stereo images, this
prediction can be performed independently to the left
and right images. In this case, two sets of active model
nodes are maintained at any particular moment.

Tracking Multiple Objects with Occlusion

Our framework for tracking objects based on image
potentials can be easily extended to deal with multiple
independently moving objects and multi-part objects.
The complication here is that object parts may occlude
one another in different ways. By tracking objects in
3D using stereo images, we can predict the 3D positions
of the nodes on each model based on the current esti-
mates of their respective model parameters and their
rate of change. Active nodes on each model will be

made “inactive” if they are predicted to be occluded
by surfaces of other models. This visibility checking is
performed for each node on a model and against every
surface of the other models in the scene. In practice,
much of this checking can be avoided based on approx-
imate estimates of each object’s size and 3D location.
We demonstrate in the experiments section that we are
able to track all the objects in a scene even when some
object parts become partially occluded.

There are also two more cases of object occlusion in
case of multiple independently moving objects. The
first case occurs when another moving object that was
not previously present in the scene occludes the object
being tracked. The second is due to an error from the
qualitative segmentation system which did not detect
an object during the model initialization step. Our sys-
tem can handle both situations by monitoring the local
forces exerted on the model. If no force or forces of
unusual magnitude and direction are exerted on some
of the predicted active nodes of the currently tracked
model, the event signals the possibility that we have
lost track of the object. In such a situation, we apply
the qualitative segmentation system to resolve the am-
biguity. After proper re-initialization of our models,
we continue tracking using local image forces based on
our physics-based technique.

Experiments

We demonstrate our approach in a series of tracking
experiments involving real stereo image sequences. All
images are 256x256 pixels and all the examples run
at interactive rates on a SGI R4000 Crimson worksta-
tion, including real-time 3D graphics. In the first ex-
periment, we consider a sequence of stereo images (16
frames) of two independently moving objects. The ob-
jects move towards each other along 2 different paths
which are approximately linear and the paths’ relative
angle is about 20 degrees. The baseline of the two
cameras is 100mm, they are both at a declination an-
gle of 30 degrees from the horizon, and their relative
rotation is 8 degrees. Fig. 1(a) shows the first pair of
stereo images. The initial pose and shape of the objects
are recovered using techniques mentioned before and
they are subsequently tracked based on image forces
only. Figs. 1(b-g) show snapshots of the two objects
being tracked with the wire-frame models overlaid on
the image potential. They demonstrate that our tech-
nique is able to continue the tracking even when one of
the blocks becomes partially occluded and then disoc-
cluded. Note that those active model nodes which are
temporarily occluded are automatically identified and
made inactive. Figs. 2(a-d) show the relative positions
of the recovered models at four different instants.

In the second experiment, we consider a sequence of
stereo images (24 frames) of a scene containing multi-
ple objects, including a two-part object. Fig. 3 shows
the initial stereo images of the multi-object scene. The
baseline of the stereo cameras is 150 mm, the cameras
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Figure 1: Tracking two independently moving blocks in a sequence of stereo images: (a) initialized models, (b) coming of
a new frame, (c) beginning of the occlusion, (d) taller block partially occluded, (e) taller block becomes disoccluded, (f) no
more occlusion. Note that only the active model nodes are marked, while the occluded ones are not.
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Figure 2: Recovered models of the two moving blocks in 3D
over time from a top view (with the stereo arrangement).

Figure 3: Initial stereo images of the multi-object scene.

are at a declination angle of 30 degrees from the hori-
zon, and their relative rotation is 12 degrees. The cam-
eras are rotated around the scene at a constant rate.
Fig. 4(a) shows the initialized models using the same
technique as before. Fig. 4(b) shows image potentials
at an intermediate time frame where the aspects of
some parts have changed and some parts have become
partially occluded. Figs. 4(c-f) show that each object
is still successfully tracked under these circumstances
with the individual part models overlaid on the image
potentials in Fig. 4(b).

In the last experiment we demonstrate the applica-

bility of our technique in case of object occlusion by
another undetected object. We use the same sequence
of stereo images as in the first experiment where there
are two independently moving blocks, but we do not
assume prior detection of one of the blocks this time.
Fig. 5 shows the instant at which some of the image
forces exerted on the active model nodes of the moving
block exceed a threshold. It then triggers the qualita-
tive segmentation system to resegment the scene and
correctly group edges belonging to each of the blocks.
After the models are reinitialized, tracking continues
as before.

Conclusion

We have presented a new integrated approach to ob-
ject tracking in 3D from 2D stereo image sequences.
After initializing our deformable models based on a
part-based qualitative segmentation system, we subse-
quently track the objects using our physics-based ap-
proach. We further used a Kalman filter for estimating
the object’s shape and motion which allowed the pre-
diction of possible visual events; thus we were able to
determine where on the model, image forces can be
exerted. We also demonstrated that our approach can
deal with object occlusion from other independently
moving objects by predicting each object’s motion in
the scene. Occlusion due to previously unidentified
objects can also be detected by monitoring changes
to the image forces exerted on the models. Based on
these changes, the qualitative shape segmentation sys-
tem is invoked for scene re-segmentation and model re-
initialization. We are currently extending our system
to handle objects composed of more complex primitives
than the ones we have assumed.



Figure 4: Tracking multiple objects in a sequence of stereo images (a) initialized models, (b) image potentials of an inter-
mediate frame (both occlusions and visual events have occurred) (c-f) each object part correctly tracked with part models
overlaid on the image potentials in (b). Note that only the active model nodes are marked, while the occluded ones are not.

Figure 5: Unpredicted object occlusion: no knowledge of
the 2nd block is assumed. It is detected by monitoring the
forces exerted on the active nodes of the displayed model.
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