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Abstract

We present a system that produces sentential
descriptions of video: who did what to whom,
and where and how they did it. Action class
is rendered as a verb, participant objects as
noun phrases, properties of those objects as
adjectival modifiers in those noun phrases,
spatial relations between those participants
as prepositional phrases, and characteristics
of the event as prepositional-phrase adjuncts
and adverbial modifiers. Extracting the in-
formation needed to render these linguistic
entities requires an approach to event recog-
nition that recovers object tracks, the track-
to-role assignments, and changing body pos-
ture.

1 INTRODUCTION

We present a system that produces sentential descrip-
tions of short video clips. These sentences describe
who did what to whom, and where and how they did
it. This system not only describes the observed action
as a verb, it also describes the participant objects as
noun phrases, properties of those objects as adjectival
modifiers in those noun phrases, the spatial relations
between those participants as prepositional phrases,
and characteristics of the event as prepositional-phrase
adjuncts and adverbial modifiers. It incorporates a
vocabulary of 118 words: 1 coordination, 48 verbs,
24 nouns, 20 adjectives, 8 prepositions, 4 lexical prepo-
sitional phrases, 4 determiners, 3 particles, 3 pronouns,
2 adverbs, and 1 auxiliary, as illustrated in Table 1.

*Corresponding author. Email: andrei@0Oxab.com.

Additional images and videos as well as all code and
datasets are available at
http://engineering.purdue.edu/~qobi/uai2012.

coordination: and

verbs: approached, arrived, attached, bounced, buried,
carried, caught, chased, closed, collided, digging,
dropped, entered, exchanged, exited, fell, fled,
flew, followed, gave, got, had, handed, hauled,
held, hit, jumped, kicked, left, lifted, moved,
opened, passed, picked, pushed, put, raised, ran,
received, replaced, snatched, stopped, threw, took,
touched, turned, walked, went

bag, ball, bench, bicycle, box, cage, car, cart, chair,
dog, door, ladder, left, mailbox, microwave,
motorcycle, object, person, right, skateboard, SUV,
table, tripod, truck

big, black, blue, cardboard, crouched, green, narrow,
other, pink, prone, red, short, small, tall, teal, toy,
upright, white, wide, yellow

prepositions: above, because, below, from, of, over, to, with
lexical PPs: downward, leftward, rightward, upward
determiners: an, some, that, the

nouns:

adjectives:

particles: away, down, up

pronouns: itself, something, themselves
adverbs: quickly, slowly

auxiliary: was

Table 1: The vocabulary used to generate sentential
descriptions of video.

Production of sentential descriptions requires recog-
nizing the primary action being performed, because
such actions are rendered as verbs and verbs serve as
the central scaffolding for sentences. However, event
recognition alone is insufficient to generate the remain-
ing sentential components. One must recognize ob-
ject classes in order to render nouns. But even object
recognition alone is insufficient to generate meaning-
ful sentences. One must determine the roles that such
objects play in the event. The agent, i.e. the doer
of the action, is typically rendered as the sentential
subject while the patient, i.e. the affected object, is
typically rendered as the direct object. Detected ob-
jects that do not play a role in the observed event,
no matter how prominent, should not be incorporated
into the description. This means that one cannot use
common approaches to event recognition, such as spa-
tiotemporal bags of words [Laptev et al., 2007, Niebles
et al., 2008, Scovanner et al., 2007], spatiotemporal
volumes [Blank et al., 2005, Laptev et al., 2008, Ro-



driguez et al., 2008], and tracked feature points [Liu
et al., 2009, Schuldt et al., 2004, Wang and Mori, 2009)
that do not determine the class of participant objects
and the roles that they play. Even combining such
approaches with an object detector would likely de-
tect objects that don’t participate in the event and
wouldn’t be able to determine the roles that any de-
tected objects play.

Producing elaborate sentential descriptions requires
more than just event recognition and object detec-
tion. Generating a noun phrase with an embedded
prepositional phrase, such as the person to the left of
the bicycle, requires determining spatial relations be-
tween detected objects, as well as knowing which of
the two detected objects plays a role in the overall
event and which serves just to aid generation of a refer-
ring expression to help identify the event participant.
Generating a noun phrase with adjectival modifiers,
such as the red ball, not only requires determining the
properties, such as color, shape, and size, of the ob-
served objects, but also requires determining whether
such descriptions are necessary to help disambiguate
the referent of a noun phrase. It would be awkward to
generate a noun phrase such as the big tall wide red toy
cardboard trash can when the trash can would suffice.
Moreover, one must track the participants to deter-
mine the speed and direction of their motion to gener-
ate adverbs such as slowly and prepositional phrases
such as leftward. Further, one must track the identity
of multiple instances of the same object class to appro-
priately generate the distinction between Some person
hit some other person and The person hit themselves.

A common assumption in Linguistics [Jackendoff,
1983, Pinker, 1989] is that verbs typically characterize
the interaction between event participants in terms of
the gross changing motion of these participants. Ob-
ject class and image characteristics of the participants
are believed to be largely irrelevant to determining the
appropriate verb label for an action class. Participants
simply fill roles in the spatiotemporal structure of the
action class described by a verb. For example, an event
where one participant (the agent) picks up another
participant (the patient) consists of a sequence of two
sub-events, where during the first sub-event the agent
moves towards the patient while the patient is at rest
and during the second sub-event the agent moves to-
gether with the patient away from the original location
of the patient. While determining whether the agent
is a person or a cat, and whether the patient is a ball
or a cup, is necessary to generate the noun phrases
incorporated into the sentential description, such in-
formation is largely irrelevant to determining the verb
describing the action. Similarly, while determining the
shapes, sizes, colors, textures, etc. of the participants

is necessary to generate adjectival modifiers, such in-
formation is also largely irrelevant to determining the
verb. Common approaches to event recognition, such
as spatiotemporal bags of words, spatiotemporal vol-
umes, and tracked feature points, often achieve high
accuracy because of correlation with image or video
properties exhibited by a particular corpus. These are
often artefactual, not defining properties of the verb
meaning (e.g. recognizing diving by correlation with
blue since it ‘happens in a pool’ [Liu et al., 2009, p.
2002] or confusing basketball and wolleyball ‘because
most of the time the [. . .] sports use very similar courts’
[Ikizler-Cinibis and Sclaroff, 2010, p. 506]).

2 THE MIND’S EYE CORPUS

Many existing video corpora used to evaluate event
recognition are ill-suited for evaluating sentential
descriptions. For example, the WEIZMANN dataset
[Blank et al., 2005] and the KTH dataset [Schuldt
et al., 2004] depict events with a single human
participant, not ones where people interact with other
people or objects. For these datasets, the sentential
descriptions would contain no information other than
the verb, e.g. The person jumped. Moreover, such
datasets, as well as the SPORTS ACTIONS dataset
[Rodriguez et al., 2008] and the YOUTUBE dataset
[Liu et al., 2009], often make action-class distinctions
that are irrelevant to the choice of verb, e.g. wavel
vS. wave2, jump vVvs. pjump, Golf-Swing-Back
vs.  Golf-Swing-Front vs. Golf-Swing-Side,
Kicking-Front vs. Kicking-Side, Swing-Bench vs.
Swing-SideAngle, and golf_swing vs. tennis_swing
vs. swing Other datasets, such as the BALLET dataset
[Wang and Mori, 2009] and the UCF50 dataset [Liu
et al., 2009], depict larger-scale activities that bear
activity-class names that are not well suited to
sentential description, e.g. Basketball, Billiards,
BreastStroke, CleanAndJerk, HorseRace, HulaHoop,
MilitaryParade, TaiChi, and YoYo.

The year-one (Y1) corpus produced by DARPA for
the Mind’s Eye program, however, was specifically de-
signed to evaluate sentential description. This corpus
contains two parts: the development corpus, C-DI,
which we use solely for training, and the evaluation
corpus, C-E1, which we use solely for testing. FEach
of the above is further divided into four sections to
support the four task goals of the Mind’s Eye pro-
gram, namely recognition, description, gap filling, and
anomaly detection. In this paper, we use only the
recognition and description portions and apply our en-
tire sentential-description pipeline to the combination
of these portions. While portions of C-E1 overlap with
C-D1, in this paper we train our methods solely
on C-D1 and test our methods solely on the



portion of C-E1 that does not overlap with C-
Di1.

Moreover, a portion of the corpus was synthetically
generated by a variety of means: computer graph-
ics driven by motion capture, pasting foregrounds
extracted from green screening onto different back-
grounds, and intensity variation introduced by post-
processing. In this paper, we exclude all such
synthetic video from our test corpus. Our train-
ing set contains 3480 videos and our test set 749 videos.
These videos are provided at 720p@30fps and range
from 42 to 1727 frames in length, with an average of
435 frames.

The videos nominally depict 48 distinct verbs as listed
in Table 1. However, the mapping from videos to verbs
is not one-to-one. Due to polysemy, a verb may de-
scribe more than one action class, e.g. leaving an object
on the table vs. leaving the scene. Due to synonymy,
an action class may be described by more than one
verb, e.g. lift vs. raise. An event described by one
verb may contain a component action described by a
different verb, e.g. picking up an object vs. touching an
object. Many of the events are described by the com-
bination of a verb with other constituents, e.g. have
a conversation vs. have a heart attack. And many of
the videos depict metaphoric extensions of verbs, e.g.
take a puff on a cigarette. Because the mapping from
videos to verbs is subjective, the corpus comes labeled
with DARPA-collected human judgments in the form
of a single present/absent label associated with each
video paired with each of the 48 verbs, gathered us-
ing Amazon Mechanical Turk. We use these labels for
both training and testing as described later.

3 OVERALL SYSTEM
ARCHITECTURE

The overall architecture of our system is depicted in
Fig. 1. We first apply detectors [Felzenszwalb et al.,
2010a,b] for each object class on each frame of each
video. These detectors are biased to yield many false
positives but few false negatives. The Kanade-Lucas-
Tomasi (KLT) [Shi and Tomasi, 1994, Tomasi and
Kanade, 1991] feature tracker is then used to project
each detection five frames forward to augment the
set of detections and further compensate for false
negatives in the raw detector output. A dynamic-
programming algorithm [Viterbi, 1971] is then used
to select an optimal set of detections that is tempo-
rally coherent with optical flow, yielding a set of object
tracks for each video. These tracks are then smoothed
and used to compute a time-series of feature vectors
for each video to describe the relative and absolute
motion of event participants. The person detections
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Figure 1: The overall architecture of our system for
producing sentential descriptions of video.

are then clustered based on part displacements to de-
rive a coarse measure of human body posture in the
form of a body-posture codebook. The codebook in-
dices of person detections are then added to the feature
vector. Hidden Markov Models (HMMs) are then em-
ployed as time-series classifiers to yield verb labels for
each video [Siskind and Morris, 1996, Starner et al.,
1998, Wang and Mori, 2009, Xu et al., 2002, 2005],
together with the object tracks of the participants in
the action described by that verb along with the roles
they play. These tracks are then processed to pro-
duce nouns from object classes, adjectives from ob-
ject properties, prepositional phrases from spatial re-
lations, and adverbs and prepositional-phrase adjuncts
from track properties. Together with the verbs, these
are then woven into grammatical sentences. We de-
scribe each of the components of this system in de-
tail below: the object detector and tracker in Sec-
tion 3.1, the body-posture clustering and codebook in
Section 3.2, the event classifier in Section 3.3, and the
sentential-description component in Section 3.4.

3.1 OBJECT DETECTION AND
TRACKING

We employ detection-based tracking as described in
Section 2 of a parallel submission (id: 568) In
detection-based tracking an object detector is applied
to each frame of a video to yield a set of candidate de-
tections which are composed into tracks by selecting a



single candidate detection from each frame that max-
imizes temporal coherency of the track. Felzenszwalb
et al. detectors are used for this purpose. Detection-
based tracking requires biasing the detector to have
high recall at the expense of low precision to allow
the tracker to select boxes to yield a temporally co-
herent track. This is done by depressing the accep-
tance thresholds. To prevent massive over-generation
of false positives, which would severely impact run
time, we limit the number of detections produced per-
frame to 12.

Two practical issues arise when depressing acceptance
thresholds. First, it is necessary to reduce the degree of
non-maximal suppression incorporated in the Felzen-
szwalb et al. detectors. Second, with the star detector
[Felzenszwalb et al., 2010b], one can simply decrease
the single trained acceptance threshold to yield more
detections with no increase in computational complex-
ity. However, we prefer to use the star cascade detec-
tor [Felzenszwalb et al., 2010a] as it is far faster. With
the star cascade detector, though, one must also de-
crease the trained root- and part-filter thresholds to
get more detections. Doing so, however, defeats the
computational advantage of the cascade and signifi-
cantly increases detection time. We thus train a model
for the star detector using the standard procedure on
human-annotated training data, sample the top detec-
tions produced by this model with a decreased accep-
tance threshold, and train a model for the star cascade
detector on these samples. This yields a model that
is almost as fast as one trained by the star cascade
detector on the original training samples but with the
desired bias in acceptance threshold.

The Y1 corpus contains approximately 70 different ob-
ject classes that play a role in the depicted events.
Many of these, however, cannot be reliably detected
with the Felzenszwalb et al. detectors that we use. We
trained models for 25 object classes that can be reli-
ably detected, as listed in Table 2. These object classes
account for over 90% of the event participants. Person
models were trained with approximately 2000 human-
annotated positive samples from C-D1 while nonper-
son models were trained with approximately 1000 such
samples. For each positive training sample, two neg-
ative training samples were randomly generated from
the same frame constrained to not overlap substan-
tially with the positive samples. We trained three dis-
tinct person models to account for body-posture vari-
ation and pool these when constructing person tracks.
The detection scores were normalized for such pooled
detections by a per-model offset computed as follows:
A (50 bin) histogram was computed of the scores of the
top detection in each frame of a video. The offset is
then taken to be the minimum of the value that max-

imizes the between-class variance [Otsu, 1979] when
bipartitioning this histogram and the trained accep-
tance threshold offset by a fixed, but small, amount
(0.4).

We employed detection-based tracking for all 25 ob-
ject models on all 749 videos in our test set. To prune
the large number of tracks thus produced, we discard
all tracks corresponding to certain object models on
a per-video basis: those that exhibit high detection-
score variance over the frames in that video as well
as those whose detection-score distributions are nei-
ther unimodal nor bimodal. The parameters govern-
ing such pruning were determined solely on the train-
ing set. The tracks that remain after this pruning still
account for over 90% of the event participants.

3.2 BODY-POSTURE CODEBOOK

We recognize events using a combination of the mo-
tion of the event participants and the changing body
posture of the human participants. Body-posture in-
formation is derived using the part structure produced
as a by-product of the Felzenszwalb et al. detectors.
While such information is far noisier and less accu-
rate than fitting precise articulated models [Andriluka
et al., 2008, Bregler, 1997, Gavrila and Davis, 1995,
Sigal et al., 2010, Yang and Ramanan, 2011] and ap-
pears unintelligible to the human eye, as shown in Sec-
tion 3.3, it suffices to improve event-recognition accu-
racy. Such information can be extracted from a large
unannotated corpus far more robustly than possible
with precise articulated models.

Body-posture information is derived from part struc-
ture in two ways. First, we compute a vector of part
displacements, each displacement as a vector from the
detection center to the part center, normalizing these
vectors to unit detection-box area. The time-series
of feature vectors is augmented to include these part
displacements and a finite-difference approximation of
their temporal derivatives as continuous features for
person detections. Second, we vector-quantize the
part-displacement vector and include the codebook in-
dex as a discrete feature for person detections. Such
pose features are included in the time-series on a per-
frame basis. The codebook is trained by running each
pose-specific person detector on the positive human-
annotated samples used to train that detector and
extract the resulting part-displacement vectors. We
then pool the part-displacement vectors from the three
pose-specific person models and employ hierarchical k-
means clustering using Euclidean distance to derive a
codebook of 49 clusters. Fig. 2 shows sample clus-
ters from our codebook. Codebook indices are derived
using Euclidean distance from the means of these clus-
ters.



door+>door
ladder+ladder

car—car
cardboard-box— box

bag—bag
bench— bench

suvi—SUV
table—table

person>person
person-crouch—person

(a) bicycle—bicycle cart—cart mailbox—mailbox person-down— person toy-truck— truck
big-ball—ball chair—chair microwaver— microwave skateboard—skateboard tripod— tripod
cager cage dog—dog motorcycle—motorcycle small-ball—ball truck— truck
(b) cardboard-box+—cardboard person—upright person-crouch— crouched person-down—prone toy-truck—toy

(C) big-ball—=big small-ball—small

Table 2: Trained models for object classes and their mappings to (a) nouns, (b) restrictive adjectives, and (c) size
adjectives.

Figure 2: Sample clusters from our body-posture codebook.

3.3 EVENT CLASSIFICATION

Our tracker produces one or more tracks per object
class for each video. We convert such tracks into a
time-series of feature vectors. For each video, one
track is taken to designate the agent and another track
(if present) is taken to designate the patient. During
training, we manually specify the track-to-role map-
ping. During testing, we automatically determine the
track-to-role mapping by examining all possible such
mappings and selecting the one with the highest like-
lihood [Siskind and Morris, 1996].

The feature vector encodes both the motion of the
event participants and the changing body posture of
the human participants. For each event participant
in isolation we incorporate the following single-track
features:

1. x and y coordinates of the detection-box center

2. detection-box aspect ratio and its temporal
derivative

3. magnitude and direction of the velocity of the
detection-box center

4. magnitude and direction of the acceleration of the
detection-box center

5. normalized part displacements and their temporal
derivatives

6. object class (the object detector yielding the de-
tection)

7. root-filter index

8. body-posture codebook index

The last three features are discrete; the remainder are
continuous. For each pair of event participants we in-
corporate the following track-pair features:

1. distance between the agent and patient detection-

box centers and its temporal derivative
2. orientation of the vector from agent detection-box
center to patient detection-box center

Our HMMs assume independent output distributions
for each feature. Discrete features are modeled with
discrete output distributions. Continuous features de-
noting linear quantities are modeled with univariate
Gaussian output distributions, while those denoting
angular quantities are modeled with von Mises output
distributions.

For each of the 48 action classes, we train two HMMs
on two different sets of time-series of feature vectors,
one containing only single-track features for a single
participant and the other containing single-track fea-
tures for two participants along with the track-pair
features. A training set of between 16 and 200 videos
was selected manually from C-D1 for each of these 96
HMDMs as positive examples depicting each of the 48
action classes. A given video could potentially be in-
cluded in the training sets for both the one-track and
two-track HMMs for the same action class and even
for HMMSs for different action classes, if the video was
deemed to depict both action classes.

During testing, we generate present/absent judgments
for each video in the test set paired with each of the
48 action classes. We do this by thresholding the like-
lihoods produced by the HMMs. By varying these
thresholds, we can produce an ROC curve for each ac-
tion class, comparing the resulting machine-generated
present/absent judgments with the Amazon Mechani-
cal Turk judgments. When doing so, we test videos for
which our tracker produces two or more tracks against
only the two-track HMMs while we test ones for which
our tracker produces a single track against only the
one-track HMMs.



We performed three experiments, training 96 different
200-state HMMs for each. Experiment I omitted all
discrete features and all body-posture related features.
Experiment IT omitted only the discrete features. Ex-
periment ITT omitted only the continuous body-posture
related features. ROC curves for each experiment are
shown in Fig. 3. Note that the incorporation of body-
posture information, either in the form of continuous
normalized part displacements or discrete codebook
indices, improves event-recognition accuracy, despite
the fact that the part displacements produced by the
Felzenszwalb et al. detectors are noisy and appear un-
intelligible to the human eye.

3.4 GENERATING SENTENCES

We produce a sentence from a detected action class to-
gether with the associated tracks using the templates
from Table 3. In these templates, words in italics de-
note fixed strings, words in bold indicate the action
class, X and Y denote subject and object noun phrases,
and the categories Adv, PPgyqo, and PPy, denote
adverbs and prepositional-phrase adjuncts to describe
the subject motion. The processes for generating these
noun phrases, adverbs, and prepositional-phrase ad-
juncts are described below. Omne-track HMMs take
that track to be the agent and thus the subject. For
two-track HMMs we choose the mapping from tracks
to roles that yields the higher likelihood and take the
agent track to be the subject and the patient track to
be the object except when the action class is either
approached or fled, the agent is (mostly) stationary,
and the patient moves more than the agent.

Brackets in the templates denote optional entities. Op-
tional entities containing Y are generated only for two-
track HMMs. The criteria for generating optional ad-
verbs and prepositional phrases are described below.
The optional entity for received is generated when
there is a patient track whose category is mailbox,
person, person-crouch, or person-down.

We use adverbs to describe the velocity of the subject.
For some verbs, a velocity adverb would be awkward:

*X slowly had Y *X had slowly Y

Furthermore, stylistic considerations dictate the syn-
tactic position of an optional adverb:
X jumped slowly over Y X slowly jumped over Y

X slowly approached Y X approached slowly Y
7X slowly fell X fell slowly

The verb-phrase templates thus indicate whether an
adverb is allowed, and if so whether it occurs, prefer-
entially, preverbally or postverbally. Adverbs are cho-
sen subject to three thresholds pjction class gaction class
and wvjction class determined empirically on a per-

action-class basis: We select those frames from the

subject track where the magnitude of the velocity of
the box-detection center is above viction class = Ap op-
tional adverb is generated by comparing the magni-
tude of the average velocity v of the subject track
box-detection centers in these frames to the per-action-
class thresholds:

action class

quickly v > v

SZO’LUly ’U%Ctlon class S v S Ugctlon class

We use prepositional-phrase adjuncts to describe the
motion direction of the subject. Again, for some verbs,
such adjuncts would be awkward:

*X had Y leftward *X had Y from the left

Moreover, for some verbs it is natural to describe the
motion direction endogenously, from the perspective
of the subject, while for others it is more natural to
describe the motion direction exogenously, from the
perspective of the viewer:

X fell leftward
X chased Y leftward

*X arrived leftward

X fell from the left

xX chased Y from the
left

X arrived from the left
The verb-phrase templates thus indicate whether an
adjunct is allowed, and if so whether it is preferen-
tially endogenous or exogenous. The choice of adjunct
is determined from the orientation of v, as computed
above and depicted in Fig. 4(a,b). We omit the ad-
junct when v < pjction class,

We generate noun phrases X and Y to refer to event
participants according to the following grammar:

NP — themselves | itself | something | D A* N [PP]
D — the| that | some

When instantiating a sentential template that has a
required object noun-phrase Y for a one-track HMM,
we generate a pronoun. A pronoun is also generated
when the action class is entered or exited and the
patient class is not car, door, suv, or truck. The
anaphor themselves is generated if the action class is
attached or raised, the anaphor itself if the action
class is moved, and something otherwise.

As described below, we generate an optional preposi-
tional phrase for the subject noun phrase to describe
the spatial relation between the subject and the object.
We choose the determiner to handle coreference, gen-
erating the when a noun phrase unambiguously refers
to the agent or the patient due to the combination of
head noun and any adjectives,

The person jumped over the ball.
The red ball collided with the blue ball.

that for an object noun phrase that corefers to a track
referred to in a prepositional phrase for the subject,
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Figure 3: ROC curves for each of the 48 action classes for (a) Experiment I, omitting all discrete and body-
posture-related features, (b) Experiment II, omitting only the discrete features, and (c) Experiment III, omitting

only the continuous body-posture-related features.

X [Adv] approached Y [PPy,]
X arrived [Adv] [PPexo)

X [Adv] attached an object to Y
X bounced [Adv] [PPendo]

X buried Y

X [Adv] carried Y [PPeydo)

X caught Y [PPey)

X [Adv] chased Y [PPendo)

X closed Y

X [Adv] collided with Y [PPexo)
X was digging [with Y]

X dropped Y

X [Adv] entered Y [PPepnao]

X [Adv] exchanged an object with Y
X [Adv] exited Y [PPepdol

X fell [Adv] [because of Y] [PPendo)
X fled [Adv] [from Y] [PPendo)

X flew [Adv] [PPendo]

X [Adv] followed Y [PP o)

X got an object from' Y

X gave an object to Y

X went [Adv] away [PPendo)

X handed Y an object

X [Adv] hauled Y [PPepqo)

X had Y X put Y down
X hit [something with] Y X raised Y
X held Y X received [an object from]Y

X jumped [Adv] [over Y] [PPendo)
X [Adv] kicked Y [PPonao]

X left [Adv] [PPendo)

X [Adv] lifted Y

X [Adv] moved Y [PPendo)

X opened Y

X [Adv] passed Y [PPexo)

X picked Y up

X [Adv] pushed Y [PPenao]

X [Adv] replaced Y

X ran [Adv] [to Y] [PPendo]

X [Adv] snatched an object from Y
X [Adv] stopped [Y]

X [Adv] took an object from Y

X [Adv] threw Y [PPendo)

X touched Y

X turned [PPeydo)

X walked [Adv] [to Y] [PPendo)

Table 3: Sentential templates for the action classes indicated in bold.

The person to the right of the car approached
that car.

Some person to the right of some other person
approached that other person.

and some otherwise:

Some car approached some other car.

We generate the head noun of a noun phrase from the
object class using the mapping in Table 2(a). Four dif-
ferent kinds of adjectives are generated: color, shape,
size, and restrictive modifiers. An optional color ad-
jective is generated based on the average HSV values
in the eroded detection boxes for a track: black when
V < 0.2, white when V' > 0.8, one of red, blue, green,
yellow, teal, or pink based on H, when S > 0.7. An
optional size adjective is generated in two ways, one
from the object class using the mapping in Table 2(c),
the other based on per-object-class image statistics.
For each object class, a mean object size Gobject class 18
determined by averaging the detected-box areas over
all tracks for that object class in the training set used
to train HMMs. An optional size adjective for a track
is generated by comparing the average detected-box
area a for that track to Gobject class:

big
small

a> ﬂobject classaobject class
a S Qobject classdobjcct class

The per-object-class cutoff ratios aobject class and
Bobject class are computed to equally tripartition the
distribution of per-object-class mean object sizes on
the training set. Optional shape adjectives are gener-
ated in a similar fashion. Per-object-class mean aspect
ratios Tobject class are determined in addition to the per-
object-class mean object sizes Gobject class- Optional
shape adjectives for a track are generated by compar-
ing the average detected-box aspect ratio r and area a
for that track to these means:

tall r < 0-7'Fobject class N @ > Bobject class@object class
short r> 1-3'Fobject class N @ < Qigbject classTobject class
narrow 1 < 0.7Tgbject class A & < Qiobject classGobject class
wide r Z 1~3Fobject class \ @ Z 6object Classdobject class

To avoid generating shape and size adjectives for
unstable tracks, they are only generated when the
detection-score variance and the detected aspect-ratio
variance for the track are below specified thresholds.
Optional restrictive modifiers are generated from the
object class using the mapping in Table 2(b). Person-
pose adjectives are generated from aggregate body-
posture information for the track: object class, nor-
malized part displacements, and body-posture code-
book indices. We generate all applicable adjectives ex-
cept for color and person pose. Following the Gricean
Maxim of Quantity [Grice, 1975], we only generate
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Figure 4: (a) Endogenous and (b) exogenous prepositional-phrase adjuncts to describe subject motion direction.
(c) Prepositional phrases incorporated into subject noun phrases describing viewer-relative 2D spatial relations

between the subject X and the reference object Y.

color and person-pose adjectives if needed to prevent
coreference of nonhuman event participants. Finally,
we generate an initial adjective other, as needed to
prevent coreference. Generating other does not allow
generation of the determiner the in place of that or
some. We order any adjectives generated so that other
comes first, followed by size, shape, color, and restric-
tive modifiers, in that order.

For two-track HMMs where neither participant moves,
a prepositional phrase is generated for subject noun
phrases to describe the static 2D spatial relation be-
tween the subject X and the reference object Y from
the perspective of the viewer, as shown in Fig. 4(c).

4 EXPERIMENTAL RESULTS

We used the HMMs generated for Experiment III to
compute likelihoods for each video in our test set
paired with each of the 48 action classes. For each
video, we generated sentences corresponding to the
three most-likely action classes. Fig. 5 shows key
frames from four videos in our test set along with
the sentence generated for the most-likely action class.
Human judges rated each video-sentence pair to as-
sess whether the sentence was true of the video and
whether it described a salient event depicted in that
video. 26.7% (601/2247) of the video-sentence pairs
were deemed to be true and 7.9% (178/2247) of the
video-sentence pairs were deemed to be salient. When
restricting consideration to only the sentence corre-
sponding to the single most-likely action class for each
video, 25.5% (191/749) of the video-sentence pairs
were deemed to be true and 8.4% (63/749) of the
video-sentence pairs were deemed to be salient. Fi-
nally, for 49.4% (370/749) of the videos at least one
of the three generated sentences was deemed true and
for 18.4% (138/749) of the videos at least one of the
three generated sentences was deemed salient.

5 CONCLUSION

Integration of Language and Vision [Aloimonos et al.,
2011, Barzialy et al., 2003, Darrell et al., 2011, McK-

evitt, 1994, 1995-1996] and recognition of action in
video [Blank et al., 2005, Laptev et al., 2008, Liu
et al., 2009, Rodriguez et al., 2008, Schuldt et al.,
2004, Siskind and Morris, 1996, Starner et al., 1998,
Wang and Mori, 2009, Xu et al., 2002, 2005] have
been of considerable interest for a long time. There
has also been work on generating sentential descrip-
tions of static images [Farhadi et al., 2009, Kulkarni
et al., 2011, Yao et al., 2010]. Yet we are unaware of
any prior work that generates as rich sentential video
descriptions as we describe here. Producing such rich
descriptions requires determining event participants,
the mapping of such participants to roles in the event,
and their motion and properties. This is incompatible
with common approaches to event recognition, such
as spatiotemporal bags of words, spatiotemporal vol-
umes, and tracked feature points that cannot deter-
mine such information. The approach presented here
recovers the information needed to generate rich sen-
tential descriptions by using detection-based tracking
and a body-posture codebook. We demonstrated the
efficacy of this approach on a corpus 749 videos.
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