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Abstract—In modern computer vision, the optimal represen-
tation of 3D shape remains task-dependent. One fundamental
operation applied to such representations is differentiable render-
ing, which enables learning-based inverse graphics approaches.
Standard explicit representations are often easily rendered, but
can suffer from limited geometric fidelity, among other issues.
On the other hand, implicit representations generally preserve
greater fidelity, but suffer from difficulties with rendering,
limiting scalability. In this work, we devise Directed Distance
Fields (DDFs), which map a ray or oriented point (position and
direction) to surface visibility and depth. This enables efficient
differentiable rendering, obtaining depth with a single forward
pass per pixel, as well as higher-order geometry with only addi-
tional backward passes. Using probabilistic DDFs (PDDFs), we
can model the inherent discontinuities in the underlying field. We
then apply DDFs to single-shape fitting, generative modelling, and
3D reconstruction, showcasing strong performance with simple
architectural components via the versatility of our representation.
Finally, since the dimensionality of DDFs permits view-dependent
geometric artifacts, we conduct a theoretical investigation of the
constraints necessary for view consistency. We find a small set
of field properties that are sufficient to guarantee a DDF is
consistent, without knowing which shape the field is expressing.

Index Terms—3D shape representations, differentiable render-
ing, implicit shape fields, multiview consistency.

I. INTRODUCTION

HE representation of 3D geometry remains an open prob-

lem, with significant implications across computer vision,
graphics, and artificial intelligence. Generally, the appropriate
representation is application-dependent, determined by the
ease of relevant operations, such as deformation, composition,
learnability, and rendering. The latter operation is particularly
important: since the earliest days of computer vision (e.g., [1],
[2]), extraction of 3D structure by matching 2D observations
has been an essential task. In the modern context, the analysis-
by-synthesis (AbS) approach to representation learning [3],
which treats vision as “inverse graphics”, relies on rendering
to form the bridge between 3D and 2D. For example, at the
single-scene scale, differentiable volume rendering in neural
radiance fields (NeRFs) [4] enables AbS extraction of a 3D
representation that is highly effective for novel view synthesis
(NVS). Similarly, implicit geometric fields, such as occupancy
fields [5] and signed distance fields (SDFs) [6], have been used
in conjunction with differentiable rendering as well (e.g., [7]-
[11]). Finally, more abstract representations, learned through
generative models, have also provided impressive results,
connecting 2D and 3D via rendering [12]-[17].

All authors were with the Samsung AI Centre, Toronto, at the time of this
work. Tristan Aumentado-Armstrong, Sven Dickinson, and Allan Jepson are
also with the Department of Computer Science, University of Toronto.

Figure 1: Basic depiction of a Directed Distance Field (DDF).
Oriented points (or rays) are shown as a position p and
direction v. Each ray is assigned a visibility value: £(p,v) = 1
means it hits the shape, while {(p,v) = 0 means it missed.
For rays with &(p,v) = 1, the distance field, d(p,v), returns
the distance between p and that intersection point (green box).

Nevertheless, it is still not always clear which representation
is best for a given task. Voxels and point clouds tend to
have reduced geometric fidelity, while meshes suffer from
the difficulties inherent in discrete structure generation (e.g.,
[18], [19]), often leading to topological and textural fidelity
constraints, Meshes can also struggle with the dependence
of rendering efficiency on shape complexity, and the ad hoc
“softening” procedures need to enable differentiability (e.g.,
[20], [21]). While implicit shapes can have superior fidelity,
they struggle with complex or inefficient rendering procedures,
requiring multiple network forward passes and/or complex
calculations per pixel [4], [7], [22], and may be difficult
to use for certain tasks (e.g., deformation, segmentation, or
correspondence). Thus, a natural question is how to design
a method capable of fast differentiable rendering, yet still
retaining high-fidelity geometric information that is useful for
a variety of downstream applications. In general, rendering
relies on “directed geometric queries” (DGQs), which ask
whether and where a surface lies on a given ray; our strategy is
to make such queries the basic operation of the representation.

More specifically, in this work, we explore directed distance
fields (DDFs), a neural field representation of shape that uses
only a single forward pass per DGQ. The definition is simple
(see Fig. 1): for a given shape, we learn a 5D field that maps
any position and orientation (i.e., oriented point or ray) to
visibility (i.e., whether the shape exists from that position along
that direction) and distance (i.e., how far the shape is along
that ray, if it is visible). This enables efficient differentiable
geometric rendering, compared to other common implicit
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Figure 2: Two-dimensional spatial slices of a directed distance field (DDF). Left: depiction of visible oriented points (blue
points, turquoise directions) that intersect the shape and those that miss the shape (black points, red directions) with & = 0.
Middle: per row, illustrations of one slice plane (from two different views) and the fixed v vector per slice plane (pink arrows),
corresponding to the insets on the right (i.e., v is the same across all p for each row). Right: resulting depth field evaluated
across positions p at fixed orientations v (rows: top, middle, and bottom show different v values, parallel to (1,0, 0), (0,0, —1),
and (1,1, 1), respectively; columns: different slices in 3D with each having fixed z, effectively sliding the turquoise plane from
the middle inset in z). Each pixel value is coloured with the distance value d(p, v) obtained for that position p and direction
v (red to blue meaning further to closer). Non-visible oriented points (¢ = 0) are shown as white.

approaches, but can still capture detailed geometry, including
higher-order differential quantities and internal structure.

Fig. 2 illustrates how DDFs can be viewed as implicitly
storing all possible depth images of a given shape (i.e.,
from all possible cameras), reminiscent of a light field, but
with geometric distance instead of radiance. Such a field is
inherently discontinuous (see Fig. 3), presenting issues for dif-
ferentiable neural networks, but is advantageous in rendering,
since a depth image can be computed with a single forward
pass per pixel. More significantly, however, the increased
dimensionality permits view inconsistencies (meaning the DDF
can represent an aberrant 5D entity, where geometry is view-
dependent, rather than a consistent 3D shape). We mitigate
these in our applications by regularizing properties of the field,
including analogues of the Eikonal constraint for classical
distance fields, though these alone cannot guarantee view
consistency (VC) in a mathematical sense.

Yet, knowing the theoretical conditions (i.e., field proper-
ties) necessary to avoid such inconsistencies can be practically
valuable (e.g., for formally defining geometric consistency, or
for regularizer design). Hence, we examine sufficient condi-
tions to ensure VC, by introducing a notion of “inducement”,
whereby a shape can be used to construct a perfect DDF.
Then, starting from an unconstrained field (not necessarily
representing a shape), we devise local conditions (independent
of a fixed pre-defined shape) that ensure the existence of a
shape that induces the field. Specifically, the DDF subfields
(i.e., visibility ¢ and depth d) each have three corresponding
constraints, which independently ensure each field is “in-
ternally” consistent, as well as two compatibility conditions
that mutually constrain ¢ and d. To our knowledge, this
analysis is the first theoretical investigation of when the higher-
dimensional, ray-based DDFs formally represent 3D shapes.

Thus, our contributions can be summarized as follows:

1) We define the DDF, a 5D mapping from any position
and viewpoint to depth and visibility (§III).

2) By construction, our representation allows differentiable
rendering via a single forward pass per pixel (§III-C),
without restrictions on the shape (topology, water-
tightness) or field queries (internal structure).

3) We construct probabilistic DDFs (PDDFs), which dif-
ferentiably model discontinuities (§11I-D).

4) We examine several geometric properties of DDFs
(§III-A-III-C) and use them in our method (§IV).

5) We apply DDFs to fitting shapes (§V-A), single-image
reconstruction (§V-B), and generative modelling (§V-C).

6) We show that DDFs can be used for path tracing, using
internal structure modelling capabilities (§VI).

7) We present a theoretical analysis of the conditions under
which DDFs can guarantee multiview consistency (i.e.,
act as an shape representation) in §VII. These results
hold for any ray-based geometry field, including con-
current work independent from DDFs (see also §II).

We remark that this work is an extension of a previous
conference paper [23]. As noted just above in (6), the largest
novel contribution of this work is a theoretical analysis of
the conditions required for view consistency (§VII). Since the
DDF has a direction-dependence (i.e., is 5D), it can produce
fields that do not properly correspond with a 3D shape, due
to inconsistencies (i.e., geometry existing from one viewpoint
but not others). Hence, our interest is in what constraints on
the field can be imposed, to ensure consistency and thus a
representation of shape. In addition, we demonstrate rendering
efficiency in §V-A4, and provide a new interpretation of
recursive DDF calls as inter-reflections between surfaces, and
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apply this to path tracing (§VI).

II. RELATED WORK

Our work falls under distance field representations of shape,
which have a long history in computer vision [24], recently
culminating in signed/unsigned distance fields (S/UDFs) [6],
[25], [26] and related methods [27], [28]. Compared to explicit
ones, implicit shapes can capture arbitrary topologies with high
fidelity [5], [6], [29]. Several works examine differentiable ren-
dering of implicit fields [7]-[9], [22], [29]-[3 1] (or combine it
with neural volume rendering [32]-[35]), generally based on
approaches that require many field queries per pixel, such as
sphere tracing. In contrast, by conditioning on both viewpoint
and position, DDFs can flexibly render depth, with a single
field query per pixel. Further, a UDF can actually be extracted
from a DDF (see §III-A and §V-A3).

Separately, neural radiance fields (NeRFs) [4] provide a
powerful 3D representation of both geometry and texture, with
increasingly impressive results in NVS (e.g., [36]). However,
the standard differentiable volume rendering used by NeRFs
is computationally expensive, requiring many forward passes
per pixel, though recent work has improved on this (e.g.,
[37]1-[43]). Furthermore, the distributed nature of the density
makes extracting explicit geometric details (including higher-
order surface information, such as normals and curvatures)
more difficult (e.g., [33], [34]). In contrast, though focused
purely on geometry, DDFs are rendered with a single forward
pass and enable non-local computation of higher-order surface
properties. Further, by noting that light paths between surfaces
correspond to recursive DDF calls, we show that DDFs are
amenable to path-tracing (see §VI), whereas NeRFs require
substantial modification (e.g., [44]).

More similar to DDFs are Light Field Networks (LFNs)
[45], which render with a single forward pass per pixel, and
permit sparse depth map extraction (assuming a Lambertian
scene). Unlike LFNs, DDFs model geometry rather than radi-
ance as the primary quantity, computing depth with a single
forward pass, and surface normals with a single backward
pass, while LFNs predict RGB and sparse depth from such
a forward-backward operation. Finally, LFNs cannot render
from viewpoints between occluded objects. The neural 4D
light field (NeuLF) [46] focuses on NVS and leverages per-
ray depth estimates, but is also only 4D, like LFNs. More
recently, Attal et al. [47] improve on efficient NVS via a ray-
space embedding within the light field. In this work, we instead
focus on (i) the representation of geometry and (ii) theoretical
analysis of the conditions under which higher-dimensional
shape fields can ensure multiview consistency.

Several ray-based shape representations have appeared con-
currently or subsequently to our prior work [23]. The Signed
Directional Distance Field (SDDF) [48] also maps position and
direction to depth, but introduces a fundamental difference in
structure modelling, due to its signed nature. Starting from a
point p, consider a ray that intersects with a wall; evaluating a
DDF at a point after the intersection provides the distance
to the next object, while the SDDF continues to measure
the signed distance to the wall. This reduces complexity and

dimensionality, but may limit representational utility for some
tasks and/or shapes, including a lack of internal structure, in
a manner similar to LFNs. Houchens et al. [49] showcase the
utility of DDFs (called neural omnidirectional distance fields)
in inter-converting between a variety of shape representations.
The Primary Ray-based Implicit Function (PRIF) [50] rep-
resentation also suggested the use of DDFs, using a novel
ray parameterization, on several tasks; however, it did not
investigate the theoretical requirements of exact representation,
as we consider in this work, nor certain other issues (e.g.,
discontinuity modelling, relations to light transport).

Several other new representations and models are closely
related to DDFs. Neural vector fields (NVFs) [51] compute the
displacement from any given query to the closest surface point.
Like UDFs, this representation is closely connected to DDFs,
in that it corresponds to fixing a special direction field, which
we call the Minimal Direction Field (MDF), v* : R3 — S2,
which points to the closest surface point from p. The NVF can
then be computed via NVF (p) = d(p, v*(p))v*(p), for a given
DDF d. Note also that UDF(p) = d(p,v*(p)); see §V-A3
for details. In terms of other tasks, Directed Ray Distance
Functions [52] model surfaces via per-ray depth functions and
their zeroes, to obtain scene representations from posed RGBD
images. RayMVSNet [53] learns to generate per-ray depths,
but in a multiview stereo setting, based on learned features
from images. In a robotics context, Zhang et al. [54] apply
DDFs to modelling hand-object interaction. Finally, the FIRe
[55] model combines an SDF with a DDF, in order to obtain
efficiency while maintaining multiview consistency.

In contrast to these works, the primary novel contribution of
this paper is the comprehensive characterization of theoretical
requirements for view consistency of DDFs (§VII). Since
the aforementioned works largely describe the same field
mathematically, our results are equally applicable to them as
well, and may suggest regularizations and architectural designs
with better theoretical properties.

III. DIRECTED DISTANCE FIELDS

Let S C B be a 3D shape, where B C R3? is a bounding
volume acting as the field domain. Consider a position p € B
and view direction v € S?. We define S to be visible from
(p, v) if the line ¢, ,(t) = p+ tv intersects S for some ¢ > 0.
o Visibility. We write the binary visibility field (VF) for S
as &(p,v) = 1] is visible from (p,v)]. For convenience, we
refer to an oriented point (p,v) as visible if (p,v) = 1.

e Depth. We then define a distance or depth field as a non-
negative scalar field d : B x S> — R, which maps from any
visible oriented point to the minimum distance from p to S
along v (i.e., the first intersection of ¢, ,(¢) with S). In other
words, ¢(p,v) = d(p,v)v+ p is a map to the shape, and thus
satisfies ¢(p,v) € S for visible (p,v) (i.e., {(p,v) = 1).

e DDF. A Directed Distance Field (DDF) is simply a tuple of
fields (&, d). See Figs. 1 and 2 for illustrations.

A. Geometric Properties

DDFs satisfy several useful properties (see §A for proofs).



PDDFS FOR RAY-BASED SHAPE REPRESENTATIONS

Figure 3: Inherent DDF discontinuities. Left: surface discon-
tinuities, where p passes through S. Right: occlusion discon-
tinuities, where v or p moves over an occlusion boundary.

e Property I: Directed Eikonal Equation. Similar to SDFs,
which satisfy the eikonal equation ||[V,SDF(p)|ls = 1, a
DDF enforces a directed version of this property. In particular,
for any visible (p,v), we have V,d(p,v)v = —1, with
V,pd(p,v) € R'3. This also implies ||V,d(p,v)||2 > 1. The
equivalent property for £ asks that locally moving along the
viewing line cannot change visibility': V,&(p,v)v = 0.

e Property II: Surface Normals. The derivatives of implicit
fields are closely related to the normals n € S? of S;
e.g., V4,SDF(¢)T = n(q) V ¢ € S. For DDFs, a similar
relation holds (without requiring p € S): Vpd(p,v) =
—n(p,v)T /(n(p,v)Tv), for any visible (p,v) such that
n(p,v) := n(q(p,v)) are the normals at ¢(p,v) € S and
n(p,v) £ v (i.e., the change in d moving off the surface is un-
defined). From any (p, v) that “looks at” ¢ € S, the normals at
g can be computed via n(p,v) = sV, d(p,v)T/||V,d(p, v)]|2,
where we choose ¢ € {—1,1} such that nTv < 0 (so that n
always points back to the query)’.

e Property III: Gradient Consistency. Intuitively, given a
visible (p,v), infinitesimally perturbing the viewpoint v by 4,
should be similar to pushing the position p along §,. In fact,
the following differential constraint holds (see Supp. §A-C):
V.d(p,v) = d(p,v)V,d(p,v)P,, where P, = I —vvT is an
orthogonal projection, since v cannot be perturbed along itself.
e Property IV: Deriving Unsigned Distance Fields. An
unsigned distance field (UDF) can be extracted from a DDF
via the following optimization: UDF(p) = min, g2 d(p, v),
constrained such that {(p,v) = 1, allowing them to be pro-
cured if needed (see §V-A3). UDFs remove the discontinuities
from DDFs (see §I1I-D and Fig. 3), but cannot be rendered as
easily nor be queried for distances in arbitrary directions.

o Property V: Local Differential Geometry. For any visible
(p,v), the geometry of a 2D manifold S near ¢(p,v) is
completely characterized by d(p,v) and its derivatives. In par-
ticular, we can estimate the first and second fundamental forms
using the gradient and Hessian of d(p,v) (see Supp. §A-D).
This allows computing surface properties, such as curvatures,
from any visible oriented position, simply by querying the
network; see Fig. 8 for an example.

o Neural Geometry Rendering. Differentiable generation of
geometry, such as depth and normals (e.g., [56]-[59]), can

'Except when moving through certain surfaces (see §VII).
2This defines the normal via v, even for non-orientable surfaces.

sometimes be written as parallelized DDFs. In such cases,
regardless of architecture, the properties of DDFs discussed
in this paper still hold (see also Supp. §A-E).

B. The View Consistency Inequality

Ideally, DDFs should maintain view consistency (VC). One
form of VC can be expressed by a simple inequality, which
demands that an opaque position viewed from one direction
(e.g., the point g7, from v;, in Fig. 4) must be opaque
from all directions. That is, when a point ¢; is opaque from
one direction, but is also on another directed ray from, say,
Ty = (p2,v2), then its depth (from 73) is lower-bounded by
the distance to that known surface position.

More specifically, consider two oriented points 71 =
(p1,v1) and 75 = (pg, v2). Assume that 7 is visible, so ¢; =
p1t+d(m)v1 € S,and 3 ¢ > 0 such that £, (t) = pat+tvy = q.
Le., the lines of sight from 7 and
To intersect at the surface point
¢1. Then, (i) &(m2) = 1, and (ii)
d(12) < ||lp2 —q1]|2 = t. These can
be seen by the definition of £ and d.
For (i), since there exists a surface
(at g1) along /,, the oriented point
(72) must be visible. For (ii), d(72)
can be no further than ¢, since
DDFs return the minimum distance
to a point on S along the line
£.,(t), and hence its output can be
no greater than the assumed distance ¢. In §VII, we examine
the question of view consistency in greater detail.

Figure 4: The view
consistency inequality,

d(p2;v2) < [|p2—q1ll2-

C. Rendering

A primary application of DDFs is rapid differentiable ren-
dering. In contrast to some mesh rasterizers (e.g., [21]), there
is no dependence on the complexity of the underlying shape,
after training. Unlike most implicit shape fields [4], [7], [22],
DDFs only require a single forward pass per pixel.

DDF rendering is simply ray-casting. Given a camera II
with position py € B, for a pixel with 3D position p, we
cast a ray 7(t) = po + tv,, where v, = (p — po)/||p — poll2>
into the scene via a single query d(po, v,), which provides the
depth pixel value. For p ¢ B, we first compute the intersection
pr € OB between the ray r and the boundary 98. We then use
d(pr,v) + ||p — pr||2 as the output depth (or set &(p,,v) =0
if no intersection exists). This allows querying (£,d) from
arbitrary oriented points, including those unseen during fitting.

D. Discontinuity Handling: Probabilistic DDFs

DDFs are inherently discontinuous functions of p and wv.
Whenever (i) p passes through the surface S or (ii) p or v
moves across an occlusion boundary, a discontinuity in d(p, v)
occurs (see Fig. 3). We therefore modify the DDF, to allow a
C' network to represent the discontinuous field. In particular,
we alter d to output probability distributions over depths,
rather than a single value. Let PP, be the set of probability
distributions with support on some ray ¢, ,(t) = p+tv, t > 0.
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Figure 5: Discontinuous depth with PDDFs, via the weight
field (WF). Here, K = 2, so w; = 1 — wy (see §III-D).
The upper inset (rows 1-3) shows WF transitions in renders.
In the third row, white vs black mark high vs low w;, and
thus which surface (d; vs dsg) is active, for high £. Light and
dark grey demarcate the non-visible (low &) counterparts of
white and black. The change in dominant weight (w; vs ws)
at occlusion edges permits discontinuities. The lower inset
(rows 4-7) shows WF transitions using slices in z. Rows
four and six depict distances, with fixed v ((0,0,—1) and
(1,0,0), respectively) and varying p across the image. Rows
five and seven show WF values, as in row three. Notice the
WF switching upon p transitioning through a surface.
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Figure 6: PDDF renders of n; and ns. Though not explicitly
enforced, a “see-through effect” occurs when the lower-weight

field models the surface behind the currently visible one (i.e.,
the PDDF components model separate surfaces).
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Then d : B x S? — P, is a probabilistic DDF (PDDF). The
visibility field, £(p, v), is unchanged in the PDDF.

For simplicity, herein we restrict P, to be the set of

mixtures of Dirac delta functions with K components. Thus,
the network output is P, ,(d) = >, w;6(d — d;) over depths,
where w;’s are the mixture weights, with El w; = 1, and d;’s
are the delta locations. Our output depth is then d;«, where
1* = argmax; w;; i.e., the highest weight delta function marks
the final output location. As w; changes continuously, w;« will
switch from one d; to another d;, which may be arbitrarily far
apart, resulting in a discontinuous jump. Thus, by having the
weight field w(p,v) smoothly transition from one index ¢*
to another, at the site of a surface or occlusion discontinuity,
we can obtain a discontinuity in d as desired. In this work,
we use K = 2, to represent discontinuities without sacrificing
efficiency. Fig. 5 showcases example transitions, with respect
to occlusion (a) and surface collision (b) discontinuities; Fig.
6 visualizes the normals field for each depth component.
Notationally, a PDDF is simply a DDF: d(p, v) := d;(p, v).

IV. LEARNING DDFs

1) Mesh Data Extraction: Given a mesh, we can obtain
visibility £ and depth d by ray-casting from any (p, v). In total,
we consider six types of data samples (see Fig. 7): uniform (U)
random (p,v); at-surface (A), where &(p,v) = 1; bounding
(B), where p € 9B and v points to the interior of B; surface
(S), where p € S and v ~ U[S?]; tangent (T), where v is in
the tangent space of ¢(p,v) € S; and offser (O), which offsets
p from T-samples along n(p,v) by a small value.

2) Loss Functions: Our optimization objectives are defined
per oriented point (p,v). We denote &, n, and d as the
ground truth visibility, surface normal, and depth values, and
let &, d;, and w; denote the network predictions. Recall
1* = argmax; w; is the maximum likelihood PDDF index.

The minimum distance loss trains the highest probability
depth component: L; = § |d « — d|?.The visibility objective,
Le = BCE(§,§), is the binary cross entropy between the
visibility prediction and the ground truth. A first-order normals
loss, L, = —&|n" 7 (p,v)|, uses Property II to match surface
normals to the underlying shape, via V,d;~. A Directed
Eikonal regularization, based on Property I, is given by

~ 2 ~
LpE = VE.d Zf [Vpdw + 1} + ’)/E,g[vpfv]z, (1)
applied on the visibility and each delta component of d,
analogous to prior SDF work (e.g., [60]-[64]).

Finally, we utilize two weight field regularizations, which
encourage (1) low entropy PDDF outputs (to prevent ¢* from
switching unnecessarily), and (2) the maximum likelihood
delta component to transition (i.e., change ¢*) when a dis-
continuity is required: Ly = vy Ly + yrLy. The first is a
weight variance loss: Ly = ][, w;. The second is a weight
transition loss: L1 = max(0,er — |V,win|)?, where e is a
hyper-parameter controlling the desired transition speed. Since
K = 2, using w; alone is sufficient to enforce changes along
the normal. Note that L1 is only applied to oriented points that
we wish to undergo a transition (i.e., where a discontinuity is
desired, as illustrated in Fig. 3 and 5), namely surface (S) and
tangent (T) data. The complete PDDF shape-fitting loss is then

Ls =7ala+veLe +WmLn + Loe + Lw. (2)
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Mesh
Figure 7: Illustration of mesh-derived data types. Left to right: input sphere mesh, U, A, B, S, T, and O data. Visible points
depict p in blue, v in green, and a line from p to ¢ in turquoise; non-visible points depict p in black and v in red.
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Figure 8: Renders of DDF fits to shapes. Rows: depth, normals, and mean curvature. Each quantity is directly computed from
the learned field, using network derivatives at the query oriented point (p,v) per pixel.

V. APPLICATIONS

A. Single Field Fitting

Fig. 8 shows single-object fits, via PDDF renderings with a
single network evaluation per pixel. Normals and curvatures
are obtained using only one or more backward passes for
the same oriented point used in the single forward pass. We
implement the PDDFs with SIREN [65], as it allows for
higher-order derivatives and has previously proven effective
(e.g., [660], [67]). (See Supp. §B for details.)

1) Data-type Ablation: We perform a small-scale ablation
experiment to discern the importance of each data sample type.
In particular, we consider six scenarios on a single shape (the
Stanford Bunny), in each of which we train with 100K samples
of each type except one, which is removed. We consider one
other scenario that has the same number of total points, but
no single type is ablated (i.e., 83,333 samples per type). We
then measure the depth and visibility prediction error on 25K
held-out samples of each data type, including the ablated one.

Results are shown in Table I. In most cases, the worst
or second-worst errors on a given data type are incurred by
models without access to that type. One anomaly is ablating
S-type data, which damages performance across all sample
types. This may be due to difficulties in knowing when to
transition between weight field components. Another outlier
is L¢-A, where ablating T-type data is the most damaging
(removing A-type is third); we suspect this is because T-type
samples are effectively the hardest subset of A-type data, and
hence have an outsized impact upon removal. Further, A-type
data has more overlap with others (e.g., U and B).

Finally, we remark that our data sampling strategies provide
an inductive bias. For instance, B-type data will be most
important when rendering far from the shape, while more
A-type samples upweight visibile vs. non-visible parts of

the scene. Overall, while this is a small-scale (single-shape)
analysis, it does suggest that each data type has information
that the others cannot fully replace, especially U, O, S, and T.

2) Internal Structure and Composition: We discuss two
additional modelling capabilities of DDFs: (i) internal struc-
ture representation and (ii) compositionality. The first refers
to the ability of our model to handle multi-layer surfaces:
we are able to place a camera inside a scene, within or
between multiple surfaces, along a given direction. This places
our representation in contrast with recent works [45], [48],
which do not model internal structure. The second lies in the
ease with which we can combine multiple DDFs, which is
useful for manipulation without retraining and scaling to more
complex scenes. Our approach is inspired by prior work on
soft rendering [21], [68]. Formally, given a set of N DDFs
¢ = {1, 0 q®) BOIN  where T() is a transform on
oriented points converting world to object coordinates for
the ith DDF (e.g., scale, rotation, and translation), we can
aggregate the visibility and depth fields into a single combined
DDF. For visibility of the combination of objects, we ask that
at least one surface is visible, implemented as:

&pv) =1 ] = (@D (p,v))). 3)
k

For depth, we want the closest visible surface to be the final
output. One way to perform this is via a linear combination

de(p.v) =Y a™ (p,v) d®(TF) (p, v)), @)
k

(k)

where a;" are computed via visibility and distance:

7 €X(TH) (p, v))
ac(p,v) = Softmax <{ eST+ d® (T® (p, v)) } k) O
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Table I: Data type ablation results (see §V-Al). Rows: type of data (i.e.,

Minimum Distance Error (L1; x10) | Visibility Error (BCE) |

Ed 1-U ,Cd,l-A ﬁd 1-B ,Cd’l-o Ed 1-T ,Cd 1-S ﬁg-U E&-A ,Cf-B £§-O ,Cg-T ﬁg-s
U| 0.58 0.79 0.18 0.49 0.75 0.47 211 0.03 0.07 056 0.14 0.05
A| 048 0.82 0.20 0.49 0.81 0.54 020 0.05 0.07 049 0.18 0.07
B| 037 0.67 0.20 0.46 0.73 0.58 020 0.03 0.0 050 0.15 0.06
O| 039 0.67 0.18 0.56 0.70 0.59 0.28 0.01 011 171 0.03 0.03
T 039 0.70 0.19 0.45 0.84 0.65 0.19 0.09 006 032 048 0.07
S 0.55 0.95 0.23 0.51 0.89 143 0.14  0.06 006 042 0.17 048
- | 0.45 0.75 0.19 0.50 0.77 0.67 023 0.04 0.08 056 0.15 0.07

(p,v) sample type) ablated. Columns: errors on

held-out data (left: min. distance loss, but computed with L, instead of Ls; right: binary cross-entropy-based visibility loss).
Each column computes the error on a different sample type (e.g., £4,1-A is the minimum distance error on A-type data), via
25K held-out samples per type. Per loss type, the red numbers are the worst (highest) error cases; the pink numbers are the

second-worst error cases. Each scenario uses 100K samples of each data type, except for the ablated one; the

TR

case uses

83,333 samples of all six data types (to control for the total dataset size). Usually, performance on a data type is worst or
second-worst when that type is ablated, suggesting the utility of different samples, particularly for hard types (e.g., S and T).

with temperature 17 and maximum inverse depth scale ¢, as
hyper-parameters. This upweights contributions when distance
is small, but visibility is high. We exhibit these capabilities in
Fig. 9, which consists of two independently trained DDFs (one
fit to five planes, forming a simple room, and the other to the
bunny mesh), where we simulate a camera starting outside
the scene and entering the room. For comparison, to show the
improved scaling of composing DDFs, we also attempted to fit
the same scene using the single-object fitting procedure above.
For fairness, we doubled the number of data samples extracted,
as well as the size of each hidden layer. In comparison to the
top inset of Fig. 9, this naive approach struggles to capture
some high frequency details, though we suspect this could be
mitigated to some extent by better sampling procedures.

3) UDF Extraction: As noted in Property IV, one can
extract a UDF from a DDF. In particular, we optimize a
field v* : B — S2, such that UDF(p) = d(p,v*(p)). This
Minimal Direction Field (MDF), v*, points to the closest
point on S.°> We obtain it by optimizing an objective that
prefers high visibility and low depth for a given v*(p). Unlike
directly fitting a UDF, this requires handling local minima
for v* and non-visible (low &) directions. (See Fig. 10 for
visualizations and Supp. §C for details.) When the normals
exist, v*(p) = —n(p,v*(p)), in the notation of Property II.
Recent work has highlighted the utility of UDFs over SDFs
[25], [26], [69]; in the case of DDFs, extracting a UDF or v*
may provide useful auxiliary information for some tasks.

4) Efficiency: To illustrate the gain in rendering efficiency,
we compare to an existing differentiable sphere tracer, DIST
[7], on DeepSDF [6] models. Both representations rendered a
10242 depth image. The implicit field architectures are roughly
comparable: DeepSDF used a ReLU-based MLP with eight
hidden layers, while our PDDF used a SIREN MLP [65] (i.e.,
sine nonlinearity) with seven hidden layers, both with hidden
dimensionalities all equal to 512. Per pixel, DIST must sphere
trace along each camera ray, while the PDDF need only call
the network once. We find that DIST takes 5.3 seconds per
render, while the DDF takes <(0.01 seconds, a roughly ~100x
speedup. While this simplified setting does not completely
characterize the tradeoff, it does suggest that DDFs obtain

3Discontinuities in v* occur at surfaces as before, but also on the medial
surface of S in 3. At such positions, there are multiple valid values of v*.

camera moves inwards ——————»

Lol
LI -

camera moves inwards

™ B T
L A\ | \
JLc

Figure 9: Example of internal structure rendering and compo-
sition. Colours correspond to DDF surface normals (as in Fig.
8), from the DDF. The top insets compose two smaller DDFs,
while the bottom set uses a single larger monolithic one.

starting camera position

starting camera position

an advantage in efficiency. Further, the runtime of sphere
tracers depends on both the shape and the camera: for instance,
simply moving the camera closer to the shape, which reduces
the opportunities for certain runtime optimizations, increases
rendering time by ~1.8x. In contrast, DDFs are unaffected
by either element. See Supp. §B-C for details.

B. Single-Image 3D Reconstruction (SI3DR)

We next utilize DDFs for single-image 3D reconstruction.
Given a colour image I, we predict the underlying latent
shape z; and camera II that gave rise to the image, via an
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DDF _ ‘ PC-SIREN ‘ P2M [70], [71]  3DR [72]
m,L 1,s fly-s 0L s | oL M,s ML fs
Do 1 0300 0346 0620 0730 0787 | 0339 0364 0814 0842 0452 1057
F 1 | 6895 61.65 5325 5798 5136 | 6944 6476 5674 52.65 64.45 30.83
For 1| 83.15 7865 7041 7283 6841 | 81.94 7991 7047 6849 78.65 5776

Table II: Single-image 3D reconstruction results. Columns: L/S refer to sampling 5000/2466 points (2466 being used in
P2M), 11, /TI means using the true versus predicted camera, and Hv denotes camera position correction using gradient descent.
Metrics: Dc is the Chamfer distance (x 1000) and F; is the F-score (x100) at threshold 7 = 10~*. PC-SIREN is our matched-
architecture baseline; Pixel2Mesh (P2M) and 3D-R2N2 (3DR) are baselines using different shape modalities (numbers from
[71]). Note: scenarios using 11, (i.e., evaluating in canonical object coordinates) are not directly comparable to P2M or 3DR,
but serve to isolate pose vs. shape error. Overall, DDF-derived PCs (1) perform similarly to directly learning to output a PC

and (2) underperform P2M overall, but outperform it in terms of shape quality when camera prediction error is excluded.

Comparative CPDDF  CPDDF Baseline DIff. 4
3 Baseline Setting D¢e D¢ H
4 PC-SIREN -V / i 0.787 0.842  +0.055
Id. Ar. Baseline v /11 0.629 0842 +0.213
3DR [72] ~
g-u.g.a. VOXC] Baseline +VH / H 0629 1057 +O428
P2M [70] +vn /I 0629 0451 -0.178
Figure 10: The MDF, v*, and its UDF (i.e., d(p, v*(p))), in odd Mesh Baseline +Vy /T, 0346 0451 +0.105

and even columns respectlvely, for two scenes (rows). For v*,
colours are 3D components; for the UDF, blue to red means
near to far distances. Each image is a spatial slice in z, where
adjacent MDF-UDF pairs have the same z. Notice the colour
change in v* as the slice moves through the shape, due to
the closest surface switching from the front to the back of the
shape (and thus flipping v*). Some difficulties are also visible,
(e.g., near surface intersections, where v* is ill-defined).

Conditional
Camera
H coordinate network

S 8-

Input T

image Latent shape

d(p.v]z)

Figure 11: CPDDF-based SI3DR. A camera and latent shape
are predicted from an image. The latent vector conditions a
CPDDF, which can render geometry from any viewpoint.

encoder E(I) = (Z,,1I) (see Fig. 11). For decoding, we
use a conditional PDDF (CPDDF), which computes depth

d(p, v|zs) and visibility £(p,v|zs). We use three loss terms:
(a) shape DDF fitting in canonical pose £s (eq. 2), (b)
camera prediction Ly = ||TT, — TI|[3, and (c) mask matching
Ly = BCE(Iy, Re(2/IT)), where I, is the input alpha
channel and R, renders the DDF visibility. The full objective
is Lsispr = Yr,sLs + YruLln + Yr,m L. We implement
FE as two ResNet-18 networks [73], while the CPDDF is a
modulated SIREN [7j]. For evaluation, camera extrinsics are
either the predicted IT or ground-truth I, (to separate shape
and camera errors). See Supp. §D for details.

1) Explicit Sampling: SI3DR evaluation commonly uses
point clouds (PCs). Thus, we present a simple PC extraction
method, though it cannot guarantee uniform sampling over the
shape S. Recall that ¢(p,v) = p+d(p,v)v € S, if £(p,v) = 1.

Table III: We compare CPDDFs to a field with identical
architecture (Id. Ar.), which outputs PCs, and two explicit-
shape-based baselines, with modality-specialized architectures
(vs. our use of generic networks). The Chamfer distance D¢
compares to the GT shape. “CPDDF Setting” records: (i)
silhouette-based optimization (i.e., “~Vp” vs. “+Vp”) and
(ii) evaluation with the predicted vs. the GT camera (i.e., “I[”
vs. “I1;”). The 11, scenario is not fair, (as it uses the GT II),
but shows that much error is in pose, not shape, prediction.

Thus, we sample p ~ U[B], and wish to project them onto S.
Then, v should be chosen to avoid &(p, v) = 0. Hence, for each
p, we sample V(p) = {v;(p) ~ U[S?]}}*, and “compose”
them to estimate ©*(p) (as in §V-A2 and §V-A3, but without
optimization), giving ¢(p,?*(p)) as a point on S. Repeating
this Nz times (starting from p < ¢) also helps, if depths are
less accurate far from S. We set n, = 128 and Ny = 3 (see
Supp. §D-C for ablation with Ny = 1).

2) Baselines: Our primary baseline alters the shape rep-
resentation, while keeping the architecture and training setup
as similar as possible. Specifically, it uses the same encoders
as the DDF and an almost identical network for the decoder
(changing only the input and output dimensionalities), but
altered to output PCs directly (denoted PC-SIREN). In partic-
ular, the decoder is an implicit shape mapping f;, : R? — R3,
which takes p ~ U[—1,1]® as input and directly returns
q = fv(p) € S. Training uses the Chamfer distance D¢ and
L. We also compare to the mesh-based Pixel2Mesh (P2M)
[70], [71] and voxel-based 3D-R2N2 (3DR) [72].

3) Results: We consider cars, planes, and chairs from
ShapeNet [77], using the data from [72] (as in [70]). In
Tables II and III, we show DDFs perform comparably to
the architecture-matched PC-SIREN baseline. See Fig. 12
and Supp. Fig. 18 for visualizations. Generally, the inferred
DDF shapes correctly reconstruct most inputs, including thin
structures like chair legs, regardless of topology. The most
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Figure 12: Single-image 3D reconstruction visualizations on held-out test data. Columns represent (i) the input RGB image,
(ii) the visibility &, (iii) the depth d, (iv) the normals 7, (v) the sampled point cloud (PC) fromAthe DDF, and (vi) a sample
from the ground-truth PC. Quantities (ii-v) are all differentiably computed from the CPDDF and II, per point or pixel, without

post-processing. PC colours denote 3D coordinates. A high-error example is in the lower-right of each category.

Image CPDDF-based CGR  Image
‘ GAN GAN [75] VAE
FID [76] | 15 27 120 194
3D? ‘ No Yes Yes No

Table IV: Evaluation of our CPDDF-based 3D-aware gen-
erative model. We compared to a 3D-unaware image GAN
(with the same critic), the Cyclic Generative Renderer (CGR)
[75], which samples textured meshes and uses a differentiable
rasterizer, and a 3D-unaware VAE. (See §V-C).

obvious errors are in pose estimation, but the DDF can also
sometimes output “blurry” shape parts when it is uncertain
(e.g., for relatively rare shapes). However, results can be
improved by correcting II to Iy = argming £y, via gradient
descent (starting from II) on the input image alpha channel.
While explicit modalities can be differentiably rendered (e.g.,
[20], [58], [78]), DDFs can do so by construction, without
additional heuristics or learning. Further, (i) the DDF sampling
procedure is not learned, (ii) our model is not trained with D¢
(on which it is evaluated), and (iii) DDFs are more versatile
than PCs, enabling higher-order geometry extraction, built-in
rendering, and PC extraction. Thus, changing from PCs to
DDFs can enrich the representation without quality loss.

Compared to the other baselines, DDFs with predicted II
underperform P2M, but outperform 3DR. Results with the
ground-truth II; indicate much of this error is due to camera
prediction, though this is not directly comparable to P2M or
3DR. With II,, we are predicting in the object-centric, rather
than camera-centric, frame. While each frame has benefits
and downsides [79], [80], in our case it is useful to separate
shape vs. camera error. Our scores with II, suggest DDFs can
infer shape at similar quality levels to existing work, despite
the naive architecture and sampling strategy. We remark that
we do not expect DDFs to directly compare to highly tuned,
specialized models at the state-of-the-art. Instead, we show
that DDFs can achieve good performance (especially for shape

7 = P JosNe G W\ o A
@ = F & S ) ) = >
v L - = o W g U ]
@ fp "=~ 4 ™ p & § =
. = = B -
£ & a o> Ny

Figure 13: Above: CPDDF-based VAE and image GAN sam-
ples. Below: views with fixed texture and shape.

alone), even using simple off-the-shelf components (ResNets
and SIREN MLPs), without losing versatility.

C. Generative Modelling with Unpaired Data

We also apply CPDDFs to 3D-aware generative modelling,
using 2D-3D unpaired data (see, e.g., [75], [81]-[83]). This
takes advantage of 3D model data, yet avoids requiring paired
data. We utilize a two-stage approach: (i) a CPDDF-based
variational autoencoder (VAE) [84] on 3D shapes, then (ii)
a generative adversarial network (GAN) [85], which convolu-
tionally translates CPDDF-derived surface normal renders into
colour images. Briefly, the VAE trains a PointNet encoder
[86] and CPDDF decoder, while the GAN performs cycle-
consistent image-to-image translation [87] (from normals to
RGB). Fig. 13 displays some example samples, while Table IV
shows quantitative results. While this underperforms a 2D
image GAN with the same critic, it still outperforms samples
from image VAEs or GAN-based textured low-poly 3D mesh
renders [75] in image quality. See Supp. §E for details.
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Figure 14: Examples of path-traced PDDFs under various lighting and material conditions. To better illustrate the lighting
conditions, for rays that do not intersect the shape (i.e., £ = 0), we return the environmental lighting associated to that
direction. Rows 1 and 2-3 show glossy and mirror materials, respectively, while row 4 shows the weight field, as in Fig. 5.
The contribution of multibounce lighting can be seen, for instance, in the bunny’s ear reflected off its back (row 2, column 3).
See also Supp. Fig. 25 for “glowing” 3D shapes (i.e., with non-zero M), where the geometry itself can be a light source.

VI. PATH TRACING WITH INTRINSIC APPEARANCE DDFSs

A natural interpretation of a DDF is as the field of all
possible depth images for a given scene. However, this extends
to any ray (or camera) start point. In particular, this includes
inter-surface rays: a DDF provides the “next” surface that
the ray would intersect. Importantly, this corresponds to a
fundamental operation when modelling the physics of light:
surface inter-reflections. In other words, DDFs can also be
viewed as modelling the set of all light paths through a scene,
where each path segment corresponds to a DDF call. Thus,
any light path is equivalent to recursively applying a DDF.
Given this connection to light transport, we therefore explore
how to integrate DDFs into a path tracing framework.

Such an approach confers several benefits. First, a major
focus in computer vision has been the disentanglement of im-
ages into constituent components (e.g., [88], [89]): geometry
(shading), intrinsic appearance (reflectance), and illumination
(lighting). A DDF, combined with a reflectance and lighting
model, naturally fits within this decomposition. Second, many
shape representations are not as amenable to light transport.
For instance, the standard NeRF [4] acts as a radiance-emitting
“cloud of particles”. As such, appearance remains entangled.
In contrast, the interpretation of recursive DDF calls as inter-
surface light transport is naturally applicable to path tracing.

As a proof of concept, we consider a scenario with sim-
plified materials and lighting, to demonstrate path tracing of
a DDF. (see Supp. §F for details). We augment a PDDF
(§,d) with two additional models. The first is the material
appearance, given by a Bidirectional Reflectance Distribution

Function (BRDF) fp : R3 x §? x §? — le‘, where C is the
colour channel set, and an importance sampler ¥ : R? x §? —
P[S?], where P[S?] is the set of distributions on S?, which
stochastically decides how light bounces from a surface. The
second is the lighting model, which includes an emission field
(i.e., glow), My : R? x S2 — C, and an environment light,
Ep : S — C, which represents incoming radiance from
a faraway source. The combined model, which we call the
intrinsic appearance DDF (IADDF) is (§,d, fg, ¥V, My, Er).

We integrate the IADDF into a simple path tracing algo-
rithm. Briefly, for each pixel, we cast a ray into the scene,
finding the scene point ¢ and normal n via the DDF. Based
on ¥, we sample new outgoing directions from ¢, and use the
DDF to find the next surface in that direction. These “bounces”
are the segments of a light path, being built backwards from
the eye to the light source. This continues until the ray
misses any geometry (i.e., & = 0), returning Ej in that
direction. The final pixel irradiance corresponds to this value
(attenuated by the material fp through the bounces), plus any
emissions (from M}) encountered along the way. All surface
intersections and normals are computed from the DDF.

We display example renders in Fig. 14. As this is only a
proof-of-concept of the forward rendering process, we im-
plement (fp, ¥, My, EL) as analytic functions, while (£, d)
are fit to single shapes (see §V-A). We utilize simple glossy
and mirror materials to showcase the accuracy of the DDF
geometry (as accurate depths, visibilities, and normals are
all necessary for visual plausibility). We see that not only
are the “first-order” values accurate (i.e., those generated
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snf dn'\d‘

Definition VII.1: Domain

Let B C R3 be a convex and compact domain, where 08
is smooth with outward-facing surface normals. Further,
we define the 5D product space I' = B x S%.

Figure 15: An illustration of a view-inconsistent DDF. Due to
its 5D nature, depth-rendering the same field from different
viewpoints can produce incompatible geometries.

by a standard initial ray-casting through the image pixels),
but the values computed at the surface (for a bounce) are
sufficiently accurate for the tracing process to work. However,
certain pathologies in the underlying PDDF geometry are
apparent: the weight field seam that manifests as a “cut” (e.g.,
column one), difficulty with occlusion (e.g., “black spots”
where the two spheres meet), and inaccuracies in the normals
(e.g., waviness in the reflected “horizon” on the second-row
spheres). Nevertheless, this appears to be a promising ap-
proach to combining disentangled appearance modelling with
differentiable path tracing. We also emphasize that internal
structure modelling (see also §V-A2), which is ignored by
similar contemporary methods (e.g., [45], [48]), is essential —
without it, inter-surface bounces cannot be computed.

VII. THEORY: THE GEOMETRY OF VIEW CONSISTENCY

The defining characteristic of a DDF is its five-dimensional
nature. While one naturally associates 3D shapes with 3D
constructs, the computational advantages of DDFs stem fun-
damentally from the increase in dimensionality. However, the
tradeoff in this case is the lack of theoretical guarantees of view
consistency (VC). Specifically, unlike representations that are
inherently 3D, DDFs require regularization to ensure predicted
surface points do not vary with view direction. Thus, for a
DDF implemented with a neural network, the question of how
to enforce VC is of great practical importance. In particular,
can we guarantee such an implementation is actually VC?

More precisely, consider an unconstrained differentiable 5D
field. Assuming noisy initialization, before fitting, such a field
will be akin to a cloud of noise, without sensible structure
across viewpoints. Fig. 15 also provides an example of in-
consistent geometry. Clearly, such entities do not represent
any reasonable notion of a 3D shape. Under what conditions,
then, can we say such a field does represent a 3D shape?

In this section, we answer these questions through a compre-
hensive theoretical investigation of (i) when a DDF is VC and
(ii) show that this is conceptually equivalent to the DDF being
an accurate representation of some 3D shape. We show that
a straightforward set of constraints on the field, which can be
checked locally (i.e., properties based on pointwise evaluations
in 5D), are sufficient to guarantee consistency. Due to space
constraints, we present a more complete story, with additional
details and full proofs, in Supp. §G and §H.

A. Preliminaries and Notation

We begin by defining the basic setting, including the domain
of our fields, the definition of a shape, and the oriented points
that characterize our ray-based geometric representation.

We primarily operate in the “interior” of B, written B.:

Definition VIL.2: c-Domain

For € > 0, let B, be the e-domain of B, defined via
= 1 — > .
s.—{veb|pplv-tlzc}.  ©

As for B, we define I'. = B, x S2.

The role of B. is to enable us to define a notion of “away
from the boundary” (i.e., B\ B is a thin e-width shell around
the edges of the domain). Our shapes will thus reside in B, C
R3, but our field will operate in 5D ray-space (i.e., I).

Definition VIL.3: Oriented Points and Rays

We denote an oriented point via 7 = (p,v) € I'. Any
oriented point induces a 3D ray: r,(t) = p+ tv, t > 0.
In a slight abuse of notation, we may refer to the 7 and
r, forms of such 5D elements interchangeably.

Fundamentally, our interest is in representing 3D shapes,
which are defined simply as follows.

Definition VII.4: Shapes

We define a shape to be a compact set S C B.

Usually, we will be interested in shapes S C B, for £ > 0.
Note that using 5. does not strongly constrain the shape: for
example, one can simply use the bounding sphere of the given
point set, and then inflate it enough to satisfy the € condition.

Next, for notational simplicity, we consider restrictions of
functions to a fixed ray.

Definition VIL.S: Along-Ray Functions

We define the “along-ray” form of a function g : I' — X,
which maps into a set X, to be:

fo(s|7):=g(p+ sv,0) = g(r-(s),v),  (7)
where s > 0 and 7 = (p,v) € I.

Finally, we denote intersections of rays and point sets via:

Definition VII.6: Intersecting Rays and Point Sets

Consider SC Band 7 €T

e Intersected Points. Let S; C S denote the points in
S intersected by r, (i.e., ¢ € S; iff 3¢ > 0 such that
r,(t) = q). For clarity, we may write [S], as well.

e Intersecting Rays. Let Zg C T' be the set of rays that
intersect S (i.e., 7 € Zg if 3 g € S such that r,(s) = ¢
for some s > 0). For g € B, we denote Z,, := Z(,.
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B. View Consistency for Visibility Fields

First, we consider when a visibility field (VF) alone will be
VC. We do so by defining an unconstrained field, and then
devising constraints that can ensure VC.

Definition VIL.7: BOZ Field

Let £ : I' — {0,1}. We restrict £ to have an open zero
set; ie, V7 €T, if {(r) =0, then 3 ¢ > 0 such that
&(T) =0V 7€ B:(r)NT, where B.(7) is the open ball
centered at 7 of radius €. We call any such binary field,
with an open zero set, a BOZ field.

Without further conditions, a BOZ field does not have an
obvious connection to 3D shapes or their multiview silhouettes
(i.e., most BOZ fields do not represent a consistent 3D point
set from all viewpoints). Hence, our goal is to understand when
(or under what conditions) a BOZ field acts as a continuous
representation of the silhouettes of some coherent shape (i.e.,
when it assigns every ray a binary indication as to whether a
shape point exists along that ray or not). Thus, we next define
three conditions that we will show impose consistency on &.
We will find a close analogy between these constraints and
the ones needed for the depth field within the DDF.

Define O[V,U] := {r = (p,v) € T'|p € V,r.(s) ¢
UVs > 0} as the rays starting in V that miss U. Hence,
O[B\ B., B.] are the “outward rays” from B\ B..

Constraint Definition VIL1: BC,

A BOZ field ¢ satisfies the Non-Visible Boundary Con-
dition, denoted BCq, if (1) =0V 7 € OB\ B:, B.].

In words, BC; demands that any rays that (i) start close to
the boundary and (ii) do not intersect the inner domain B,
must be non-visible. Intuitively, if £ were to represent a shape
S C Be, then BC¢ prevents .S from being visible on rays that
start outside of B. and “look away” from it.

Constraint Definition VIL2: DE,

A BOZ field ¢ satisfies the Directed Eikonal Constraint
DE; if £ is always non-increasing along a ray (i.e.,
fe(s1]m) < fe(sa|T) VT €T, 51 > s9).

Intuitively, DE, demands that visibility can only ever go
from “seeing” to “not seeing” along a ray (i.e., one should
not suddenly see a new point in the shape become visible).

The last constraint requires characterizing field behaviour
at specific special points. In particular, we are interested in
q € B where ¢ “flips” along some direction v € S2. So, let us
first consider the field value as one approaches ¢ along v:

Fe[Op,<l(q) =lim Op &(q +ssv,v),
el0 s€(0,¢)

®)

where Op € {inf,sup} and ¢ € {—1,+1}. Let F_, ¢ ,(q) :=
Fe wlsup, —1)(¢) and F ¢ ,,(q) := Fe o [inf, 1](g). Intuitively,
F_ ¢, is the maximum value as one moves forward along a
ray, while F._ ¢, is the minimum as one moves backward.

A “flip” therefore occurs when these two do not match at a
point. In particular, a “one-to-zero flip” along v occurs when

CFHP(Q'&)”) = (-F—>,£,v(Q) = 1) A (]:<—,5,v(Q) = O) 9

Our field constraint uses this concept as follows:

Constraint Definition VIL.3: 10,

A BOZ field ¢ satisfies the Isotropic Opaqueness Con-
straint (I0C) at q € B iff the following holds:

(st Criplglé,v)) = (E(r) =1V T €e1,),

where Z, is the set of rays in I' that intersect g. An IO
field (I10¢) satisfies the IOC everywhere.

J

In words, if there is any direction along which the field
flips from one to zero, then the point at which that occurs
must be “isotropically opaque” (i.e., from any direction, any
ray that hits that point must produce a visibility value of one).
Intuitively, IO¢ says that such “one-to-zero* discontinuities in
& are special. As we shall see, they act similar to surface points.
In particular, for any point ¢ € B, if even a single direction v
exists such that a one-to-zero discontinuity occurs along v at
q, then any ray that goes through ¢ must also be visible.

With these three constraints (see Fig. 16 for an illustration),
we can now define a subset of BOZ fields, called visibility
fields (VFs), which are intimately tied to shapes.

Definition VIL8: Visibility Field (VF)

We define a Visibility Field to be a BOZ field such that
10¢, BC¢, and DE; are satisfied.

Conceptually, VFs (i) bound visible geometry within a finite
domain, (ii) prevent new geometry from “appearing out-of-
nowhere” (when it should have been visible earlier), and
(iii) enforce that “flip positions” (Eq. 9) are visible from all
viewpoints. Such discontinuities are effectively surface points,
where visibility “flips” because one has moved through the
surface. These special positions link the 5D field to a 3D
shape.

Definition VIL.9: Positional Discontinuities of VFs

The positional discontinuities of a VF £ are defined by
Qe =% ({qeB|Fvst Crp(glé,v)}),  (10)

where % is the closure operator on sets.

Intuitively, given a VF ¢, the set ()¢ simply contains all of
the one-to-zero discontinuities in . More specifically, if there
exists some direction v such that the field £ flips from one
to zero (i.e., from “seeing something” to “seeing nothing”) at
q € B, then ¢ € Q¢. In Supp. Lemma G.2, we show that
Q¢ C B. is a shape. Hence, the discontinuities ()¢ are a good
candidate for a potential shape that ¢ is implicitly representing.
First, we need to define what it means for a shape S to induce
a ¢-field (ie., for € to “exactly” represent S).*

4See Supp. Def. G.17 for an explanation of notation at discontinuities.



PDDFS FOR RAY-BASED SHAPE REPRESENTATIONS 13

Figure 16: The fundamental constraints that link visibility and depth fields to being shape representations. The boundary
conditions (BC) demand that d does not predict geometry too close to 95 and that £ = O whenever it looks “outward”. For the
directed Eikonal (DE) constraints, we ask that fy decreases at unit rate and f; never increases. Finally, isotropic opaqueness

(I0) asks that zeroes in d are zeroes from all directions, while one-to-zero flips in £ must be visible from all directions.

Definition VII.10: Shape-Induced Binary Fields

Theorem VIL.2: Every VF is a Shape Indicator

A BOZ field ¢ is induced by a shape S C B, iff

&(1)=1 <= 71€s. (11)

where Zg C T is the set of rays that intersect S. Further,
given a shape 9, its induced field & is unique.

Notice that the induction relation is an “iff”, meaning
&(7) = 0 implies that no ¢ € S can be present along the
ray r.. In addition, importantly, while the S-induced field £
is unique, the inducing shape for a given & is not necessarily
unique. For instance, imagine a sphere with another shape (say,
another sphere) inside it — such a shape will induce the same
VF as using the outermost sphere alone for the inducement.
Given this definition, our first result in this section shows that
any shape-induced field satisfies the constraints of a VE.

Theorem VIIL.1: Induced Binary Fields Are VFs

Let S C B. be a shape, with an induced field £. Then € is
a VI (i.e., I0¢, BC¢, and DE¢ hold). Also, the positional
discontinuities of & satisfy Q¢ C S.

So far, we have shown that any shape can be used to
generate or induce a VF (in the sense of Def. VIL.8). This
defines a notion of “shape representation” for such fields.

Definition VII.11: Shape Indicators as VC VFs

A VF ¢ is View Consistent (VC) iff there exists a shape
S such that S induces . We can therefore call any such
& a shape indicator for the point set S.

Note we call it a shape indicator instead of a representation
because we cannot necessarily reconstruct S from & (i.e., it
would be an incomplete representation). Instead, we call it an
indicator, because it “indicates” whether or not a shape exists
along a given ray (i.e., acts as a per-ray indicator function).
We next show that the local constraints of a visibility field are
sufficient for it to be a representation of some shape.

Let £ be a visibility field. Then there exists a shape S
such that £ is induced by S. Further, Q¢ induces &.

So far, we have shown a close duality between visibility
fields (VFs) and shape indicators (i.e., between binary fields
with specific local constraints on the field, namely 10¢, DEg,
and BCq, and binary fields constructed from a given point
set). However, it is clear that many inducing point sets can
induce the same field. We can therefore ask for a “minimal
example” over an equivalence class of inducing point sets (i.e.,
given many shapes S that all induce the same &, which is the
“simplest”?), which we answer in the following corollary.

Corollary VII.1: Minimal Characterization of VFs

Let S[¢] be the equivalence class of &-inducing shapes
(i.e., S[¢] = {S | S C B induces &}). Then, Q¢ € S[¢]
is the smallest closed point set among all such inducers.

Hence, Q¢ is special among shapes that induce &, in that
it forms a subset of any other shape that also induces £. As
an aside, Supp. §G-C provides another interpretation. For any
&-inducing S, the subset of S that is “directly visible” from
0B is equivalent to Q¢. In other words, to get the minimal
inducing points from .S, we need not construct &; instead, we
can “look inwards” from OB and find the “observable” points.

In summary, (i) “inducement” defines how a shape S gives
rise to a VF &, which acts as its indicator along rays; (ii)
the constraints that define a VF £ (i.e., IO¢, DE¢, BCy¢) are
sufficient to guarantee that some point set must exist that
induces £ (i.e., every VF is the indicator of some shape); and
(iii) the positional discontinuities Q)¢ are the minimal closed
subset of S that induces a given £. Note, in Supp. §G-C1, we
survey work in shape-from-silhouette (e.g., [90]-[92]), visual
hulls (e.g., [93]), and space carving [94].

Nevertheless, questions still arise regarding VFs and their
representational capacity. One aspect of shapes “missed” by
VFs is internal structure: shape points that are completely
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surrounded by other shape points cannot be preserved by the
field. In other words, given a shape S with internal structure,
any S-induced field will not be able to recover such structure
(hence the existence of G[¢]). One can see this by noting
that Q¢ will not include such internal structure. These points,
however, fully encode the field (as they induce it). Combining
a VF with a distance field, as we will do next, enables a
complete shape representation, including internal structure.

C. View Consistency for Directed Distance Fields

We now move on to the theory of DDFs, where we will
combine a visibility field (VF) with a depth field. Analogous to
the previous section, we define view consistency (VC) through
a notion of “shape representation”; i.e., whether or not some
shape (point set) exists that induces the DDF. In this case,
the VF will be used to control where (in I') the distance field
needs to be constrained.’ Specifically, starting from a VF ¢
(with its associated constraints), on visible rays (£ = 1), we
derive constraints on a depth field d that are analogous to
those of the VF. With two additional constraints that ensure
the compatibility between ¢ and d, we then show the resulting
DDF (¢,d) is a VC shape representation.

Analogous to the BOZ field (Def. VIL.7), we start with the
following definition of a general non-negative field, which is
generally not sufficiently constrained to be represent a shape.

Definition VII.12: NNBC Field

An NNBC field on I' is a non-negative, bounded scalar
field that is piece-wise continuously differentiable along
rays, written d : I' — R>.

In general, NNBC fields need not have an obvious connec-
tion to any shapes. We treat such fields as putative represen-
tations for shapes — the goal is to understand the conditions
under which such fields are “equivalent to” some shape. Such
constrained fields should generate view-consistent depths.

Constraint Definition VII.4: BC,

An NNBC field d satisfies the Positive Boundary Condi-
tion BCy iff inf,cs2 d(p,v) >0V p € B\ B..

Recall that B\ B, is the “outer shell” of 5. In other words,
BC, demands that d cannot have any zeroes close to 05.
Next, we denote the infimum approached by d along v via

inf d(q— sv,v). (12)

Au(g,v) = li
d(q 1)) elJI})l s€(0,¢)

Constraint Definition VIL.5: DE,

An NNBC field d satisfies the Directed Eikonal Con-
straint DEy if Osf4(s|7) = —1, except at along-ray
zeroes (q,v), such that A,4(q,v) = 0.

d = 0 (a value at which it may potentially stay). Intuitively,
d must act like a distance function, along any ray.
Next, we denote the inf approached over all v’s via
Aq(q) =lim inf d(qg — sv,v).

el0 s€(0,¢)
ves?

Constraint Definition VIL.6: 10,

An NNBC field d satisfies the Isotropic Opaqueness
Constraint at a point ¢ € B if

(Aa(q) =0) = (Aa(g,v) =0Vwve 82) )

We say d is isotropically opaque, denoted 10,4, if it
satisfies the Isotropic Opaqueness Constraint V ¢ € B.

13)

(14)

Notice that 10 is stronger than (i.e., it implies) the follow-
ing constraint: for any (¢,v) € T,

(3v | Aalg,v) =0) = (Aa(g,v) =0V ). (15)

Namely, if d approaches zero at some position g from any
direction v, then it must approach zero at ¢ from all directions.
Together, these field constraints enable us to define a simple
DDF, which we show in Supp. G-B satisfies certain theoretical
consistency guarantees without the need for a VE.

Definition VII.13: Simple DDF

We define a simple DDF to be an NNBC field such that
104, BC,4, and DE, are satisfied.

Notice the close analogy between the constraints for simple
DDFs and VFs. Fig. 16 illustrates all six fundamental con-
straints. While we do not dwell on simple DDFs alone, they
enable us to define the following special set of points.

Definition VII.14: Positional Zeroes of Simple DDFs

We denote the positional zeroes of a Simple DDF as

Qa={p € B| Aalq) =0}. (16)

For simple DDFs alone, ()4 defines the shape represented
by the field in a formal sense (see Supp. Thm. G.2). However,
the positional zeroes will be fundamental to full DDFs as well.

Notice that the simple DDF constraints do not involve a VF;
hence, we next begin to link them. This actually relaxes some
requirements on d, as only visible rays are constrained.

Definition VII.15: Visible and Non-Visible Ray Sets

Let ¢ be a visibility field. We define the sets of visible

and non-visible rays, respectively, as
Rvlf] ={rel'[&(r) =1}
Rn[€] ={r e | {(r) = 0}.

A7)
(18)

The second constraint is on the derivative of d: it says that,
along any ray, d must decrease linearly, at unit rate, unless

SNote: in Supp. §G-B, we also discuss a way to define distance fields
without a VF, which can be constrained similarly.

We next limit the simple DDF constraints to Ry [£]. Define
Aqe(q) as the visible infimum of d at g:
Age(g) = lim inf

€l0 s€(0,¢)
v€S? | &(q,v)=1

d(q — sv,v).
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Figure 17: Illustration of inter-field compatibility (see Con.
Def. VIL.7), which ensures rays are visible iff they intersect the
LVDZs (Def. VII.17). See Fig. 16 for intra-field constraints.

Definition VII.16: £-Coherent Simple DDFs

Given a VF &, an NNBC field d is a £-coherent simple
DDF iff it satisfies
(I0g4,¢) Isotropic opaqueness on visible rays.

V(g v) € Rv[€]: Aaelq) =0 = Aa(q,v) =0.
(BCy,¢) Positive boundary condition on visible rays.

((p,v) € Rv[E] ApeB\B.) = d(p,v)>0.
(DEg ¢) Directed Eikonal constraint on visible rays.

(TeRvVEI Nd(T)>0) = 0Osfa(s|T)|s=0 =—1.

In words, a &-coherent depth field d satisfies the 10, BC,
and DE constraints whenever £ = 1 (i.e., it is a simple DDF
on Ry [£]). Outside of the visible rays Ry [£], d is essentially
unconstrained. These modified constraints allow us to define
the following modification of the positional zeroes.

Definition VII.17: Locally Visible Depth Zeroes

Let £ be a visibility field and d be &-coherent. Then the
locally visible depth zeroes (LVDZs) are given by

Qae=C ({q€Qa|3vst. &(qv)=1}),

where € is the closure operator.

19

The LVDZs thus include any depth zero (i.e., ¢ € Q4) that
is “locally visible” along some direction.

We now have three “fundamental point sets” associated to
a DDF, illustrated in Figs. 18 and 19. The LVDZs (Qg4,¢) are
analogous to the zeroes (), for simple DDFs and the discon-
tinuities Q¢ for VFs, defining which shape is represented.

First, note that {-coherence merely enforces d to be “in-
ternally” consistent (i.e., a simple DDF along visible rays).
Hence, it is not sufficient to ensure (£, d) actually represents a
shape. Two additional constraints are needed, which ensure &
and d are compatible (see Fig. 17). Both rely on the LVDZs.

Constraint Definition VIL.7: Compatibility

A visibility field ¢ and simple DDF d are compatible iff
(a) LVDZs are isotropically opaque with respect to &:

g€ Qie = TERV[{VTET. (20)
(b) Every visible ray must hit an LVDZ:
TERv[E] = [B]; NQue # 2. 1)

This is finally enough to define a full DDF, which we will
show is a VC shape representation.

Definition VII.18: Directed Distance Field (DDF)

A BOZ field ¢ and an NNBC field d form a Directed
Distance Field F = (£, d) iff:

1) ¢ is a visibility field.

2) d is a &-coherent Simple DDF.

3) ¢ and d are compatible.

The definition of a DDF can be intuited as combining a VF
with a simple DDF that is constrained only along visible rays,
along with two additional restrictions that force the two to be
consistent. The latter constraints hinge on the “locally visible”
zeroes ¢ € Qq¢ (i.e., at least one ray exists, along which ¢ is
visible at an infinitesimal distance). Such zeroes are (i) always
visible and (ii) every visible ray must intersect at least one.

Following the previous section on VFs, we next define
an approach to “field induction”: given a shape S, how can
we construct a DDF, consisting of a “field pair” (&, d), that
appropriately represents S? We then show that inducing a field
in this manner, versus having a DDF with constraints on local
field behaviour (i.e., Def. VII.18) are equivalent.

Definition VII.19: Induced Field Pair

Consider a shape S C B.. By Def. VIL.10, S induces
a unique visibility field, &. We also define an induced
distance field d to be any NNBC field that satisfies

d(t) = min |lg—p|| VT € Ry[]. (22)
q€[S]-

Then, any such pair (&, d) is an S-induced field pair.

This builds on the notion of shape-induced VFs
(Def. VIL.10). Recall, the induced visibility &(7) is one iff
T intersects S. Hence, for a visible ray 7 € Ry[¢], d
is constrained to always predict the distance to the closest
q € S;. Thus, Eq. 22 simply follows the definition of a ray-
based depth field from §III. Again, similar to Theorem VIIL.1,
when a shape .S induces a field pair F, we find that F' follows
the field requirements of DDFs (Def. VII.18).

Theorem VII.3: Induced Field Pairs are DDFs

Let S be a shape and F' = (£,d) be an S-induced field
pair. Then [’ is a DDF that satisfies Qq¢ = S.

Thus, any field generated from a shape is a DDF. We next
want to show the converse: any DDF is a VC representation of
some shape. Intuitively, this would imply our field constraints
(which do not refer to a predefined shape) are equivalent to
deriving the field from a shape. First, we require a notion of
equivalence between fields that ignores non-visible rays.

Definition VII.20: DDF Equivalence

Consider two DDFs, Fy = ({1,dp) and Fy = (&2,do).
Then F; and F; are equivalent iff (i) £1(7) = &(7) V7 €
I and (ii) dy(7) = do(7) V 7 € Ry [&1].
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p— d p—
d>0 d>0 E=1 E=0 &= E=0
Figure 18: Illustration of the fundamental point sets of a DDF. The positional depth zeroes, Q)4 (Def. VII.14), occur when

d(1) = 0 for some 7 = (p,v). The positional visibility discontinuities, )¢ (Def. VIL.9), demarcate where the field flips from
one (“seeing something”) to zero (“‘seeing nothing”). The locally visible zeroes, Qg4.¢ (Def. VII.17), mark positions that (i) are

0 dfo
1

zeroes of d (i.e., in @4) and (ii) are “visible” along some direction, at an infinitesimal distance. See also Fig. 19.

E=1_1 1 v
0 T
€\ It e
\ / ”'o ‘0‘
~ Qd,f'\ V4 ..""n.‘
5 =0 S —— -’ “

Figure 19: Example of the fundamental DDF point sets. The
VF is shown with green/solid (¢ = 1) and red/dashed (£ = 0)
arrows. Additional non-visible points are on the right (grey
dots). All such points are part of ()4; however, Q¢ includes
only the outer circle, where ¢ flips. In contrast, the LVDZs,
Qa,¢, encompass both the inner and outer circle. For DDFs,
Qe € Qq¢e € Qg (see Supp. Lemma G.3).

This enables defining when a DDF is a shape representation.

Definition VIL.21: DDFs as Shape Representations

A DDF F is view consistent (VC) iff it is equivalent to a
DDF that has been induced by a shape S. Le., F' is VC
iff 3 .5 s.t. F'is an S-induced field pair. In such a case,
we say that F' is a shape representation for S.

Finally, analogously to Theorem VII.2, we can assert that
the field constraints of Def. VII.18 are sufficient to guarantee
that a DDF represents some shape.

Theorem VII.4: Every DDF is View Consistent

Let F' = (£,d) be a DDF (Def. VIL.18). Then F' must be
VC (i.e., 3 a shape S such that F' is an S-induced field
pair). Further, Q4 ¢ is a shape that induces F'.

This theorem finally links fu/l DDFs and view consistency.
A DDF can therefore represent a shape in two equivalent ways:
(1) beginning with a point set and inducing a field pair from
it, or (ii) starting from a visibility field and a distance field,
and enforcing per-field requirements (BC, 10, DE), as well as
compatibility. We reiterate that Supp. §G has a more complete
exploration of these results, with proofs in Supp. §H.

The nature of the field constraints suggests an important
use case for DDFs in practice. Since field properties can
be checked in a point-wise manner (e.g., DE; asks for
along-ray derivatives to be —1), they are amenable to use
as differentiable regularization losses. This is similar to the
Eikonal loss used in SDFs (e.g., [60]-[64]), for example;
indeed, resolving these constraints for DDFs is reminiscent
of solving a 5D partial differential equation, where BC and

IO act like boundary conditions, while DE needs to be solved
across space. Advances in optimization of implicit fields with
differential constraints should make implementation of DDFs
more viable. In general, when designing a neural architecture
for a DDF, one can also check which theoretical properties are
guaranteed by the design and which may be violated. Hence,
we expect that our theoretical results will be useful in the
construction and analysis of any 5D geometry field, where
view consistency needs to be enforced. In this work, we
trained directly with 3D data, mitigating consistency issues;
however, deriving fields from less constrained data, such as
images, will require addressing such problems.

VIII. DISCUSSION

We have devised directed distance fields (DDFs), a novel
shape representation that maps oriented points to depth and
visibility values, and a probabilistic extension for handling dis-
continuities. In contrast to NeRFs or U/SDFs, depth requires
a single per-pixel forward pass, while normals use one further
backward pass. Efficient differentiable normals rendering is
thus much easier for DDFs than for for voxels, NeRFs, or
occupancy fields. Unlike meshes, DDFs are topologically un-
constrained, and rendering is independent of shape complexity.

We investigated a number of properties and use-cases for
DDFs, including 3D data extraction, fitting shapes, UDF ex-
traction, composition, generative modelling, and single-image
3D reconstruction. While DDFs form a continuous field of
depth images, recursive calls can be interpreted as tracing
inter-surface light paths. Finally, we examined the theory of
view consistency (VC) for DDFs, as their 5D nature permits
view-dependent geometric inconsistencies. We showed that a
small set of field constraints guarantee a given DDF is VC,
and hence a proper representation for some 3D shape.

For future work, using DDFs for inverse graphics (e.g., for
multiview stereo or novel view synthesis) seems promising,
particularly via constraints based on our VC results, as well
as handling volumetricity (not just surfaces), light transport,
and translucency. Finally, we hope to apply DDFs to other
areas, such as virtual reality and visuotactile perception, where
collision modelling and geometric rendering are important.
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