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Abstract. Motion segmentation is a well studied problem in computer
vision. Most approaches assume a priori knowledge of the number of
moving objects in the scene. In the absence of such information, mo-
tion segmentation is generally achieved through brute force search, e.g.,
searching over all possible priors or iterating over a search for the most
prominent motion. In this paper, we propose an efficient method that
achieves motion segmentation over a sequence of frames while estimating
the number of moving segments; no prior assumption is made about the
structure of scene. We utilize metric embedding to map a complex graph
of image features and their relations into hierarchically well-separated
tree, yielding a simplified topology over which the motions are segmented.
Moreover, the method provides a hierarchical decomposition of motion
for objects with moving parts.

Keywords: non-rigid motion segmentation, hierarchically well-separated
trees, metric embedding

1 Introduction

Motion segmentation aims to identify moving objects in a video sequence by
clustering features or regions over consecutive frames. There exist a wide vari-
ety of methods for motion segmentation. Image differencing [4,18] is among the
simplest methods available which consists of thresholding the intensity difference
between consecutive frames. Another group of techniques used in segmentation
is based on statistical models. Typically, the problem is formulated as a classifi-
cation task in which each pixel is classified as either foreground or background.
Maximum a posteriori (MAP) estimation [21], particle filters [20], and expecta-
tion maximization [22] are frameworks that are commonly exploited in statistical
approaches. Wavelets [15], optical flow [25], layers [17], and factorization [9,11,23]
form the basis of other common approaches to motion segmentation. One com-
mon drawback of many of these approaches is their reliance on a priori knowledge
of the number of moving objects in the scene. In this paper, we overcome this
drawback by approaching the motion segmentation problem from a graph the-
oretical perspective. From a complete graph over the set of image features, we
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use metric embedding techniques to yield a restricted tree topology, over which
a quadratic optimization problem formulation yields an estimate of the number
of motion clusters.

Due to its representational power, graphs are commonly used in many com-
puter vision tasks. Features extracted from an image can be represented by an
undirected complete graph with weighted edges. Since it is hard to solve prob-
lems over graphs in general, approximate solutions are a viable way to tackle
such problems. Metric embedding is one of the fundamental techniques used to
achieve this goal, and consists of mapping data from a source space to a “simpler”
target space while preserving the distances. It is well known that approximate
solutions to many NP-hard problems over graphs and general metric spaces can
be achieved in polynomial time once the data is embedded into trees. However,
such embeddings tend to introduce large distortion.

A common technique for overcoming such large distortion is the probabilistic
approximation method of Karp [12]. Utilizing probabilistic embedding, Bartal [1]
introduced the notion of hierarchically well-separated trees (HSTs), where edge
weights on a path from the root to the leaves decrease by a constant factor
in successive levels. Embedding graphs into HSTs is especially well-suited to
segmentation problems in computer vision, since the internal nodes of the tree
represent constellations of nodes of the original graph. Thus, HST structure
captures the segment-level information at its internal nodes along with the in-
dividual features at its leaves. Following Bartal’s seminal work, there have been
several studies on HSTs which improved the upper bound of distortion and in-
troduced deterministic embedding algorithms [2, 3, 16]. Finally, Fakcharoenphol
et al. [8] devised a deterministic algorithm that achieved embedding of arbitrary
metrics into HSTs with a tight distortion bound.

Given two consecutive frames of a video sequence along with a mapping be-
tween their features, our method first embeds the latter frame into an HST.
Since internal nodes of the HST correspond to clusters of features in the image,
our goal is to find a mapping between the features of the previous frame and the
internal nodes of the HST. This goal is achieved by minimizing a quadratic cost
function which maintains a balance between assigning similar features among
frames and minimizing the number of segments identified in the latter frame.
We also provide two extensions to our method. While our original formulation
provides a single level of clustering for each feature, our first extension allows
assigning a feature to more than one cluster. This translates into detection of
non-rigid motion of objects such as motion of fingers in a moving hand. Our
second extension is in applying the framework to an entire video sequence in an
online fashion. We achieve this by keeping track of feature associations at each
frame and calculate initial assignments of new frames by utilizing this informa-
tion. In the rest of the paper, we explain the theoretical details of our method
and provide its illustration over two consecutive frames of a video sequence as a
proof of concept. We leave empirical evaluation of the method as a future work.

The rest of the paper is organized as follows: Section §2 gives an overview
of notations and definitions. In Section §3, we state the optimization problem



Unsupervised Motion Segmentation Using Metric Embedding of Features 3

formulation, which is followed by its application to motion segmentation in Sec-
tion §4. Finally, in Section §5, we draw conclusions and discuss future work.

2 Notations and Definitions

The term embedding refers to a mapping between two spaces. From a compu-
tational point of view, a major goal of embedding is to find approximate solu-
tions to NP-hard problems. Another important use of embedding is to achieve
performance gains in algorithms by decreasing the space or time complexity
of a polynomial-time solvable problem. Given a set of points P , a mapping
d : P × P → R+ is called a distance function if ∀ p, q, r ∈ P , the following four
conditions are satisfied: d(p, q) = 0 iff p = q, d(p, q) ≥ 0, d(p, q) = d(q, p), and
d(p, q) + d(q, r) ≥ d(p, r). The pair (P, d) is called a metric space or a metric. A
finite metric space (P, d) can be represented as a weighted graph G = (V,E) with
shortest path as the distance measure, where points in P form the vertex set V
and pairwise distances between points become the edge weights. However, the
complexity of such graph-based problem formulations can be prohibitive, mo-
tivating approaches that reduce graph complexity. A commonly used approach
for decreasing graph complexity is based on changing the structure of the graph
by removing edges that change the distance metric of the graph, removing or
adding vertices, or changing the weights of edges. This approach, however, intro-
duces distortion on distances in the graph which is defined as the product of the
maximum factors by which the distances in the graph are stretched and shrunk.

In general, it is hard to find an isometric embedding between two arbitrary
metric spaces. Therefore, it is important to find an embedding in which the
distances between vertices of the destination metric are as close as possible to
their counterparts in the source metric space. In reducing the size of a graph
by removing vertices and edges, we’d like the pruning process to culminate in a
tree, since many problems can be solved much more efficiently on trees than on
arbitrary graphs. Embedding of graphs into trees is a very challenging problem,
even for the simple case of embedding an n-cycle into a tree. Karp [12] introduced
the idea of probabilistic embedding for overcoming this difficulty, where given a
metric d defined over a finite space P , the main idea is to find a set S of simpler
metrics defined over P which dominates d and guarantees the expected distortion
of any edge to be small.

Uniform metrics are among the simplest tessellation spaces where all dis-
tances are regularly distributed across cells. Such metrics are important from
a computational point of view since one can easily apply a divide-and-conquer
approach to problems under uniform metrics. Motivated by these observations,
Bartal [1] defined the notion of hierarchically well separated trees (HST) for
viewing finite metric spaces as a uniform metric. A k-HST is defined as a rooted
weighted tree, where edge weights from a node to each of its children are the
same and decrease by a factor of at least k along any root-to-leaf path. Assuming
that the maximum distance between any pair of points (diameter) in the source
space is ∆, the source space is separated into clusters (sub-metrics) of diameter
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∆
k . The resulting clusters are then linked to the root as child nodes with edges

of weight ∆
2 . The relation between parent and child nodes continues recursively

until the child nodes consist of single data elements.
Bartal has shown the lower bound for distortion of embedding into HSTs

to be Ω(log n). He also provided a randomized embedding algorithm that uti-
lizes probabilistic partitioning with a distortion rate of O(log2 n). In subsequent
work, both Bartal [2] and Charikar et al. [3] introduced deterministic algorithms
with smaller distortion (O(log n log log n)). Konjevod et al. [16] were the first to
improve the upper bound on distortion to O(log n) for the case of planar graphs.
Fakcharoenphol et al. [8] closed the gap for arbitrary graphs by introducing a
deterministic algorithm with a tight distortion rate (Θ(log n)). The deterministic
nature of their algorithm made this result of great practical value.

A fundamental set of problems in computer science involves classifying a set
of objects into clusters while minimizing a prescribed cost function. The main
goal of the classification problem is to assign similar objects to the same cluster.
Typical cost functions account for the cost of assigning an object to a cluster
and the cost of assigning a pair of similar objects to two unrelated clusters
(separation cost). The multiway cut problem of Dahlhaus et al. [5] is a simplified
classification task that accounts only for the separation cost. Namely, for a given
graph with nonnegative edge weights and a predefined set of terminal nodes, it
builds an assignment of nonterminals to terminals that minimizes the sum of the
edge weights between nodes assigned to distinct terminals:

Definition 1 Given a graph G = (V,E) with nonnegative edge weights w : E →
R and a subset T ⊆ V of terminal nodes, find a mapping f : V → T that satisfies
f(t) = t for t ∈ T , and minimizes

∑
uv∈E,f(u)6=f(v) w(u, v).

Karzanov [13] proposed a generalization of the multiway cut known as the
0-extension problem. In his formulation, the cost function accounts for distance
between terminals when measuring the cut weight of nonterminal edges. Specif-
ically, each term w(u, v) with {uv ∈ E, f(u) 6= f(v)} of the cost function in
Definition 1 will be replaced by w(u, v)δ(f(u), f(v)), where δ(f(u), f(v)) is the
distance between terminals to which u and v are assigned.

Finally, Kleinberg and Tardos [14] presented the most general form of the
classification task known as metric labeling problem. Given a set of objects P
and a set of labels L with pairwise relationships defined among the elements of
both sets, metric labeling assigns a label to each object by minimizing a cost
function involving both separation and assignment costs. Separation cost penal-
izes assigning loosely related labels to closely related objects while assignment
cost penalizes labeling an object with an unrelated label. The cost function Q(f)
can be stated as follows:

Q(f) =
∑
p∈P

c(p, f(p)) +
∑

e=(p,q)∈E

wed(f(p), f(q)).

where, c(p, l) represents the cost of labeling an object p ∈ P with a label l ∈ L
and d(·, ·) is a distance measure on the set L of labels. Although, there has
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been ample studies on solving classification problems using labeling methods,
their work was the first study that provided a polynomial-time approximation
algorithm with a nontrivial performance guarantee.

Metric labeling is closely related to one of the well-studied combinatorial
optimization problems called quadratic assignment. Given n activities and n
locations in a metric space, the goal of quadratic assignment is to place each
activity at a different location by minimizing the cost. Similar to the metric
labeling, there are two terms affecting the cost of assignments. Placing an ac-
tivity i at a location l introduces an operating cost of c(i, l). Moreover, pop-
ular activities should be located close to each other to minimize the overall
cost which leads the cost function to penalize the separation of closely re-
lated activities. Assuming that a value wij measures the interaction between
activities i and j, and a distance function d(l1, l2) measures the distance be-
tween labels l1 and l2, the quadratic assignment problem seeks to minimize∑
i c(i, f(i)) +

∑
i,j wijd(f(i), f(j)) over all bijections f .

3 Optimizing Number of Segments

Motivated by the quadratic assignment and metric labeling problems, we pose
the following optimization problem:

Definition 2 Given an object graph GO and a label graph GL both equipped
with shortest path metric, and a similarity function defined between nodes of the
two graphs, find a mapping f from nodes of GO to clusters of nodes of GL, in
which similar nodes of the two graphs are matched and a minimum number of
clusters of GL is used in the mapping.

This problem differs from the quadratic assignment problem in that the sizes of
the two graphs can be different and the nodes of the first graph match to clusters
of nodes in the second graph. The method that we propose to solve this problem
involves HSTs which makes it closely related to Kleinberg and Tardos’ approach
on metric labeling. Our method differs from [14] in that we utilize HSTs to
optimize the number of active labels whereas they use it in obtaining a linear
programming formulation for the problem. In the next section, we will show
how the solution to this problem can be applied to motion segmentation while
overcoming the requirement of a priori knowledge of the number of clusters.

We tackle the problem in two steps which consist of: 1) embedding GL into
an HST; followed by 2) solving a quadratic optimization problem. We assume
that a mapping of object nodes p ∈ GO to label nodes a ∈ GL is initially given.
Our goal is to update this mapping by minimizing the number of so called active
labels, i.e., labels that have objects assigned to them.

Embedding GL into the HST H results in a natural clustering of features
of the label graph. The leaf nodes of H will correspond to the label nodes GL,
whereas internal nodes ofH will represent clusters of labels in the GL. The initial
assignment between objects and labels can be visualized as assigning object
nodes to the leaves of the resulting label tree, as shown in Fig. 1, where only



6 Y. Osmanlıoğlu, S. Dickinson, A. Shokoufandeh

R

T

l il1 lm

. . . . . .

. . 
.

. . .
p1 pa pnpb

j levels

∆
2

∆
2k

∆
2

∆
2

∆
2k

∆
2kj

∆
2kj

∆
2kj

∆
2kj

∆
2kj

Fig. 1. Embedding of the object graph GO into the HST representation H of the
label graph GL. Object nodes pi ∈ GO that are assigned to labels li ∈ GL are shown
connected to the leaves of the HST with H unweighted edges. T is an internal node
that represents a cluster of labels, which is the root of the subtree emanating from it.
R represents the root of H.

the leaf level nodes are active. We utilize the hierarchical structure of H in order
to update the mapping such that the object nodes get assigned to the internal
nodes ofH as labels instead of to its leaves. The following quadratic optimization
problem provides an update mechanism to the initial mapping.

min
∑
p∈GO

∑
T∈H

d(p, T )wp,TxT +
∑

p,q∈GO

∑
T,T ′∈H

d(T, T ′)wp,TxTwq,T ′xT ′ (1)

s.t.
∑
T∈H

wp,TxT = 1, ∀p ∈ GO (2)

xT ∈ {0, 1}

where wp,T = 1 if the leaf li that the object p is assigned to is a descendant of
internal node T ∈ H and wp,T = 0 otherwise, and d(p, T ) is the distance between
li and T measured on HST H. Note that value of wp,T is known a priori based
on the initial assignment of objects to labels for all p ∈ GO and T ∈ H. The first
term in the above objective function will be minimized if all the objects in GO
are assigned to labels at the leaf level. The second term of the objective function
will reduce the number of active labels by enabling nodes that are closer to each
other in the tree. Constraint (2) ensures that only one of the labels on the path
from pi ∈ GO to the root R will become activated. In Fig. 2, as T and T ′ are
chosen closer to the root R, the contribution of the second term to the cost will
be reduced. Also note that the contribution of the second term will be zero for
the two nodes p and q if one of their common ancestors becomes activated.

We note that representing (1) as a positive semidefinite program will simplify
the quadratic terms and help us prove the performance bound of the method
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Fig. 2. Two objects being assigned to separate non-leaf labels.

after relaxation. Since xTi ∈ {0, 1}, we have:

min
∑
p∈GO

∑
T∈H

d(p, T )wp,T · xT = min
∑
p∈GO

∑
T∈H

d(p, T )wp,T · x2T .

Let T1, · · · , Tc be the subtrees inH and X be a matrix such that X =
[
xTi

xTj

]
i,j=1..c

.

Since X = x · xT , where x = [xT1 , · · · , xTc ], X is clearly a PSD matrix. Thus,
(1) can be reformulated as follows:

min
∑
p∈GO

∑
i=1..c

d(p, Ti)wp,Ti
Xi,i +

∑
p,q∈GO

∑
i,j=1..c

d(Ti, Tj)wp,Ti
wq,Tj

Xi,j (3)

s.t.
∑
i=1..c

wp,TiXi,i = 1, ∀p ∈ GO (4)

X is PSD

Xi,j ∈ {0, 1}.

Since solving (3) is NP-hard, finding approximate results is desirable. One can
obtain a fractional solution to (3) in polynomial time by relaxing the integrality
constraint. Then, an approximation can be achieved by using a proper round-
ing technique [24]. We leave finding a proper rounding algorithm and making
performance bound proofs as a future work.

4 Application to Motion Segmentation

Formulation (3) can be applied to the motion segmentation problem where
graphs GO and GL correspond to features of two consecutive frames. Here the
goal is to segment objects in a video sequence according to the relative move-
ment of features across the frames. In this section, we illustrate the application
of our method to motion segmentation as a proof of concept and then suggest
improvements to the formulation.
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Fig. 3. Initial mapping between individual features of the two frames. Images taken
from the video in [7].

Using the proposed method, we first obtain clusters of features by embedding
GL into the HST and then minimize the number of segments by solving the
optimization problem based on the relative motion of the features. In general,
motion segmentation methods fall short of segmenting sequences without a priori
knowledge of the number of independently moving objects. Our formulation
overcomes this problem by optimizing the number of segments.
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Fig. 4. Embedding features of the second frame into an HST. In the tree, features
of the second frame are located at leaf level of the tree and represented as circles.
The features of the first frame are represented as triangles and shown as mapping to
corresponding features of second frame.
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Fig. 5. Darkly shaded internal nodes of the HST are used as labels in the assignment.
This implicitly enforces segmentation in the second frame, which is obtained based on
the motion.

We begin by establishing a mapping between the features of two consecu-
tive frames by using a graph matching method such as [6, 19] (see Fig. 3). Our
method then embeds the feature graph of the second frame into an HST us-
ing the deterministic algorithm in [8]. As illustrated in Fig. 4, the embedding
procedure recursively groups features into hierarchical clusters. In the resulting
HST, actual features are located in the leaf level whereas internal nodes of the
tree correspond to clusters of features of the original image. The initial mapping
then can be visualized as an assignment of the features of the first frame into
the leaves of the resulting HST. By solving the optimization problem (3), the
initial mapping is updated such that features of the first frame are mapped to
the internal nodes of the HST which represent segments of features in the second
frame. Some of the segments will become active as a result of the optimization,
shown in darker color in Fig. 5. Thus, features of the first frame enforce a cluster-
ing of the second frame based on the similarity between features and the choice
of internal nodes of HST to become active. Fig. 6 illustrates the result of the
segmentation. In the rest of this section, we will propose further improvements
to our method.
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Fig. 6. Image features are segmented into clusters representing independent motions;
features with the same symbol belong to the same cluster.
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Fig. 7. An object having two active labels in its path to the root.

4.1 Adjusting Rigidity in Segmentation

Due to (4) being an equality, solving (3) will activate exactly one label in a path
from each leaf to the root R, as shown in Fig. 2. By relaxing this constraint, we
can obtain a partial hierarchical labeling where a node will be assigned to several
labels that are hierarchically related to each other, demonstrated in Fig. 7. This
can be achieved by replacing (2) with the following:∑

T∈H
wp,T · xT ≥ 1, ∀p ∈ O (5)

This relaxation can be used for relaxing the rigidity assumption in motion
segmentation. For example, label T ′ might represent the features corresponding
to the fingers of a hand, while label T represents the features of the entire hand,
including the fingers, which move relative to each other.

4.2 Aggregating Motion Over Frames

So far we proposed a framework for establishing motion segmentation of two con-
secutive frames where we initially assumed in (1) that prior assignment informa-
tion wp,T for all p ∈ GO is given. Considering the application of the framework to
a video sequence, we would be interested in utilizing the assignment information
of the previous pair of frames in the calculation of the initial mappings of the
succeeding frame pair. This will allow us to aggregate motion information over
the video sequence in an online fashion as new frames appear. Assume without
loss of generality that there exist k labels at a certain level of the tree, one can
set the assignment probabilities as wp,T = 1/k for all internal nodes T at that
level. This uniform association scheme is suitable for the features that appear
for the first time in the sequence. For the features that appear in more than one
frame, we propose a voting scheme over the image sequence which keeps track of
associations between features and clusters. Specifically, if a feature p appears in
close proximity of another feature q in several prior frames but it never appears
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close to feature r, then probability of assigning p and q to the same cluster will be
higher than that of p and r at this level. Thus, newly appearing features will get
assigned based only on feature similarities whereas assignment of reappearing
features will be biased towards highly correlated recurring features.

5 Discussion and Future Work

In this paper, we presented a novel technique for motion segmentation which, un-
like many existing techniques, does not require a priori knowledge of the number
of moving objects. Our method overcomes this constraint by embedding image
features into hierarchically well-separated trees and then solving a quadratic op-
timization problem over the tree. We demonstrate the use of our method over
two consecutive frames of a walking athlete. We also provided two extensions
to our initial formulation. First, we relax the constraint of assigning one label
to each feature, enabling us to allow for nonrigidity in motion segmentation,
such as detecting the motion of a hand versus the motions of fingers within a
moving hand. Second, we propose using the footprints of a feature over previous
frames to define an assignment probability for the features in the current frame.
In future work, we will apply this strategy to a video sequence and compare the
results with the state of the art.

Our method has a limitation arising from the way HST embedding is per-
formed. The embedding algorithm of [8] clusters the features based on their spa-
tial distribution. Thus, for example, in Fig. 6, the features located at the back of
the walking athlete and the upper part of the arm are segmented together. How-
ever, we would expect the features at the arm to be clustered together with the
features of the hand. One of the reasons for this artifact is the low density of the
features that we used for demonstrating the method. As the number of features
extracted in a frame increases, this misclassification will be less prominent.

Another direction for future improvement lies in the calculation of initial
matchings for consecutive pairs of frames. Our method assumes that we are
given an initial assignment of features between the former and the latter frames
which is then updated to obtain the optimal number of active labels. As we
noted earlier, this assumption is viable since existing methods can be efficiently
utilized to obtain such a mapping. However, it would be interesting to update
an existing initial mapping between the previous two frames to obtain an initial
mapping for the next frame. This, in turn, translates to making dynamic updates
in an existing matching as the underlying topology changes. Developing an algo-
rithm along the lines of Goemans and Williamson’s primal-dual method [10] for
obtaining dynamic matching is a promising direction for future study. Proposed
method provides an online segmentation in that it makes use of the motion in-
formation obtained so far in a video sequence to conclude about the clustering of
features in a new frame. Investigating the possibility of an optimization formu-
lation that calculates the segmentation over the entire video sequence is another
promising direction for future study. We did not address how to handle the noise
and occlusion of object in this study which requires further investigation.
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