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Shape-Based Measures Improve Scene
Categorization

Morteza Rezanejad, John Wilder, Dirk B. Walther, Allan D. Jepson, Sven Dickinson, Kaleem Siddiqi

Abstract—Converging evidence indicates that deep neural network models that are trained on large datasets are biased toward color
and texture information. Humans, on the other hand, can easily recognize objects and scenes from images as well as from bounding
contours. Mid-level vision is characterized by the recombination and organization of simple primary features into more complex ones by
a set of so-called Gestalt grouping rules. While described qualitatively in the human literature, a computational implementation of these
perceptual grouping rules is so far missing. In this article, we contribute a novel set of algorithms for the detection of contour-based
cues in complex scenes. We use the medial axis transform (MAT) to locally score contours according to these grouping rules. We
demonstrate the benefit of these cues for scene categorization in two ways: (i) Both human observers and CNN models categorize
scenes most accurately when perceptual grouping information is emphasized. (ii) Weighting the contours with these measures boosts
performance of a CNN model significantly compared to the use of unweighted contours. Our work suggests that, even though these
measures are computed directly from contours in the image, current CNN models do not appear to extract or utilize these grouping
cues.

Index Terms—Scene Categorization, Shape Based Measures, Gestalt Grouping Cues, Scene Perception, Contour Geometry, Medial
Axis Transform.

✦

1 INTRODUCTION

Present convolutional neural network (CNN)-based com-
puter vision systems offer competitive recognition perfor-
mance for various tasks. Although the achievements of
CNN-based algorithms have changed the landscape of com-
puter vision and machine learning in recent years, these
models still lack some of the key capabilities that the human
visual system has. Current deep neural network models
are typically extremely data-hungry and do not necessarily
represent all structural visual cues; rather, they extract and
match appearance-based features to optimize their perfor-
mance. This contrasts with human visual perceptual capa-
bilities. As an example, while a computer vision system may
need to train on hundreds of images of a cat, a child can
learn this abstract category from a few example sketches
of their outlines [1]. Such observations highlight a role for
the exploitation of other visual cues such as shape-based
ones in computer vision-based systems. These cues may
lead us to better perceive the abstract form of a visual image
and to efficiently and robustly generalize that abstract form
to new exemplars of the same category. What mechanisms
does the human visual system use in order to organize this
potentially highly complex visual information to support
high-level visual reasoning? And what can we learn from
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these principles for improving the performance of artificial
vision systems?

While neural network models have provided a substan-
tial boost in recognition and categorization performance,
their complexity has prevented us from understanding how
visual features are organized and how such organization
is exploited in a meaningful way. On the other hand, the
human visual system can readily exploit those visual fea-
tures in both real-world and abstract scenarios, including
the recognition or categorization of objects or entire scenes.
In this article, we focus on the scene categorization problem
and explore whether convolutional neural network archi-
tectures can benefit from organization principles that are
inspired by biological vision systems (see Fig. 1).

Scene categorization cannot be easily disentangled from
the recognition of objects, since scene classes are often de-
fined by a collection of objects in context. A beach scene, for
example, would typically contain umbrellas, beach chairs,
and people in bathing suits, all of which are situated next
to a body of water. A street scene might have roads with
cars, cyclists, and pedestrians as well as buildings along
their sides. How might computer vision systems tackle this
problem of organizing objects and object parts to support
scene categorization?

In human vision, perceptual organization is thought to
be affected by a set of heuristic organizing rules originating
from Gestalt psychology [3]. Such rules posit that visual
elements ought to be grouped together if they are, for
instance, similar in appearance, in close proximity, or if they
are symmetric or parallel to each other. Originally devel-
oped as ad-hoc heuristics, these rules have been validated
empirically, even though their precise neural mechanisms
remain elusive.

Perceptual organization cues, such as those based on
symmetry, are thought to aid in high-level visual tasks, such
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Fig. 8. Left: A comparison of human scene categorization performance (top row) with CNN performance (middle and bottom rows). As with the human
observer data, CNNs perform better on the top 50% half of each split according to each salience measure, that the bottom 50% half. In each plot chance
level performance (1/6 for Artist Scenes and 1/67 for MIT67) is shown with a dashed line. Right: We consider an o�ce scene and create splits of the artist
generated line drawings, each of which contains 50% of the original pixels, based on ribbon symmetry (top row), taper symmetry (middle row) and local
contour separation (bottom row) based salience measures.
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Fig. 9. (Best viewed by zooming in on the PDF.) A schematic view of the VGG16 architecture with salience weighted contours used as the 3 input channels
(see Table 1 for the specific sets of input channels).

salience, on the other hand, provides a more distinct and com-
plementary perceptual cue for grouping.

For MIT67 the performance of 79.49% on photographs is
consistent with that reported in Zhou et al. (2018). Remark-
ably, 75% of this level of performance (a level of 60.73%)
can be obtained by using only Logical/Linear line drawings.
The overall performance goes up to 65.79% (or 82.8% of the
performance on photographs) when using contours weighted
by ribbon and separation salience. For MIT67, we have also
compared the performance (fine-tuned) Hybrid1365 VGG on
photographs (79.49% top-1) with photographs with contours,
ribbon, and separation salience weighted contours overlayed

(82.05% top-1). Thus, perceptually weighted contour features
can boost overall performance of the network for photographs
as well. To analyze the e↵ect of adding additional features (i.
e. salience based measures), we implemented an extra set of
experiments where we looked at the e↵ect of randomizing the
salience measure across the contours. For each line drawing,
we considered the set of contour fragments LineDrawing =
{C1,C2, ...,Cn}) where Ci = {(xi1, yi1), ..., (xim, yim)} represents
a contour fragment and a specific channel of salience mea-
sure (S alienceChannel = {S 1, ..., S n}) for that line drawing
where S i = {si1, ..., sim} is the salience scores corresponding
to Ci. To create a randomized condition, we take the set of
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Fig. 1: (Best viewed by zooming in on the PDF.) An illustration of our approach using an example from a database of
line drawings of natural scenes. In this pipeline, we first extract line drawings of the input image, then its Medial Axis
Transform (MAT) is computed and then the skeletal points on the MAT are scored based upon one of our importance score
measures. Finally, they are projected back onto the contours. The figure on the top left shows an example scene used in our
pipeline, and the figure below presents the jet colormap visualization of its contours using our medial axis based contour
importance measures, which are discussed in Section 3.

as object detection, because symmetric contours are more
likely to be caused by the projection of a symmetric object
than to occur accidentally. In the categorization of complex
real-world scenes by human observers, local contour sym-
metry does indeed provide a perceptual advantage [4, 5],
but the connection to the recognition of individual objects is
not as straightforward as it may appear.

In vision, symmetry, proximity, good continuation, con-
tour closure, and other cues have been used for image
segmentation, curve inference, object recognition, or tasks
such as object manipulation [6, 7, 8, 9]. Instantiations of
such organizational principles have found their way into
many computer vision algorithms and have been the subject
of regular workshops on perceptual cues in artificial vision
systems [10]. Inspired by Gestalt principles, [11] used mea-
surements of edge co-occurrence statistics for the task of
contour grouping in natural images. [12] found that “good
continuation” can help predict the arrangement of oriented
elements such as edges or line segments present in a dataset
of visual scenes. [13] tried to estimate the likelihood dis-

tributions required to construct an optimal Bayesian model
for contour grouping using Gestalt laws and found that each
of these cues has a different power. [14] proposed a search
algorithm to compute candidate closed object boundaries by
combining prior probabilistic knowledge of the appearance
of the object with probabilistic models using perceptual
grouping.

Although scientists have studied the role of perceptual
organization cues in vision for decades, these cues have
not been used extensively in object recognition and scene
categorization problems. This may be a result of the ability
of CNN-based systems to accomplish scene categorization
on challenging databases, in the presence of sufficient train-
ing data, directly from pixel intensity and colour in pho-
tographs [15, 16, 17, 18]. CNNs begin by extracting simple
features, including oriented edges, which are then suc-
cessively combined into more and more complex features
in a succession of convolution, nonlinear activation, and
pooling operations. The final levels of CNNs are typically
fully connected, which enables learning of object or scene
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Fig. 2: Using the divergence theorem, [2] identifies medial axis points by considering the behaviour of the average outward
flux (AOF) of the gradient of the Euclidean distance function to the boundary of a 2D object, through a shrinking disk. In
particular, the limiting AOF value of all points not located on the skeleton is equal to zero. Starting with the boundary of
a 2D object (A.), we can first compute the distance map to the boundary (B.), and then we can compute the AOF map (C.)
from the distance. Finally, by keeping the non-zero AOF points (smaller than a particular threshold in the discrete space),
we can get a medial axis transform (D.). The local geometry of a maximal inscribed disk centred at the skeletal point p
with radius r and with object angle θ. The maximal inscribed disk touches the boundary at two points b±1. As can be seen
in this figure, each point on the skeleton has two or more corresponding boundary points. Therefore, given a mapping
between boundary points to skeletal points, it is possible to invert that mapping to reconstruct the boundary purely from
skeletal points and their properties.

categories [19, 20, 21, 22]. Unfortunately, present CNN ar-
chitectures do not allow for properties of object shape to be
represented explicitly. This limitation has been recognized
and is the subject of some promising new work in the field
[23, 24, 25, 26]. Human observers, in contrast, recognize
an object’s shape as an inextricable aspect of its properties,
along with its category or identity [27, 28].

Comparisons between CNNs and human and monkey
neurophysiology appear to indicate that CNNs replicate the
entire visual hierarchy [29, 30, 31]. Does this mean that
the problem of perceptual organization is now irrelevant
for computer vision? In the present article, we argue that
this is not the case. Rather, we show that CNN-based
scene categorization systems, just like human observers, can
benefit from explicitly computed contour measures derived
from Gestalt-based perceptual cues. We here demonstrate
the computation of these measures as well as their power to
aid in the categorization of complex real-world scenes.

To effect our study, with its focus on the geometry of
scene contours, we use the medial axis transform (MAT) as
a representation. The MAT is defined as a set of maximal
inscribed disks in the region enclosed within a boundary,
along with the radii of these disks. We apply the same
algorithm for computing the medial axis to analyze line
drawings of scenes of increasing complexity as the one first
reported in [2]. We implemented an accurate system for
extraction of average outward flux skeletons, which is avail-
able here: https://github.com/mrezanejad/AOFSkeletons
(see Fig. 2). This algorithm computes the average outward
flux (AOF) of the gradient of the Euclidean distance function
through shrinking circular disks for each point in the image
plane, where the boundaries to compute the distance maps
are from the line drawings of the scenes. With its explicit
representation of the regions between scene contours, the
medial axis allows us to directly capture importance mea-
sures related to local contour separation and local contour

symmetry.

We introduce three novel measures of local symmetry
using ratios of length functions derived from the medial
axis radius along with skeletal segments and the curvature
function derived from the medial axis tangent and the unit
normal vectors. Distinct from the approach in [4], these new
measures have clearer geometric interpretations and have a
further advantage that they are essentially parameter-free.
As ratios of commensurate quantities, these are unitless
measures, which are therefore invariant to image re-sizing.
We also introduce a measure of local contour separation,
which is mathematically connected to the symmetry mea-
sures. We describe methods of computing our perceptu-
ally motivated importance measures from line drawings of
complex real-world scenes, covering databases of increasing
complexity. Fig. 1 presents an illustrative example of a pho-
tograph from an Artist Scene Database, along with all the
steps applied to compute importance measures using our
medial axis transform and then using it as an input chan-
nel to a CNN model. Observe how the parallelism-based
measure highlights the boundaries of trees, where parallel
contours in scenes are shown to facilitate categorization in
scenes by humans. Our experiments will show that scene
contours weighted by these measures can boost the accuracy
of CNN-based categorization of scene line drawings, despite
the absence of colour, texture, and shading cues. Our work
shows that measures of perceptual organization cues for
contours, which are simply functions of the contours them-
selves, are beneficial for scene categorization by computer
vision methods, yet they are not automatically extracted by
state-of-the-art CNN-based scene recognition systems.

In order to be able to use shape-based importance mea-
sures, we need to obtain line drawings of photographs first.
We describe this step in Section 2. We then discuss how our
contour importance-based measures are computed using the
medial axis as a representation. We provide mathematical
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Fig. 3: A,B,C: Example scenes of different line drawing generation pipelines of this project for a qualitative comparison
to the ground truth and actual photograph. D: Evaluation of line drawing generation frameworks on the Artist Scene
Database. Both approaches are ranked according to their maximum F-measure 2·Precision·Recall

Precision+Recall with respect to human
drawn line drawings. Iso-F curves are shown in green.

details for each of the four methods presented in this paper
and show examples of how our scores vary across simple
shapes in Section 3. In Section 4, we show the results from
our computational and behavioural experiments. We com-
pare human scene categorization performance with CNN
performance. Moreover, we show that CNNs benefit from
these additional importance measures and that these ben-
efits are tied to these specific shape-based features. Finally
we conclude with a discussion of our findings in Section 5.

2 SCENE REPRESENTATION BY LINE DRAWINGS

Previous work has shown that, even though seemingly
impoverished in their feature content, line drawings of
natural scenes contain rich information about scene content
[32, 33, 34, 35, 36]. This information is not necessarily dis-
tributed uniformly, rather we might find more information
along with some parts of contours than others. To study
this, we focus on extracting outlines from visual scenes. In
this section, we show how each line drawing of a scene is
generated and used in our pipeline.

2.1 Artists Generated Line Drawings
We utilize a dataset of hand-drawn tracings of scenes that
helped us develop our measures and perform initial tests.
Colour photographs of six categories of natural scenes
(beaches, city streets, forests, highways, mountains, and
offices) were downloaded from the internet, and those rated
as the best exemplars of their respective categories by work-
ers on Amazon Mechanical Turk were selected [37]. Line
drawings of these photographs were generated by trained
artists at the Lotus Hill Research Institute [33]. Artists traced
the most important and salient lines in the photographs on
a graphics tablet using a custom graphical user interface.
Contours were saved as successions of anchor points. For
the experiments in the present article, line drawings were
rendered by connecting anchor points with straight black
lines on a white background at a resolution of 1024 × 768
pixels. The resulting database had 475 line drawings in total
with 76-80 exemplars from each of 6 categories: beaches,
mountains, forests, highway scenes, city scenes, and office
scenes. Images with fire or other potentially upsetting con-
tent were removed from the image set (five images total).

2.2 Machine Generated Line Drawing

Given the limited number of scene categories in the Artist
Scene Database, particularly when compared to other com-
puter vision studies, we worked to extend our results to two
popular, and much larger, scene databases of photographs
- MIT67 [38] (6700 images, 67 categories) and Places365
[18] (1.8 million images, 365 categories). Producing artist-
generated line drawings on databases of this size was not
feasible. Instead, we generated such line drawings algorith-
mically. We utilized two different edge detection algorithms,
one from the family of learning-based edge detectors and
one from the family of classical edge detectors. Each of these
edge detectors produces an edge map image that represents
the given image’s edges, lines, or curves. Each of these edge
maps was processed and traced to obtain contour fragments
1 pixel wide.

2.2.1 Edge Detection Using Structured Forests
Initially, in our first set of experiments, we fine-tuned
the output of the Dollar edge detector [39], using the
publicly available structured edge detection toolbox.
From the edge map and its associated edge strength, we
produced a binarized version, using per image adaptive
thresholding. The binarized edge map was processed
to obtain contour fragments 1 pixel wide. Each contour
fragment was spatially smoothed by convolution with
a Gaussian with σ = 1 pixel to mitigate discretization
artifacts. The same parameters were used to produce all the
MIT67 and Places365 line drawings. We confirmed that on
the Artist Scene Database the machine-generated contour
pixels and the artist’s line drawings had 90% of the contour
pixels in common. Fig. 3B shows a typical line drawing
from the Artist Scene Database, produced using Dollar’s
framework. CNN-based scene categorization results using
Dollar’s edge detector have been reported in [40]. The code
used to generate this type of line drawing is released here
https://github.com/mrezanejad/DollarLineDrawing.

2.2.2 Logical/Linear Operators
Although very popular, Dollar’s edge detection algorithm
has some shortcomings when trying to interpret the results
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as oriented edge elements, especially near contour junc-
tions. We therefore shifted to a modified version of the
Logical/Linear edge detector by [41], using their publicly
available open-source implementation. This approach has
the advantage of being devised to recover image curves
while preserving singularities and junctions. We briefly
review the edge curves as modelled in [41].

T(p)

N(p)C(α)

C(p)

C(β)

Fig. 4: An image curve C : p ∈ P → R2 parameterized over
the interval P = [α, β] with unit tangent vector T(p), and
unit normal vector N(p).

Consider an image I as an analytical intensity surface
I : R2 → R, and let C :p ∈ P → R2 represent a smooth
curve parameterized by P , where P is an interval P = [α, β]
in R (see Fig. 4). The normal cross section Np(t) at the curve
point C(p) is given by:

Np(t) = I(C(p) + tN(p))), p ∈ P, t ∈ R. (1)

Using local structural conditions in the directions tangential
and normal to the curve, the following edge curve is defined
as suggested in [41]: C is an Edge iff C is an image curve
such that the following condition holds for all p ∈ P :

lim
t→0−

Np(t) > lim
t→0+

Np(t)

In [41], operators are designed to respond when the edge
condition is met locally in an image, and if so, an edge or
a line is reported. Fig. 3C shows some typical machine-
generated line drawings from the Artist Scene Database
using the Logical/Linear method.

In our experiments, we produced a binarized ver-
sion from the output edge map and its associated edge
strength and edge directions. The implementations for this
type of line drawing generation are available at https://
github.com/mrezanejad/LineDrawingExtraction. We com-
pared edges obtained using Logical/Linear operators and
Dollar’s edge detector with the artists’ actual line drawings
(see Fig. 3). In Fig 3D, we show the Precision-Recall curve
for both of these methods. Logical/Linear performs slightly
better in terms of F-measure performance on the Artist
Scene Database.

3 MEDIAL AXIS BASED CONTOUR IMPORTANCE

Owing to the continuous mapping between the medial axis
and scene contours, the medial axis provides a convenient
representation for designing and computing Gestalt contour
importance measures based on local contour separation and
local symmetry (see Fig. 2 for more on the definition of the
medial axis).

We designed a measure to reflect local contour separa-
tion using the radius function along the medial axis which

gives the distance to the two nearest scene contours on
either side. Local parallelism between scene contours can
also be directly captured by examining the degree to which
the radius function along the medial axis between them
remains locally constant. If contours taper off, as in the
case of a set of railway tracks extending to the horizon
under perspective projection, one can examine the degree to
which the first derivative of the radius function is constant
along a skeletal segment. Finally, if we assume that mirror
symmetry is understood based on reflection on a straight
symmetry axis, we can measure the curvature of the medial
axis along skeletal fragments. We introduce novel measures
to capture local separation, parallelism, taper, and mirror
symmetry, based on these ideas. All of the introduced
measures here are implemented and available for use at
http://mlvtoolbox.org/ [42].

In the following we shall let p be a parameter that runs
along a medial axis segment, C(p) = (x(p), y(p)) be the
coordinates of points along that segment, and r(p) be the
medial axis radius at each point. We shall consider the
interval p ∈ [α, β] for a particular medial segment. The arc
length of that segment is given by

L =

∫ β

α

||∂C
∂p

||dp =

∫ β

α

(x2
p + y2p)

1
2 dp. (2)

3.1 Separation

We now introduce an importance measure based on the
local separation between two scene contours associated
with the same medial axis segment. Consider the interval
p ∈ [α, β]. With r(p) > 1 in pixel units (because two scene
contours cannot touch) we introduce the following contour
separation-based importance measure:

Sseparation = 1−
(∫ β

α

1

r(p)
dp

)
/(β − α). (3)

This quantity falls in the interval [0, 1]. The measure in-
creases with increasing spatial separation between the two
contours. In other words, scene contours that are further
apart are more salient by this measure.

3.2 Parallelism

Now consider the curve Ψ = (x(p), y(p), r(p)). Similar to
Equation 2, the arc length of Ψ is computed as:

LΨ =

∫ β

α

||∂Ψ
∂p

||dp =

∫ β

α

(x2
p + y2p + r2p)

1
2 dp. (4)

When two scene contours are close to being parallel locally,
r(p) will vary slowly along the medial segment. This moti-
vates the following parallelism importance measure:

Sparallelism =
L

LΨ
=

∫ β

α
(x2

p + y2p)
1
2 dp∫ β

α
(x2

p + y2p + r2p)
1
2 dp

. (5)

This quantity also falls in the interval [0, 1] and is invariant
to image scaling since the integral involves a ratio of unitless
quantities
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Shape Parallelism Taper MirrorSeparation

Fig. 5: An illustration of parallelism score, taper score, contour separation score, and mirror symmetry score for four
different contour configurations. See text for a discussion.

3.3 Taper
A notion that is closely related to that of parallelism is
taper; two scene contours are taper symmetric when the
medial axis between them has a radius function that is
changing at a constant rate, such as the edges of two parallel
contours receding into depth when viewed in perspective.
To capture this notion of symmetry, we introduce a slight
variation where we consider a type of arc-length of a curve
Ψ′ = (x(p), y(p), dr(p)

dp ). Specifically, we introduce the fol-
lowing taper importance measure:

STaper =
L

LΨ′
=

∫ β

α
(x2

p + y2p)
1
2 dp∫ β

α
(x2

p + y2p + (rrpp)2)
1
2 dp

. (6)

The bottom integral is not exactly an arc-length, due to the
multiplication of rpp by the factor r. This modification is
necessary to make the overall ratio unitless. This quantity
also falls in the interval [0, 1] and is invariant to image
scaling. The measure is designed to increase as the scene
contours on either side become more taper symmetric, as in
the shape of a funnel, or the sides of a railway track receding
in the distance.

3.4 Mirror Symmetry
Mirror Symmetry is commonly thought to be the symmetry
caused by reflection across a straight axis. Many objects
and shapes we see in nature are mirror-symmetric, mak-
ing mirror symmetry a useful heuristic for detecting likely
object locations. In this section, we propose a notion of
local mirror symmetry based on the curvature of the medial
axis. A straight medial axis allows for the contours on
either side to be related to each other by reflection over
that straight axis. A strongly curved medial axis does not
allow for the same mirror symmetry. To measure curvature

of the medial axis, we consider Euclidean curvature which
is defined in terms of arc-length parameterization. For a
smooth medial axis segment C(p) = (x(p), y(p)), the unit
tangent is defined as T(p) =

(xp,yp)√
x2
p+y2

p

and the unit normal is

defined as N(p) =
(−yp,xp)√

x2
p+y2

p

. The Euclidean curvature κ(p)

can be represented as:

κ(p)N(p) =
1√

x2
p + y2p

∂

∂p

 (xp, yp)√
x2
p + y2p

 . (7)

As the radius of curvature is inversely proportional to
“straightness”, the mirror symmetry peaks when the radius
of curvature goes to infinity. Thus, we consider the inverse
of the radius of curvature as the local mirror symmetry
score:

SMirror =

∫ β

α
Rcurv(p)

β − α
=

(∫ β

α

1

κ(p)(β − α)
dp

)
. (8)

Unlike parallelism and taper, this measure is not scale
invariant. To gain an intuition behind these perceptually
driven contour importance measures, we provide four illus-
trative examples in Fig. 5. The measures are not computed
point-wise, but rather for a small interval [α, β] centered at
each medial axis point (see Section 4.1 for details). When the
contours are parallel, all four measures are constant along
the medial axis (first row). The second row has high taper
and mirror symmetry but comparably lower parallelism,
with contour separation score increasing from left to right.
For the dumbbell shape, the first three measures vary (third
row), while mirror symmetry gives a constant score of 1
from point A to C. Finally, for the ring shape, the first three
measures are equal to one, while mirror symmetry receives
a score less than one as the medial axis bends at a fixed
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rate. Fig. 6 shows different examples of scene line drawings
from the Artist Scene Database weighted by our perceptual
importance measures.

4 SCENE CATEGORIZATION EXPERIMENTS AND
RESULTS

4.1 Computing Contour Score

Computing contour scores for each line drawing required
a number of steps. First, each connected region between
scene contours was extracted. Second, we computed an AOF
map for each of these connected components using a disk
of radius 1 pixel, with 60 discrete sample points on it. We
used a threshold of τ = 0.25 on the AOF map, which
corresponds to an object angle θ ≈ 23 degrees [2] (please
see Appendix I), to extract skeletal points. A typical example
appears in Fig. 1 (middle left). The resulting AOF skeleton
was partitioned into medial curves between branch points
or between a branch point and an endpoint. We computed a
discrete version of each of the three importance measures in
Section 3, within an interval [α, β] of length 2K +1, centred
at each medial axis point, with K = 5 pixels.

Each scene contour is associated with two medial curves
on either side. Therefore, each scene contour point receives
one score value from each side. In the present framework,
we pick the maximum of the two values for each point as
illustrated in Fig. 1 (middle row).

4.2 50-50 Splits of Contour Scenes

In the following of this section, we created stimuli that are
either the same as the intact line drawing or contain only
50% pixels of the pixels of the intact line drawing. Accord-
ingly, we created splits of the higher 50% and the lower
50% of the contour pixels in each image of the Artist Scene
Database and MIT67 data sets, using the four importance
measures, parallelism, taper, mirror symmetry and local
contour separation. An example of the original intact line
drawing and each of the four sets of splits is shown in Fig.
7, for an office scene from the Artist Scene Database.

4.3 Human Experiments on 50-50 Splits of Contour
Scenes

Our first set of scene categorization experiments is moti-
vated by our earlier work that shows that human observers
benefit from contour symmetry in scene recognition from
contours [4]. Our goal is to examine whether a CNN-based
system also benefits from such perceptually motivated cues.

On the Artist Scene Database, human observers were
tasked with determining to which of six scene categories an
exemplar belonged. The observers were psychology under-
graduates in an introductory psychology course at the Uni-
versity of Toronto. The study was approved by the Research
Ethics Board of the University of Toronto, and observers
gave informed consent prior to participation. In order to
keep the number of conditions in the experiments manage-
able, the four different types of importance measures were
tested in separate experiments. For the parallelism and taper
importance measure images, there were 29 observers (21
Female, 8 Male, mean age = 23.0, range 20 to 38). For the

separation importance measures, a new set of 23 observers
participated (14 Female, 9 Male, mean age = 19.1, range 18
to 23). For the mirror symmetry importance measure, a new
set of 28 observers participated (18 Female, 9 Male, 1 Other,
mean age = 19.1, range 18 to 23).

Due to the COVID-19 pandemic, there were changes to
the data collection procedure. Different sets of participants
needed to be used, and the mirror symmetry portion of
the study was changed from an in-lab to an online format.
Prior to collecting the mirror symmetry data, a pilot study
verified that the in-lab parallelism results would replicate
in the online experiment. All sets of observers were shown
either the artist-generated line drawing or the high 50%
or the low 50% splits by one of the importance measures.
Images were presented for only 58 ms and were followed by
a perceptual mask, making the task difficult for observers,
who would otherwise perform near 100% correct. For the
online version of the study, the stimulus duration needed to
be increased to 159 ms in order for performance on the intact
images to be roughly equivalent to the intact performance
for the other datasets. The results with this short image
presentation duration, shown in Fig. 8 (left), demonstrate
that human performance is consistently better with the high
50% (more salient) than the low 50% condition, for each
importance measure. The performance was slightly higher
for all conditions when testing the separation splits.

4.4 CNN-based Experiments on 50-50 Splits of Contour
Scenes

Carrying out CNN-based recognition on the Artist Scene
Database and MIT67 line drawing datasets presents the
challenge that they are too small to train a large model, such
as VGG-16, from scratch. To the best of our knowledge, no
CNN-based scene categorization work has so far focused
on line drawings of natural images. We, therefore, use
CNNs that are pre-trained on RGB photographs for our
experiments.

For our experiments on the Artist Scene Database
and MIT67 datasets (using Dollar’s edge detector [39] for
machine-generated line drawings), we use the VGG16 con-
volutional layer network architecture [43] with weights pre-
trained on ImageNet. The last three layers of the VGG16
network used for fine-tuning are replaced with two fully
connected layers and a softmax layer, where the output label
is one of the categories in each of our datasets. The images
are processed by this network, and the final classification
layer produces an output vector in which the top-scoring
index is selected as the prediction output.

For all experiments on the Artist Scene Database, we
use 5-fold cross-validation. Top-1 classification accuracy is
given, as a mean over the 5 folds, in Fig. 8 (left - middle).
The CNN-based system mimics the trend we saw in human
observers, namely that performance is consistently better
for images that contained the highest 50% contour pixels
according to each of the Gestalt-based measures we propose
in this paper. We interpret this as evidence that all of those
Gestalt-motivated importance measures are beneficial for
scene categorization in both computer and human vision.

For MIT67 we use the provided training/test splits and
present the average results over 5 trials. The CNN-based
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Fig. 6: (Best viewed by zooming in on the PDF.) Examples of original photographs and the corresponding mirror symmetry,
separation, parallelism, and taper scores on scene contours, using a jet colormap to show increasing values.

categorization results are shown in Fig. 8 (right). It is striking
that even for this more challenging database, the CNN-
based system still follows the trend we saw in human
observers, i.e., that performance is better for the high 50%
split than for the low 50% split of each of the four measures
and is well above chance. It is worth noting that neither
humans nor CNNs were trained on splits, but only shown
splits at test time.

4.5 Experiments with Score Weighted Contours
While we would expect that network performance would
degrade when losing half the input pixels, the splits also
reveal a significant bias in favour of our importance mea-
sures to support scene categorization. Can we exploit this
bias to improve network performance when given intact
contours? To address this question, we carried out a sec-
ond experiment where we explicitly encoded importance
measures for the CNN by feeding different features into the
input channels of the pre-trained network. To this end, we
added channels with contours weighted by the importance
measures to the input to the CNNs, as illustrated in Fig.
1 (bottom subfigure). These contour importance images re-
place the standard three-channel (R, G, B) inputs to the net-
work. We chose to include only the three input channels in

the model design to avoid making significant modifications
to the architecture, such as introducing new convolution
layers with additional weights. Our goal was to determine
whether the data provided to the network could influence
the results. Essentially, we aimed to examine whether the
network could leverage shape-based cues in an apples-to-
apples comparison. For all experiments, training was done
on the feature maps generated by the new feature-coded
images.

We conducted various experiments to determine
whether CNN models, specifically VGG16, benefit from the
additional information provided by computing shape-based
measures. We employed two training schemes, depending
on the dataset size of the experiments conducted: (a) fine-
tuning a small set of layers for the Artist Scene and MIT67
datasets, and (b) fine-tuning weights across all layers for the
much larger Places365 dataset.

4.5.1 Experiments on Artist Scene and MIT67
In the experiments conducted on Artist Scene and MIT67
databases, we froze all layers of VGG16, except for the last
two fully-connected layers of the pre-trained networks. We
fine-tuned them using our feature-coded inputs, training on
the feature maps they provided. We used Logical/Linear
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Fig. 7: We consider an office scene and create splits of the artist generated line drawings, each of which contains 50% of
the original pixels, based on local contour separation (first column), mirror symmetry (second column), parallelism (third
column), and taper (fourth column) based importance measures.
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observer data, CNNs perform better on the high 50% split according to each importance measure, than the low 50% split.
In each plot, chance level performance (1/6 for Artist Scene Database and 1/67 for MIT67) is shown with a dashed line.

operators from [41] to generate line drawings for the Artist
Scene Database and MIT67. The results are presented in
Table 1. Due to the limited size of these databases, this
approach was employed to obtain meaningful results. As
mentioned earlier, we initially used Dollar’s edge detector
output [39] and those results are reported for the Artist
Scene Database and for MIT67 in Table 1. We then repeated
the same set of experiments with our updated line drawings
using Logical/Linear operators [41]. This time, we used
VGG16-H (pre-trained on both Imagenet and Places365 [18])
in addition to VGG16 (pre-trained on Imagenet).

First, it is noticeable that the Logical/Linear edge de-
tection framework gives better results than Dollar’s edge
detection algorithm, presumably because of the importance

of singularities and junctions for scene categorization. Sec-
ond, it is apparent that performance is consistently boosted
by adding the importance-weighted contour channels, in-
dependent of which machine-generated line drawing algo-
rithm is used. In all cases, the largest performance boost
comes from a combination of contours, mirror symmetry
and separation scores. We believe this is because mirror
symmetry is conceptually the most similar cue to what
people generally understand as symmetry. The local sepa-
ration score, on the other hand, provides a more distinct
and complementary perceptual cue.
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Channel Setp Artist MIT67 (Logical/Linear) MIT67 (Dollar)
Ch.1 Ch.2 Ch.3 VGG16 VGG16 VGG16

Photos (RGB) 99.62 79.49 79.49
Contour Contour Contour 92.50 60.29 55.34
Contour Contour Parallelism 94.16 61.05 54.98
Contour Contour Taper 95.06 63.31 56.52
Contour Contour Separation 96.56 62.92 55.09
Contour Contour Mirror 97.02 63.72 58.06
Contour Parallelism Taper 96.61 62.88 57.01
Contour Parallelism Mirror 97.26 63.70 57.50
Contour Parallelism Separation 98.40 64.25 57.83
Contour Taper Mirror 97.77 63.51 59.86
Contour Taper Separation 97.93 65.79 58.32
Contour Separation Mirror 98.99 67.28 60.65

Parallelism Taper Separation 95.96 63.48 56.72
Parallelism Taper Mirror 96.42 63.87 57.13
Parallelism Separation Mirror 97.34 64.96 58.80

Taper Separation Mirror 97.20 64.09 59.93
Randomized Condition 92.37 60.39 56.81

Local Intensity 92.05 60.19 55.31
Magnitude of Gradient 91.10 59.35 56.94

Magnitude of Curvature 92.22 60.69 56.32
*Maximum gain over contours 6.49 6.99 5.31

TABLE 1: Top 1 level performance in a 3-channel configuration, on the Artist Scene and MIT67 databases, with fine-
tuning. TOP ROW: Results of the traditional R,G,B input configuration where the original photos are used. OTHER ROWS:
Combinations of intact scene contours, and scene contours weighted by our importance measures, where each letter stands
for a specific input channel. *Denotes the maximum gains observed by adding additional score channels to the contours.
Contour, Parallelism, and Separ. are short abbreviations for Contours, Parallelism, and Separation channels.

Channel Setp Top 1 Top 5
Ch.1 Ch.2 Ch.3 VGG-16

Photos (RGB) 53.76 83.62
Contour Contour Contour 40.32 69.03
Contour Contour Parallelism 41.93 70.05
Contour Contour Taper 42.06 71.15
Contour Contour Separation 42.54 71.19
Contour Contour Mirror 43.07 71.88
Contour Parallelism Taper 42.89 72.33
Contour Parallelism Mirror 44.02 76.95
Contour Parallelism Separation 44.67 76.73
Contour Taper Mirror 44.77 76.81
Contour Taper Separation 43.86 77.40
Contour Separation Mirror 45.06 78.14

Parallelism Taper Separation 43.98 76.27
Parallelism Taper Mirror 43.72 75.47
Parallelism Separation Mirror 43.44 76.39

Taper Separation Mirror 44.03 75.20
Randomized Condition 39.08 69.67

Local Intensity 39.64 67.35
Mag. of Gradient 40.19 68.54

Mag. of Curvature 38.73 68.56
*Gain over contours +4.74 +9.11

TABLE 2: Places365 (VGG16) - Top 1 and Top 5 perfor-
mances in a 3-channel configuration on Places365 (see text).
In each case, all layers of the network were trained from
scratch. The top row shows the results of the traditional
R,G,B input configuration, while the others show combina-
tions of scene contours and scene contours weighted by our
importance measures. Here, the machine generated MIT67
line drawings are based on the Logical/Linear edge detec-
tion framework [41]. *Denotes the maximum gains observed
by adding additional score channels to the contours. Please
note that the channels here are set up similar to the Table 1.

4.5.2 Control Conditions
For MIT67 the performance of 79.49% on photographs is
consistent with that reported in [18]. Remarkably, 75% of
this level of performance (a level of 60.73%) can be obtained
by using only Logical/Linear line drawings. To analyze
the effect of adding additional features (i. e. importance-
based measures), we implemented a new set of control
experiments, where we looked at the effect of feeding the
neural network with these extra channels. The first test
included randomizing the importance measure across the
contours. For each line drawing of a scene, we considered
the set of contour fragments:

LineDrawing = {C1, C2, ..., Cn}

where Ci = {(xi1, yi1), ..., (xim, yim)} represents a contour
fragment. We also consider a specific channel of importance
measure

SalienceChannel = {S1, ..., Sn}

for that line drawing where Si = {si1, ..., sim} is the impor-
tance scores corresponding to Ci. To create a randomized
condition, we take the set of SalienceChannel and randomly
permute Sis. The random permutation results in an unequal
length of Sis for Cis. We then take the Sis and linearly
downsample or upsample for its corresponding Ci so all
the contour fragments on each Ci get an equivalent random
score. Results of the “Randomized Condition” are reported
in Table 1.

In addition, we provide further control conditions using
“local intensity”, “the magnitude of the gradient”, and “the
magnitude of curvature” at each pixel of a contour fragment
as additional input to the neural network. None of the four
control conditions improved categorization accuracy above
the accuracy for contours alone (Table 1). These results
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show that the added performance obtained by adding score
channels is not accidental and the added channels are
providing additional information that the network is not
already exploring.

4.5.3 Experiments on Places365
For the smaller Artist Scene and MIT67 datasets, we used a
pretrained model with frozen weights, except for the last
three layers, whose weights were fine-tuned. In order to
be able to draw definitive conclusions on the benefits of
MAT-based importance weighted contour scores for scene
categorization, one would wish to train all layers of the
network using such inputs. This requires a much bigger
dataset than either of the two previously used sets. We
therefore chose the much larger Places365 dataset, which
contains 1.8 million images (referenced by http://places2.
csail.mit.edu/download.html).

We experimented with training the entire VGG16 model,
layer by layer, in several ways, including training with
all weights initialized randomly. Regardless of our choice
of starting weights, all training procedures led to very
similar results. In the present article, we report the scores
that we obtained by training the network fully with initial
weights obtained from pretraining on ImageNet, which is
standard practice in the field. For each experiment, we
either retrained the network using contours or one of the
combinations of importance-weighted contours, as shown
in Tables 1 and 2.

For the Places365 dataset, chance recognition perfor-
mance would be at 1/365 or 0.27%. Our results using the
Logical/Linear method for machine-generated line draw-
ings are shown in Table 2. For the training tasks in Tables
1 and 2, we used the PyTorch script provided by https://
github.com/pytorch/examples/tree/master/imagenet. We
ran each experiment for 100 epochs with a learning rate of
0.001 and default patience of 10 epochs (number of epochs
with no improvement after which learning rate will be
reduced).

Once again we see a clear and consistent trend of a
benefit using importance-weighted contours as additional
feature channels to the contours themselves, with the best
performance gain coming from the addition of parallelism
and separation scores. Finally, note that in the Artist Scene,
MIT67 and Places365 databases, the percentage of contour
ink pixels over all the RGB pixels in the photographs, is only
7.44%, 8.75% and 8.32%, on average. Therefore, recognition
based on contours alone is more efficient than that based on
photographs, in the sense of sparsity in the input data.

5 DISCUSSION

In this article, we have demonstrated the importance of
shape-based visual cues in the context of perception, specif-
ically the task of scene categorization. We have shown that
scene contours, weighted by perceptually motivated con-
tour importance measures, can boost CNN-based scene cat-
egorization accuracy, despite the absence of colour, texture,
and shading cues. Our experiments reveal that measures of
perceptual cues for contours, which are simply functions
of the contours themselves, are beneficial for scene cate-
gorization by computers. The critical remaining question

is whether this omission is due to the CNN architecture
being unable to model these weights or whether this has
to do with the (relatively standard) training regime. We
leave this question for further study. Scene categorization
performance based on contours can surpass 80% of the best
reported results on the underlying photographs. Whereas
this shape information is reflected in the images themselves,
it does not appear to be directly learned by present state-of-
the-art CNN-based scene recognition systems. The results
obtained by our approach are in line with recent work by
Geirhos et al. [23, 24], suggesting that using shape by CNNs
for recognition/categorization is a promising direction for
future work.

The measures we have introduced have also been used
to separate the contour pixels in a given scene into the
more salient and the less salient halves. We have demon-
strated that human observers are better at categorizing
scenes containing only the more salient halves in a rapid-
categorization psychophysical experiment in Section 4.3.
More interestingly, we show that CNNs exhibit the same
trend which inspired us to ask this question, do perceptually
motivated line drawing-based importance measures also aid
scene categorization in machine vision? We investigated the
answer to this question by using the weighted contours in
a series of exhaustive training tasks where CNNs were fed
contours with these perceptually weighted scores. This way,
we evaluated the methods we developed for contour-based
scene abstraction and categorization, we also significantly
extended the contour databases previously used for bench-
marking computer vision systems used for such tasks. No-
tably, existing databases of line drawings contain hundreds
or thousands of images. We generated a database containing
millions of line drawings, created from photographs of
complex scenes in the Places365 dataset [18, 38] by using
the Logical/Linear edge detection framework of Iverson
and Zucker [41]. Our work demonstrates the promise of
perceptual organization principles from human vision in
improving the capabilities of computer vision-based scene
categorization and recognition systems.

In recent work, Geirhos et al. [23] showed that CNNs
that are used to recognize object classes are biased towards
learning texture in visual inputs, rather than complex repre-
sentations of object shapes (also see [26]). Our present effort
in scene categorization from line drawings demonstrates
that shape and contour geometry are not exploited by patch-
based CNN systems, complementing and resonating with
the ideas of [23]. Here, we have presented results to show-
case the importance of contours and perceptually weighted
contours. Looking forward, it might be useful to identify
and formulate more general principles to guide the per-
ceptual organization of local contour elements, providing
support to the human visual system for the understanding
of cluttered, real-world scenes in a more comprehensive
way.

Future directions for this work include identifying and
formulating a complete list of principles that guide the per-
ceptual organization of local contour elements, providing
support to the human visual system in the understanding
of cluttered, real-world scenes in a more comprehensive
way. This paper provides a path to such a goal which
includes describing shapes using medial axis representation.
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Previous work has showcased the strength of extracting a
medial representation from colour photographs of objects
[44, 45, 46, 47, 48, 49]. These ideas can be extended to work
well with scenes. Connecting the representation to the cues
computed here can give us a trained end-to-end system that
is likely capable of performing various visual tasks better
with much less training/tuning. Extending these ideas and
assessing the viability of these principles for facilitating
the categorization of complex real-world environments in
computer vision systems is a key next step to consider.
Interpreting the role of perceptual organization cues in tasks
such as recognition or categorization of objects or entire
scenes in biological and artificial vision systems are also
promising directions for future work.

ACKNOWLEDGMENTS

We are grateful to the University of Toronto, NSERC, Sam-
sung, and Sony for research support.

REFERENCES

[1] J. Goodnow, Children’s Drawing (The Developing Child).
HarperCollins Publishers, 1980.

[2] P. Dimitrov, J. N. Damon, and K. Siddiqi, “Flux invari-
ants for shape,” in Computer Vision and Pattern Recog-
nition, 2003. Proceedings. 2003 IEEE Computer Society
Conference on, vol. 1. IEEE, 2003, pp. I–835.

[3] K. Koffka, “Perception: An introduction to the Gestalt-
theorie,” Psychological Bulletin, vol. 19, no. 10, pp. 531–
585, 1922.

[4] J. Wilder, M. Rezanejad, S. Dickinson, K. Siddiqi,
A. Jepson, and D. B. Walther, “Local contour
symmetry facilitates scene categorization,” Cognition,
vol. 182, pp. 307 – 317, 2019. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/
pii/S0010027718302506

[5] ——, “Neural correlates of local parallelism during
naturalistic vision,” Plos one, vol. 17, no. 1, p. e0260266,
2022.

[6] D. Marr and H. K. Nishihara, “Representation and
recognition of the spatial organization of three-
dimensional shapes,” Proceedings of the Royal Society of
London. Series B. Biological Sciences, vol. 200, no. 1140,
pp. 269–294, 1978.

[7] I. Biederman, “Recognition-by-components: a theory
of human image understanding.” Psychological Review,
vol. 94, no. 2, p. 115, 1987.

[8] J. H. Elder and S. W. Zucker, “Computing contour
closure,” in European Conference on Computer Vision.
Springer, 1996, pp. 399–412.

[9] S. Sarkar and K. L. Boyer, “Perceptual organization
in computer vision: status, challenges, and potential,”
Computer Vision and Image Understanding, vol. 76, no. 1,
pp. 1–5, 1999.

[10] I. Sofer, S. M. Crouzet, and T. Serre, “Explaining
the timing of natural scene understanding with a
computational model of perceptual categorization,”
PLOS Computational Biology, vol. 11, no. 9, pp. 1–20,
09 2015. [Online]. Available: https://doi.org/10.1371/
journal.pcbi.1004456

[11] W. S. Geisler, J. S. Perry, B. Super, and D. Gallogly,
“Edge co-occurrence in natural images predicts contour
grouping performance,” Vision Research, vol. 41, no. 6,
pp. 711–724, 2001.

[12] M. Sigman, G. A. Cecchi, C. D. Gilbert, and M. O.
Magnasco, “On a common circle: Natural scenes and
gestalt rules,” Proceedings of the National Academy of
Sciences, vol. 98, no. 4, pp. 1935–1940, 2001. [Online].
Available: https://www.pnas.org/content/98/4/1935

[13] J. H. Elder and R. M. Goldberg, “Ecological statistics
of Gestalt laws for the perceptual organization of
contours,” Journal of Vision, vol. 2, no. 4, pp. 5–5, 08
2002. [Online]. Available: https://doi.org/10.1167/2.4.
5

[14] J. Elder, A. Krupnik, and L. Johnston, “Contour group-
ing with prior models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 25, no. 6, pp. 661–
674, 2003.

[15] A. Sharif Razavian, H. Azizpour, J. Sullivan, and
S. Carlsson, “CNN features off-the-shelf: an astounding
baseline for recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, 2014, pp. 806–813.

[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna, “Rethinking the inception architecture for
computer vision,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[17] S. Hoo-Chang, H. R. Roth, M. Gao, L. Lu, Z. Xu,
I. Nogues, J. Yao, D. Mollura, and R. M. Summers,
“Deep convolutional neural networks for computer-
aided detection: CNN architectures, dataset charac-
teristics and transfer learning,” IEEE Transactions on
Medical Imaging, vol. 35, no. 5, p. 1285, 2016.

[18] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Tor-
ralba, “Places: A 10 million image database for scene
recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, no. 6, pp. 1452–1464, 2018.

[19] S. Song, S. P. Lichtenberg, and J. Xiao, “Sun RGB-D:
A RGB-D scene understanding benchmark suite,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 567–576.

[20] S. Bai, “Growing random forest on deep convolutional
neural networks for scene categorization,” Expert Sys-
tems with Applications, vol. 71, pp. 279–287, 2017.

[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and
semantic segmentation,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2014,
pp. 580–587.

[22] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-
CNN: Towards real-time object detection with region
proposal networks,” in Advances in Neural Information
Processing Systems, 2015, pp. 91–99.

[23] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge,
F. A. Wichmann, and W. Brendel, “Imagenet-
trained CNNs are biased towards texture; increasing
shape bias improves accuracy and robustness.” in
International Conference on Learning Representations,
2019. [Online]. Available: https://openreview.net/
forum?id=Bygh9j09KX

[24] R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schütt,
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