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Abstract. Perceptual grouping plays a critical role in both human and
computer vision. However, with the object categorization community’s
preoccupation with object detection, interest in perceptual grouping has
waned. The reason for this is clear: the object-independent, mid-level
shape priors that form the basis of perceptual grouping are subsumed
by the object-dependent, high-level shape priors defined by a target ob-
ject. As the recognition community moves from object detection back
to object recognition, a linear search through a large database of target
models is intractable, and perceptual grouping will be essential for sub-
linear scaling. We review two approaches to perceptual grouping based on
grouping superpixels. In the first, we use symmetry to group superpixels
into symmetric parts, and then group the parts to form structured ob-
jects. In the second, we use contour closure to group superpixels, yielding
a figure-ground segmentation.
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1 Introduction

Perceptual grouping is a critical function in the human visual system, offering
a powerful heuristic for grouping together causally related image features in
support of both figure-ground segmentation and 3-D inference. In the mid-to-late
1990’s, perceptual grouping was a thriving subcommunity in computer vision.
However, over the past 10 years, there’s been a steady decline in the number
of perceptual grouping papers appearing in the computer vision community’s
main conferences. The reason for this is the reformulation of object recognition,
historically cast as the problem of recognizing an object from a large database,
as a detection problem, cast as the search for a particular target object.

The classical formulation of the object recognition problem, which defined
the mainstream from the mid-1960’s through to the late-1990’s, was the recog-
nition of an unexpected object from a database of objects. As illustrated in
Figure 1(a), the feature extraction process began by extracting categorical or
generic features, as the recognition community aspired to recognize categories,
not exemplars. As far back as the seminal work of Roberts [16] in the mid-1960’s,
the recognition community understood that across the exemplars that belong to
a category, shape is a more invariant property than appearance. As a result, the
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Fig. 1. The classical formulation of object recognition from a large database has given
way to a more recent formulation of object recognition as target detection: (a) In
the classical recognition model, the desire to extract shape features, considered more
generic than appearance, began with edge detection. Because edgels were not discrim-
inative, they were perceptually grouped and abstracted to form distinctive indexing
structures that could prune a large database of objects down to a small number of
promising candidates. (b) Over the past 10 years, the community has reformulated the
recognition problem as object detection. Rather than verifying a number of candidates,
the target candidate is known, rendering the process of indexing (or model selection)
obsolete. (c) Without the need for domain-independent recovery, grouping, and ab-
straction of structure in order to prune a large database down to a small number of
promising candidates, perceptual grouping is unnecessary. (d) As a result, verification
(detection) can be applied directly to the ungrouped, low-level edge features.

majority of recognition systems from the mid-1960’s to the late 1990’s attempted
to extract shape features, typically beginning with the extraction of edges, for
at occluding boundaries and surface discontinuities, edges capture shape infor-
mation. However, unlike today’s distinctive local image features, e.g., SIFT [15],
a local edgel carries very little information with which to index into a database
of objects in an attempt to select a small number of promising object models
that might account for the edgels.
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The need for perceptual grouping in these early systems was critical, for only
when the edgels were grouped into longer contours, perhaps parsed at high-
curvature points, and grouped with other causally related contours, did distinc-
tive indexing features emerge. Lowe’s thesis [14] was the first to introduce com-
putational models of perceptual grouping processes, e.g., proximity, collinearity,
and parallelism, derived from image statistics. By grouping contour features into
more distinctive groups (in Lowe’s case, proximity followed by collinearity fol-
lowed by parallelism), more discriminating indexing (using parallel lines instead
of, say, triples of corners [7]) was possible. The more features were grouped, per-
haps first into parts and then into multipart groups [6, 5], the more powerful the
index and the fewer candidates that needed to be verified. Each candidate was
verified, yielding a score (typically reflecting the degree to which a model could
be aligned with image features), and the top-scoring candidate, if sufficiently
strong, yielded the final interpretation.

The formulation of object recognition as the detection of a specific target
object has dominated the recognition community over the past 10 years. As il-
lustrated in Figure 1(b) and working backwards from the verification module,
instead of having to verify a number of candidate object hypotheses, the de-
tection problem identifies only a single hypothesis that needs to be verified (or
detected). This, in turn, means that the indexing step, in which a large database
of candidate objects is pruned down to a small set of candidates for verification,
is superfluous, for the database effectively has a single object (target). Contin-
uing to work our way backwards, as illustrated in Figure 1(c), if discriminative
indexing features are not required to select promsing candidates, the perceptual
grouping stage is also superfluous. Instead, as illustrated in Figure 1(d), the de-
tector, i.e., verification, can be applied directly to the edgels, e.g., [4], to yield
the final score, thereby short-circuiting the entire perceptual grouping process.

The existence of an object detector, representing a strong shape prior, elim-
inates the need for perceptual grouping, representing a much weaker, domain-
independent shape prior. Unfortunately, as the categorization community moves
from single object detection back to recognition from large databases, detection
methods, typically formulated as template matching (or “sliding windows”), sim-
ply won’t scale, and a linear search through thousands of templates is intractable,
especially when an object can be viewed arbitrarily, it can articulate, and it can
undergo significant within-class shape deformation. Verification (or detection)
must be highly sublinear in the size of the database, demanding that discrimi-
native indexing features be recovered without knowledge of which object is being
imaged. Such domain-independent, bottom-up perceptual grouping is essential
in the absence of an object prior.

In this paper, we briefly review our recent progress on two classical problems
in perceptual grouping, each based on superpixels. We begin by describing a
framework that first groups superpixels into symmetric parts, and then groups
the symmetric parts into multipart structures [9]. Symmetry has played a promi-
nent role in shape modeling for object recognition since the 2-D medial axis
transform (MAT) of Blum [2] and the 3-D generalized cylinder (GC) of Binford
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[1]. By detecting a set of symmetric parts and their attachments from a cluttered
image of real objects, we recover a powerful shape index that can serve to prune
a large database of objects down to a small number of promising candidates.
In the second part of the paper, we address the classical problem of contour
closure, i.e., finding a cycle of edgels in the image that separates figure from
ground. We describe a framework that looks for groups of superpixels whose col-
lective boundary has strong edgel support in the image [10]. The resulting shape
boundary, or silhouette, can yield a structured, parts-based representation, e.g.,
[18], that can also be used to prune a large database down to a small number of
promising candidates.

2 Symmetric Part Detection and Grouping

In [9], we introduced a novel approach to recovering the symmetric part structure
of an object from a cluttered image, as outlined in Fig. 2. Drawing on the
principle that a skeleton is defined as the locus of medial points, i.e., centers of
maximally inscribed disks, we first hypothesize a sparse set of medial points at
multiple scales by segmenting the image (Fig. 2(a)) into compact superpixels at
different superpixel resolutions [11] (Fig. 2(b)). Superpixels are adequate for this
task, balancing a data-driven component that’s attracted to shape boundaries
while maintaining a high degree of compactness. The superpixels (medial point
hypotheses) at each scale are linked into a graph, with edges adjoining adjacent
superpixels. Each edge is assigned an affinity that reflects the degree to which two
adjacent superpixels represent medial points belonging to the same symmetric
part (medial branch) (Fig. 2(c)). The affinities are learned from a set of training
images whose symmetric parts have been manually identified. A standard graph-
based segmentation algorithm applied to each scale yields a set of superpixel
clusters which, in turn, yield a set of regularized symmetric parts (Fig. 2(d)).

In the second phase of our approach, we address the problem of perceptually
grouping symmetric parts arising in the first phase. Like in any grouping prob-
lem, our goal is to identify sets of parts that are causally related, i.e., unlikely
to co-occur by accident. Again, we adopt a graph-based approach in which the
set of symmetric parts across all scales are connected in a graph, with edges
adjoining parts in close spatial proximity (Fig. 2(e)). Each edge is assigned an
affinity, this time reflecting the degree to which two nearby parts are believed to
be physically attached. Like in the first phase, the associated, higher granularity
affinities are learned from the regularities of attached symmetric parts identified
in training data. Consequently, we explore two graph-based methods for group-
ing the detected parts. The first method is the same greedy approach that was
used to cluster superpixels into parts. The second method employs parametric
maxflow [8] to globally minimize an unbalanced normalized cuts criterion over
the part graph. Both methods yield part clusters, each representing a set of
regularized symmetric elements and their hypothesized attachments (Fig. 2(f)).

Our approach offers clear advantages over competing approaches. For exam-
ple, classical multiscale blob and ridge detectors, such as [13] (Fig. 2(g)), yield
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Fig. 2. Overview of our approach for multiscale symmetric part detection and grouping:
(a) original image; (b) set of multiscale superpixel segmentations (different superpixel
resolutions); (c) the graph of affinities shown for one scale (superpixel resolution); (d)
the set of regularized symmetric parts extracted from all scales through a standard
graph-based segmentation algorithm; (e) the graph of affinities between nearby sym-
metric parts (all scales); (f) the most prominent part clusters extracted from a standard
graph-based segmentation algorithm, with abstracted symmetry axes overlaid onto the
abstracted parts; (g) in contrast, a Laplacian-based multiscale blob and ridge decom-
position, such as that computed by [13], shown, yields many false positive and false
negative parts; (h) in contrast, classical skeletonization algorithms require a closed con-
tour which, for real images, must be approximated by a region boundary. In this case,
the parameters of the N-cuts algorithm [17] were tuned to give the best region (maxi-
mal size without region undersegmentation) for the swimmer. A standard medial axis
extraction algorithm applied to the smoothed silhouette produces a skeleton (shown in
blue) that contains spurious branches, branch instability, and poor part delineation.

many spurious parts, a challenging form of noise for any graph-based indexing or
matching strategy. And even if an opportunistic setting of a region segmenter’s
parameters yields a decent object silhouette (Fig. 2(h)), the resulting skeleton
may exhibit spurious branches and may fail to clearly delineate the part struc-
ture. From a cluttered image, our two-phase approach recovers, abstracts, and
groups a set of medial branches into an approximation to an object’s skeletal
part structure, enabling the application of skeleton-based categorization systems
to more realistic imagery. Details of the approach can be found in [9].

Some qualitative results are shown in Figure 3. Proceeding left to right, top
to bottom, we see excellent part recovery and grouping for the starfish, the
plane, the windmill, and the runner, respectively. In the case of the windmill, a
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Fig. 3. Detected medial parts and their clusters.

second, singleton cluster, representing the entire body of the human, is recovered;
however, the distant windmills are not recovered, for their scale is smaller than
the smallest superpixel scale. The final two figures represent failure modes. In
the case of the lizard, the curved symmetric tail is oversegmented into piecewise
linear symmetric parts. In the case of the lake scene, the symmetric parts making
up the horizon tree line are incorrectly grouped with the dock structure due to
a lack of apparent occlusion boundary between the dock structure and the tree
line parts.

3 Contour Closure

In this section, we review our framework for efficiently searching for optimal
contour closure; details can be found in [10]. Fig. 4 illustrates an overview of our
approach to computing contour closure. Given an image of extracted contours
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(Fig. 4(a)), we begin by restricting contour closures to pass along boundaries of
superpixels computed over the contour image (Fig. 4(b)). In this way, our first
contribution is to reformulate the problem of searching for cycles of contours as
the problem of searching for a subset of superpixels whose collective boundary
has strong contour support in the contour image; the assumption we make is that
those salient contours that define the boundary of the object (our target closure)
will align well with superpixel boundaries. However, while a cycle of contours
represents a single contour closure, our reformulation exploits a mechanism to
encourage superpixel subsets that are spatially coherent.

Spatial coherence is an inherent property of a cost function that computes
the ratio of perimeter to area. We modify the ratio cost function of Stahl and
Wang [19] to operate on superpixels rather than contours, and extend it to yield
a cost function that: 1) promotes spatially coherent selections of superpixels; 2)
favors larger closures over smaller closures; and 3) introduces a novel, learned gap
function that accounts for how much agreement there is between the boundary
of the selection and the contours in the image. The third property adds cost
as the number and sizes of gaps between contours increase. Given a superpixel
boundary fragment (e.g., a side of a superpixel) representing a hypothesized
closure component, we assign a gap cost that’s a function of the proximity of
nearby image contours, their strength, and their orientation (Fig. 4(c)). It is in
this third property that our superpixel reformulation plays a second important
role – by providing an appropriate scope of contour over which our gap analysis
can be conducted.

In our third contribution, the two components of our cost function, i.e., area
and gap, are combined in a simple ratio that can be efficiently optimized us-
ing parametric maxflow [8] to yield the global optimum. The optimal solution
yields the largest set of superpixels bounded by contours that have the least gaps
(Fig. 4(d)). Moreover, parametric maxflow can be used to yield the top k solu-
tions (see [3], for example). In an object recognition setting, generating a small
set of such solutions can be thought of as generating a small set of promising
shape hypotheses which, through an indexing process, could invoke candidate
models that could be verified (detected). The use of such multiscale hypotheses
was shown to facilitate state-of-the-art object recognition in images [12].

In Figure 5, we illustrate results of our superpixel closure (SC) method. In the
case of the carriage, swimmer, plane, golfer, baseball player, plane, and spider,
we see that the algorithm nearly correctly segments figure from background,
and is able to capture the deep concavities of the object, which is particularly
visible with the spider. In the case of the horse, elephant, and giraffe, we see
evidence of undersegmentation due to the properties of the objective function
that we’re optimizing. In each case, there are false boundaries (e.g., horizon)
that can increase the area of the figure without introducing additional gap. In
other words, if the algorithm can follow a gap-free contour that yields a larger
area, e.g., following the contour between ground and sky in the giraffe image, it
will do so, yielding a bias towards compact objects.
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Fig. 4. Overview of our approach for image closure: (a) contour image – while we take
as input only this contour image, we will overlay the original image in the subsequent
figures to ease visualization; (b) superpixel segmentation of contour image, in which
superpixel resolution is chosen to ensure that target boundaries are reasonably well
approximated by superpixel boundaries; (c) a novel, learned measure of gap reflects
the extent to which the superpixel boundary is supported by evidence of a real image
contour (line thickness corresponds to the amount of agreement between superpixel
boundaries and image contours); (d) our cost function can be globally optimized to
yield the largest set of superpixels bounded by contours that have the least gaps. In
this case the solutions, in increasing cost (decreasing quality), are organized left to
right.

4 Conclusions

The perceptual grouping of contours according to symmetry and closure has
been long been a problem of interest to human and computer vision researchers.
However, both problems have traditionally been solved by first extracting con-
tours and then grouping the contours, leading to prohibitive combinatorial com-
plexity. We have explored both these problems from the dual standpoint of
region-based processing, where regions are compact superpixels that minimize
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Fig. 5. Example Results of Superpixel Closure

undersegmentation. On the case of symmetry-based grouping, the superpixels
represent deformable maximally inscribed disks (medial points), and we learn to
group them when they belong to the same symmetric part. In the case of closure-
based grouping, the superpixels represent “chunks” of boundary, and when the
right subset of superpixels is found, those chunks of boundary will form a clo-
sure with minimal gap. The perceptual grouping of superpixels in both cases
yields discriminative shape structures that can support effective indexing, as the
community moves from detection back to recognition from large databases.
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