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Photographs and line drawings of natural scenes are
easily classified even when the image is only briefly
visible to the observer. Contour junctions and points of
high curvature have been shown to be important for
perceptual organization (Attneave, 1954; Biederman,
1987) and have been proposed to be influential in rapid
scene classification (Walther & Shen, 2014). Here, we
manipulate the junctions in images, either randomly
translating them, or selectively removing or maintaining
them. Observers were better at classifying images when
the contours were randomly translated (disrupting the
junctions) than when the junctions were randomly
shifted (partially disrupting contour information).
Moreover, observers were better at classifying a scene
when shown only segments between junctions, than
when shown only the junctions, with the middle
segments removed. These results suggest that
categorizing line drawings of real-world scenes does not
solely rely on junction statistics. The spatial locations of
the junctions are important, as well as their relationships
with one another. Furthermore, the segments between
junctions appear to facilitate scene classification,
possibly due to their involvement in symmetry
relationships with other contour segments.

Introduction

Humans can effortlessly categorize the objects and
scenes around them. The mechanisms enabling this
categorization are still not completely understood.
According to one of the dominant theories of object
recognition, categorization relies on recovering 3D
parts of objects and their spatial relationships, which in
turn relies heavily on analyzing the contour junctions in
the image (Biederman, 1987; Biederman & Cooper,

1991). Biederman and Cooper (1991) argued that
junctions are more useful than contour segments
between junctions. They suggested that missing por-
tions of contours between two vertices are more easily
filled in, whereas it is more difficult to complete a
contour when junctions are missing. Similarly, Att-
neave (1954) showed that an object is easily recognized
by connecting points of high-curvature (L-junctions)
with straight segments. Even though many of the
details of the true bounding contour are lost, the object
is still easily recognized.

In everyday life, we do not see isolated contours of
objects, but complex arrangements of many objects and
surfaces. Even though such scenes are more complex
than an isolated object, humans are still able to process
them rapidly (Potter & Levy, 1969; Thorpe, Fize &
Marlot, 1996; VanRullen & Thorpe, 2001). The rapid
speed of processing scenes led researchers to suspect that
easily extracted summary statistics of visual features may
underlie scene categorization (Oliva & Schyns, 2000;
Torralba & Oliva, 2003; Delorme, Richard, & Fabre-
Thorpe, 2000; Wichmann, Drewes, Rosas, & Gegen-
furtner, 2010). Loschky et al. (2007) and Loschky and
Larson (2008), however, have shown that summary
statistics over the entire image are not adequate for
explaining scene categorization, and instead that suffi-
cient localization of image features is necessary.

Just like photographs of scenes, line drawings of
real-world scenes can be rapidly categorized (Walther,
Chai, Caddigan, Beck, & Fei-Fei, 2011). Also, as with
photographs, summary statistics of image features can
be extracted from these line drawings. Walther and
Shen (2014) showed that non-accidental relationships
between contours are more influential in scene catego-
rization than are unary features, such as contour length
and orientation. Junctions are useful in the determi-
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nation of border ownership (Sajda & Finkel, 1995;
Craft, Schütze, Niebur, & Von Der Heydt, 2007), which
may be more important in a complex scene than in the
case of isolated objects, further strengthening the
hypothesis that junctions may be useful for scene
categorization.

Contour junctions have been shown to be instru-
mental for categorizing objects (Biederman, 1987) and
scenes (Walther & Shen, 2014). In contrast, Kennedy
and Domander (1985) found middle segments between
two junctions to be more important than junctions for
object recognition. A similar result was found by Panis,
De Winter, Vandekerckhove, and Wagemans (2008),
using a more comprehensive object dataset. This
suggests that spatial relationships other than junctions
may be relevant for recognition as well.

In this paper we aim to resolve these apparently
contradictory accounts of scene perception. We do this
with two experimental manipulations, one where the
spatial locations of the contours are disrupted (Exper-
iment 1) and the other where spatial locations are
maintained (Experiments 2 and 3). In Experiment 1, we
either maintain or destroy junction distributions by
randomly shifting the contours or junctions about the
scene. This manipulation disrupts spatial location
information. In Experiments 2 and 3, either the
junctions are entirely removed, leaving only the middle
segments between junctions, or the middle segments are
removed, leaving only the junctions. This manipulation
preserves spatial location information.

These manipulations allow us to determine (a) the
role of contour junction summary statistics versus other
summary statistics, and (b) if the relative spatial
location of contours carries category-relevant infor-
mation about complex, real-world scenes. In particular,
we find that junction summary statistics, while impor-
tant, are insufficient to explain human scene categori-
zation. Additionally, unshifted contour segments
between junctions, presumably through their longer
range spatial interactions, carry category-specific in-
formation. This indicates that categorization of com-
plex real-world scenes is not easily reduced to a single
aspect of scene structure, but that a more inclusive
feature set needs to be taken into account.

Experiment 1

Due to limited exposure to the stimulus at which
humans are able to classify natural scenes, even when
the presentation is followed by a mask, researchers
theorized that scene classification must depend on
easily extracted features, for which no neural feedback
is required (Oliva & Schyns, 2000; Torralba & Oliva,
2003). Summary statistics of simple line-drawing

features can be rapidly extracted from visual input, and
have been shown to be related to the scene classification
of line drawings (Walther et al., 2011; Walther & Shen,
2014). Walther and Shen (2014) showed that a
computer model can accurately classify scenes using
only extracted feature histograms of either contour
length, contour curvature, contour orientation, the
angle between junctions of contours, or the label of the
junctions between contours (e.g., T-junction), but they
found that only a classifier trained using only the
curvature, junction type, or junction label histograms
had similar error patterns as human observers.

Walther and Shen (2014) randomly and indepen-
dently translated contours within an image, thereby
combining a change in junction statistics with a change
in spatial relations. In this experiment, we directly test
the effect of spatial shuffling of contours or junctions
on scene perception. Participants were tested on three
different conditions: (1) intact line drawings, (2)
contour-shifted, and (3) junction-shifted line drawings.
Whereas the first condition served as a control,
conditions 2 and 3 were designed to disambiguate the
role of perturbing junction statistics and the locations
of contours and their junctions within the image. In
condition 2, contours were randomly translated,
thereby destroying existing junctions and spatial
relations of contours, while keeping constant all
summary statistics of contours themselves, such as
contour length, orientation, and curvature. In condi-
tion 3, contours were split into individual junction
regions, which were subsequently spatially shuffled.
This manipulation retained the summary statistics of
the junctions at the cost of perturbing the distribution
of contour length and, to a smaller extent, curvature.
Note that all three conditions contained the same
number of contour pixels.

Methods

Participants

Participants were 19 undergraduate students (17
female, two male) who received course credit for their
participation. Ages ranged from 18 to 25, with a mean
of 19. The study was approved by the University of
Toronto Research Ethics Board (REB) and written
informed consent was given by each participant prior
to beginning the experiment.

Stimuli

Line drawings of real-world scenes were obtained
from artists tracing the most salient outlines in a set of
photographs (Walther et al., 2011). The images were
highly typical examples of beaches, forests, mountains,
city streets, highways, and offices (Torralbo et al., 2013).
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The three image conditions were: (1) intact line
drawings, (2) contour-shifted, and (3) junction-shifted.

The intact line drawings are the original line
drawings of the artists (see Figure 1, top left), shown
full-screen at a resolution of 1,024 by 768 pixels. When
the artists traced a scene on a graphics tablet, a vector
representation of the line drawing was obtained
(Walther et al., 2011). A contour was defined as the line
created from the point where an artist pressed down the
graphics pen until the point where she or he lifted the
pen. The artists were given the instruction: ‘‘For every
image, please annotate all important and salient lines,
including closed loops (e.g., boundary of a monitor)
and open lines (e.g., boundaries of a road). Our
requirement is that, by looking only at the annotated
line drawings, a human observer can recognize the
scene and salient objects within the image.’’ For the
contour-shifted images, all contours were randomly

translated such that the contours were still entirely
contained within the image. Contours had a root mean
squared translation of 359 pixels, or an average
unsigned translation of 242 pixels horizontally and 172
pixels vertically, with an average signed translation of 3
pixels horizontally and�4 pixels vertically. See Figure
1, lower right, for an example stimulus. Because each
contour was translated independently, the original
junctions of the image were completely destroyed, and
new junctions were created, with the exception of
junctions caused by self-intersection, which were not
destroyed and were randomly translated with the
contour (in total, 11% of junctions were due to self-
intersections, and thus were still present when the
contours were translated). Contours were only trans-
lated, never rotated or sheared. This process was
repeated independently for each participant, so, with

Figure 1. (Upper left) Three panes showing a simplified example of the image manipulations. The larger three panes (showing full

scene examples) have the same layout as the smaller three panes: (upper right) intact line drawing; (lower left) contour-shifted;

(lower right) junction-shifted.
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high probability, no two participants saw the same
identical contour-shifted images.

To create the junction-shifted condition, we first
located all junctions between two contours (locations
where the contours intersect). If a contour was involved
in more than one junction, we located the midpoint
between two adjacent junctions and broke the contour
at that point. The result was a set of shorter contours,
each involved in at most one junction. These junctions
were then randomly translated within the image (as
with shuffling contours, maintaining the orientation).
When placing the broken-up contour sections, we
ensured that no new junctions were created by first
placing the largest segment at a random location. We
then positioned the second-largest segment and ran-
domly positioned it with at least a 3-pixel margin from
the previously placed first segment. We continued by
taking the largest remaining junction and randomly
choosing a position in the image that did not bring that
junction within three pixels of any previously placed
junction. The result is that junctions had a root mean
squared translation of 384 pixels on average, or an
average unsigned translation of 256 pixels horizontally

and 180 pixels vertically, with an average signed
translation of 0 pixels horizontally and �15 pixels
vertically. A result of this procedure for one scene is
shown in Figure 1, lower left. As with the contour-
shifted images, this process was repeated for each
participant, resulting in a new set of stimuli for each
participant.

These manipulations affected some of the distribu-
tions of contour features. The contour-shifted images
have identical contour length, orientation, and curva-
ture distributions, while the contour junction distribu-
tions are changed. The junction-shifted images have
identical contour junction distributions, while the
contour length, orientation, and curvature distributions
have been modified. The changed distributions can be
seen in Figure 2. Generally, the histograms for contour
length have been shifted down toward shorter con-
tours. Curvature distributions show fewer high-
curvature contours. Orientation histograms are largely
unchanged. The changes due to the shuffling of the
contours are dependent upon the artist choice of how
to draw the lines.

Figure 2. Distributions of contour features: (a) contour length, (b) contour curvature, (c) contour orientation, and (d) contour

junctions. In (a), (b), and (c), the dark green distributions are from intact scenes, and light green are from the junction shifted scenes.

Distributions are not shown for the contour-shifted scenes, as they are identical to the intact scenes. Note that in (a) contour length is

shown on a log scale. In (d), for each category, the count for each junction type is shown for the intact scenes (I) and contour-shifted

scenes (CS). For the junction-shifted scenes, the junctions counts are identical to the intact scenes.
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Apparatus

The experiment was conducted using PCs running
Windows 7 using the Psychophysics Toolbox (Brai-
nard, 1997; Pelli, 1997) on MATLAB R2014b (Math-
Works, Natick, MA). The displays were CRT monitors
running at 120 Hz at a resolution of 1,024 by 768 pixels.

Participants sat roughly 57 cm away from the
display, in a dark room. Head position was uncon-
strained. The stimuli were shown at full screen,
subtending approximately 398 of visual angle.

Design and procedure

The experiment was divided into three phases:
Training, Ramping, and Test.

In each phase, participants were asked to decide
which scene category they saw. The mapping between
keys (S, D, F, J, K, and L) and categories was
randomized for each participant and kept the same for
each phase of the experiment. Prior to each phase of the
experiment, the pairing of categories with keys was
displayed to familiarize/re-familiarize participants with
their mapping. Prior to the training phase, the
participants memorized the mapping between key and
category. If they expressed difficulty with the memori-
zation, the experimenter suggested rehearsing the
category name while pressing the corresponding finger,
starting with the left-most response finger and moving
toward the right. After the first training trial, but prior
to giving a response, several participants asked to see
the key mapping again. The experiment was restarted
and they were allowed to study the key mapping again
and begin the experiment. No participant asked to see
the key mapping after the first training trial, and none
expressed difficulty remembering the key mapping
throughout the experiment.

In the training phase, the participants were shown a
fixation mark until they pressed any key to begin the
experiment. Then they were shown an intact line
drawing for 233 ms. This was immediately followed by
a mask for 500 ms. The mask was created by sampling
contour segments from the set of contours of all line
drawings in all categories. After the mask, the screen
was blank, with the exception of a small central fixation
mark, until the participant responded with a key press.
Following the key press, feedback was given. A high
tone indicated a correct response, and a low tone
indicated an incorrect response. The training phase
terminated when the participant responded correctly on
at least 17 of the last 18 trials, or a maximum of 72
trials.

The ramping phase was similar to the training
phase, with the exception that the stimulus duration
was decreased as the phase progressed. For the first
four trials, the duration was 200 ms. Every four trials,
the duration was decreased by two frames (17 ms).
The final two trials had a stimulus duration of 33 ms,
resulting in a total of 54 trials. As in the training
phase, only intact line drawings were shown, and
feedback was given. The mask was always displayed
for 500 ms.

In the test phase, a new set of stimuli was presented
to avoid effects of familiarity with specific scenes. Every
image was only ever shown once during the test phase,
either in the intact, the contour-shifted, or the junction-
shifted conditions. Conditions were intermixed ran-
domly. Stimulus onset asynchrony (SOA) was fixed to
53 ms, and there was no feedback. In this phase, there
were 20 line drawings per condition per category, for a
total of 360 trials.

A schematic of the experiment is shown in Figure 3.
The stimulus duration was chosen so that in the

intact case, participants would make at least some

Figure 3. A schematic of the experiment. The sequences consisted of a stimulus (53 ms in the test phase, longer in the training and

ramping phases) followed by a mask (500 ms) and then a blank screen until the participant responded with a key press.
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classification errors. In the manipulated images, where
scene information is disrupted, we expect performance
to be worse than for the intact scenes. Since errors are
expected in all conditions, we are able to examine these
errors in confusion matrices and determine if the types
of errors were different for the different conditions. To
test this, we computed the correlation coefficients of the
off-diagonal elements of each pair of confusion
matrices. Additionally, we are interested in determining
if the different image manipulations lead to an overall
performance difference from one another. We com-
pared overall performance (proportion correct) be-
tween those two conditions. We used a paired samples t
test to test for significant performance differences
between the two conditions with manipulated images
across participants.

Results

Participants performed above chance (16.7%) in all
three conditions (see Figure 4). Participants performed
worse for both contour-shifted (33.2%) and junction-
shifted (27.4%) than for intact scenes (70.4%). Perfor-
mance in the contour-shifted condition was signifi-
cantly better than in the junction-shifted condition
(paired-samples t test, t¼ –4.04, df¼ 18, p¼ 7.63 10–4).

The participants’ confusions (combined across all 19
participants) can be seen in Figure 5. The confusion
matrices reveal a strong disadvantage for the catego-
rization of human-made scenes, reducing the perfor-
mance to chance in the junction-shifted condition. This
preference does not appear in the intact images. The
confusion matrices reveal that this failure to classify

Figure 4. Proportion correct categorization performance averaged over the 19 participants in Experiment 1, for (left) all scenes,

(middle) natural scenes, and (right) human-made scenes. The * denotes significance at the p , 0.05 level, and *** for p , 0.001.

Figure 5. Confusion matrices for Experiment 1. Rows correspond to ground truth, and columns are the participants’ responses. Error

correlations (shown below the confusion matrices) are computed using only the off-diagonal entries.
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human-made scenes is not a result of the participant
classifying the scene as a human-made scene and then
selecting randomly from the three human-made scene
classes. Instead, participants simply respond randomly
for human-made scenes, evenly distributing errors
across all scene classes. Errors (off-diagonal entries in
the confusion matrices) in the intact scenes were not
correlated with the errors in either the contour-shifted
condition (r¼ 0.09, p¼ 0.34) or the junction-shifted
condition (r¼ –0.03, p ¼ 0.54). The two experimental
conditions did have a high error correlation with each
other (r¼ 0.83, p , 0.001); the high error correlation
suggest that there was no difference in the strategy
when viewing either of the shifted scenes.

Due to the difference between performance in the
natural scenes and the human-made scenes, we looked
at the performance difference between the different
conditions separately human-made or natural scenes
(see Figure 4 middle and right). First, of note, is that
for intact scenes. Performance for both contour-
shifted and junction-shifted was highest for the
human-made scenes, with a proportion correct¼0.769
versus 0.639 for the natural scenes. However, as
mentioned, performance for both the contour-shifted
and junction-shifted conditions was highest at 0.458
and 0.379, respectively, for natural scenes, versus
0.205 and 0.169 for human-made scenes. For human-
made scenes, shifting the junctions resulted in per-
formance at chance level, suggesting that junctions
and their spatial locations within the image are very
important for scene classification, specifically for
human-made scenes.

Shifting either contours or junctions clearly hinders
classification performance, but there is still enough
information present to classify the scenes above chance
in natural scenes. By disrupting the spatial layout of the
scene, all of the spatial relationships between contours,
such as junction opposedness and contour parallelism,
were disrupted (with the exception of the two contour
segments at a junction). Only the histograms of contour
features or junction features were maintained. We wish
to determine how much of the performance gap
between the intact line drawings and the shifted line
drawings was due to the removal of these spatial
relationships.

Experiment 2

Here, we directly tested the importance of junctions
and the spatial relationships between either junctions or
between contour segments in the classification of real-
world scenes. Beginning with a line drawing, we either
removed the junctions or the portions of contours
between junctions, resulting in two complementary

half-images, each containing half of the contours of the
original line drawing (similar to the contour-deleted
images of (Biederman & Cooper, 1991).

Methods

Participants

Twenty-three undergraduates (18 female, five male)
participated for credit for psychology courses. Ages
ranged from 19 to 24 years, with a mean of 19.8. All
participants had normal or corrected-to-normal vision.
The experiment was approved by the University of
Toronto REB under the same protocol as Experiment
1. Participants all gave written informed consent prior
to participation.

Stimuli

Stimuli were constructed from the same set of line
drawings as in Experiment 1.

The original line drawings were manipulated in two
different ways, one version removing contours at and
around junctions, called the junctions-removed condi-
tion, and the other version removing contiguous
contour sections in-between junctions, called the
middle-removed condition. To this end, locations of
junctions were determined as points where two
contours crossed, points where the angle between
adjacent contour elements was less than 1308, and
endpoints of contours. We then marked breakpoints
at 25% and at 75% of the distance between two
junctions. This allowed us to remove junctions by
removing, from all contours, the sections between 0
and 25% and between 75% and 100% of the distance
between two adjacent junctions and to remove middle
parts by erasing the sections between 25% and 75% of
the distance (see Figure 6, top right for an illustra-
tion). Note that both manipulated versions are
complements of each other, containing half of the
total contour content, only having overlap at the end
points of the middle segments and junction segments.
An example of these manipulations on an office scene
is shown in Figure 6. These manipulations change the
distributions of contour features. For example, the
number of pixels is halved, so for each feature, the
distribution is scaled. Additionally, because the
contours were separated into smaller pieces, the length
distributions are shifted. A comparison of the
distributions of contour features for the intact and the
manipulated image are in Figure 7. There is no figure
for how the junctions were changed, because either
they were maintained (and thus identical to those in
the intact scene) or completely removed. By design,
the length distributions are shifted to the left (shorter)
because the contours were separated into smaller
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pieces. Also, with fewer pixels than in the intact
scenes, the overall distributions are smaller. The
changes between the distributions are similar for all
scene categories.

Unlike the stimuli in Experiment 1, these stimuli are
not randomly shifted in any way. Thus, the stimulus
generation is deterministic, and the images will not
differ between two participants who are shown the
same scene exemplar in the same experimental condi-
tion.

Design and procedure

The apparatus, design, and procedure were identical
to Experiment 1, except that in the test phase, we used
the experimental conditions junctions-removed and
middle-removed. As in Experiment 1, no image from
the ramping and training was used in the test phase,
and no image in the test phase was used in more than

one of the three experimental conditions. Data analysis
was performed the same way as for Experiment 1.

Results

As in Experiment 1, participants performed above
chance (16.7%) in all three conditions (see Figure 8).
Intact scenes were most easily classified, with partici-
pants performing at 68.7% correct. The scenes with the
junctions-removed were classified at 47.5% correct.
Scenes with the middle-removed were classified at
42.2% correct. This difference in proportion correct is
statistically significant (paired-samples t test, t¼ 4.53,
df ¼ 22, p ¼ 1.65 3 10–4). Individually, 18 of the 23
participants performed better in the junctions-removed
condition than in the middle-removed condition.

In addition to analyzing proportion correct, we
looked at the patterns of errors in each of the
conditions. Figure 9 shows the confusion matrices for

Figure 6. (Upper left) Simple example of the experimental conditions. (Upper right) An intact office scene. (Lower left) The office

scene with junctions-removed. (Lower right) The office scene with middle-removed.
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each condition. For intact scenes, we see a strong
diagonal, signifying that each scene category was
usually correctly classified. The most common mistakes
were misclassifying ‘‘cities’’ as ‘‘highways.’’ In both of
the manipulated conditions, there was a weaker
diagonal. The error patterns (off-diagonal entries in the
confusion matrices) were fairly similar between the two
experimental conditions, and they introduce some
errors that were uncommon with the intact scenes. For
example, we see that ‘‘offices’’ are much more
commonly called ‘‘cities’’ in the experimentally manip-
ulated scenes than in the intact scenes. The types of
errors between the difference conditions were all very
similar. The correlation of the error patterns was

significant between all conditions (intact/middle-re-

moved: r¼0.59, p , 0.01; intact/junctions-removed, r¼
0.77, p , 0.001; middle-removed/junctions-removed, r

¼ 0.91, p , 0.001). Also note that for this experiment

there is a strong diagonal for the human-made scenes,

unlike in the first experiment. The improvement in

overall performance in the experimental conditions

over the performance in the first experiment is driven

almost entirely by the improvement for human-made

scenes. This suggests that the spatial layout of the scene

is more important for human-made scenes, whereas for

natural scenes the histograms of contour or junction

features carry almost as much information.

Figure 7. Distributions of contour features: (a) and (b) contour length, (c) and (d) contour curvature, (e) and (f) contour orientation.

The dark green distributions are from intact scenes, and light green are from the junctions-removed scenes (a, c, and e) or the

middle-removed scenes (b, d, and f). Note that in (a) and (b) contour length is shown on a log scale. Unlike in Experiment 1, the

contour junction distributions are not shown, as there are either no junctions are present or they are identical to the intact scenes.
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In Figure 8 (middle and right), we see that for the
junctions-removed condition, the performance is al-
most equal between human-made (proportion correct¼
0.478) and naturally occurring scenes (0.473). The
difference, made apparent by the figure, is that
removing the middle segments appeared to have a
larger effect in the human-made scenes than in the
naturally occurring scenes. In fact, the significant
difference we found between the junctions-removed
and the middle-removed images was almost entirely
driven by the human-made scenes (paired-samples t
test, t(22) ¼ –4.66, p ¼ 1.2 3 10–4), although the non-
significant effect is in the same direction with naturally
occurring scenes (paired-samples t test, t(22)¼�1.67, p
¼ 0.11). One hypothesis is that in the human-made
scenes there are more parallel segments that are being

removed in the middle-removed condition; however, it
is difficult to measure this, due to computational
complexity. For naturally occurring scenes, this effect
would be prominent in the forest scenes, but less
common in beach and mountain scenes. We also
hypothesize that it is more difficult for the visual system
to complete the contours between the junctions in our
scenes. One possible reason for this difficulty is that
junctions have a more ambiguous orientation. To
address this possibility, we computed the variance in
local orientation over each junction or middle segment.
The junctions have a higher variation in their
orientation statistics (mean orientation variance¼ 8.28)
than the middle segments (mean orientation variance¼
2.48). With unlimited viewing duration it may feel that
completing the contours is trivial. The more ambiguous

Figure 8. Categorization accuracy in Experiment 2 for (left) all scenes, (middle) natural scenes, and (right) human-made scenes. The

*** denotes significant with p , 0.001.

Figure 9. Confusion matrices for Experiment 2. Rows correspond to ground truth, and columns to the participants’ responses. Below

the confusion matrices are error correlations. Error correlations are computed using only off-diagonal entries.
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orientation at junctions may contribute to the differ-
ence in accuracy for brief and masked presentations by
making rapid contour interpolation more difficult.

Experiment 3

Self-reports from several participants in Experiment
2 indicated that they believed the images with ‘‘longer’’
contours were easier to classify. The middle segments
are, in fact, physically longer than the junction
segments, on average, because contour end points are
treated as junctions. As a result, there are small
segments equal to 25% of the length to the next
junction at the end of contours. In this experiment, we
equate the average contour length by adjusting the
break-point on the contours so that the physical length
is equated. Note that due to this manipulation, total
pixel count is no longer equated between the two
manipulations.

Method

Participants

Sixteen undergraduates (10 female, six male) from
introductory level psychology courses at the University
of Toronto participated for course credit. Ages ranged
from 18 to 21 years, with a mean of 18.4. Participants
gave informed consent prior to participation. All
participants had normal or corrected-to-normal vision.

Stimuli

The stimuli are the same as those in Experiment 2
with a change in the location at which the intact
contours were separated. Here, the segment between
two junctions was not split at one quarter and three
quarters of the entire length of the segment. Instead, we
computed the distance that would result in the means
of the length distributions being equal for the two
experimental conditions. For beaches, this means that a
middle segment was 46% of the segment between two

junctions as opposed to 50% in Experiment 2. For all
other categories, a middle segment was 42% of the
length of the segment.

Because the middle-removed condition removed a
smaller total portion of the line, the number of pixels in
the image was no longer controlled. This means there
were more black pixels in the middle-removed than in
the junctions-removed images.

Design and procedure

The apparatus and procedure were identical to that
of Experiment 2, and was approved under the same
REB protocol. The same analysis used in Experiments
1 and 2 will be used for this experiment.

Results

All participants performed best in the intact condi-
tion, with average proportion correct¼ 0.52 (see Figure
10). Performance in the middle-removed condition was
the same as in the junctions-removed condition
(average proportion correct ¼ 0.31 and 0.30, respec-
tively, paired-samples t test, t¼–1.37, df¼15, p¼0.19).
Even with more of the contour content visible,
participants did not perform significantly better in the
junctions-removed condition, suggesting that the mid-
dle segments contain important information that aids
participants in categorizing scenes. The participants for
Experiment 3 were recruited later in the semester than
the participants for Experiment 2. We generally observe
lower performance later in the semester, which may be
due to self-selection effects in the student population.
Therefore, a direct comparison of the two experiments’
performance in the intact condition is not justified.
However, notice that even though the performance on
the intact condition was lower in Experiment 3, relative
to Experiment 2, the relative performance difference
between the intact condition and the manipulated
conditions in each experiment is roughly the same (near
0.3). In addition to data being collected at a different
time in the semester, Experiment 3 may be perceived as
more difficult overall, because fewer pixels were
presented in the middle-removed condition of that
experiment. This can result in the participants becom-
ing slightly less motivated.

General discussion

Our results show that shuffling junctions within a
scene results in worse performance than shuffling entire
contours. This suggests that distributions of junctions
are not solely responsible for scene classification. While

Figure 10. Mean categorization performance (proportion

correct averaged across 16 participants) for Experiment 3.
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performance was higher when entire contours were
shuffled, it was still very low, suggesting that the
distribution of contour statistics is insufficient for rapid
scene classification. We hypothesize that spatial layout
plays an important role in rapid scene perception,
because it reveals the spatial relationships between
surfaces and objects, which are bounded by the
contours and their junctions, especially for human-
made scenes. This is demonstrated by the near floor
performance for human made scenes when contours or
junctions are shifted within the scene. This is consistent
with previous work using photographs, where it was
shown that disrupting Fourier phase while maintaining
the amplitude spectrum hinders scene classification
(Loschky et al., 2007).

Additionally, our results show that shifting the
contours within the scene hinders performance more
for human-made scenes than for natural scenes. One
popular model of scene classification has argued that a
superordinate classification (e.g., natural vs. human-
made) occurs prior to classification at a basic level
(Oliva & Torralba, 2001). Loschky and Larson (2008)
argue that this is because simple features must be
localized well enough to allow for grouping into larger
configurations. Before a basic level classification can be
made, these configurations allow for the natural/
human-made classification. Thus, if the classification
process is interrupted, or if there is not sufficient
information for basic level categorization, the visual
system may only be able to make classifications at the
superordinate level.

We were surprised to find that removing middle
segments hurt performance more than removing
junctions in Experiment 2. Experiment 3 equated the
means of the contour length distributions, at the cost of
an imbalance in the number of contour pixels in the
images, and images containing junctions were still not
easier to classify. Middle segments and their spatial
relationships appear to be more important for human-
made than natural scenes, presumably due to the high
degree of geometric design inherent in human-made
artifacts.

These results are not what we would expect based
upon the results of Biederman (1987) and Attneave
(1954), who suggest that junctions and points of high
curvature may be the most important features for the
classification of objects. DeWinter and Wagemans
(2008) directly tested the hypotheses of Attneave
(1954), by creating closed shapes that connected points
of maximum curvature, or points halfway between two
points of high curvature with straight lines. They found
that objects that were connected by points of high
curvature were more easily recognized, but that there
was considerable variability between shapes. Bieder-
man and Cooper (1991) argued that junctions are
useful because a missing contour between two vertices

can be filled in accurately through a local process, while
it is not easy for a local process to fill in a missing
junction. An example of this difficulty is that it is not
clear whether a missing L-junction is actually an L-
junction, or if, instead, one contour extends farther,
resulting in a T-, Y-, or Arrow-junction. Additionally,
the junctions are useful for locating part boundaries
(Hoffman & Richards, 1984), and this allows an
observer to determine where object parts are located
and how they interact (Biederman, 1987).

Other previous work has led to a different conclu-
sion, apparently consistent with our results. Kennedy
and Domander (1985) found that maintaining middle
segments led to better classification of objects than
maintaining junctions. Green and Courtis (1966)
created a demonstration using Attneave’s cat (Att-
neave, 1954), showing that versions of the cat with only
the line segments around the junctions were subjec-
tively just as easily categorized as with only the line
segments around the middle. Similar to Kennedy and
Domander (1985) and directly related to our Experi-
ment 2, Panis et al. (2008) had participants categorize
fragmented objects, where the fragments were located
at salient points (which tended to be at locations of
high curvature) or at points at the midpoint between
salient points. Participants had an easier time identi-
fying objects with fragments at the midpoints, and
needed roughly 33% larger fragments in order to
achieve the same performance in the salient point
condition.

This previous work was related to the categorization
of objects. Often the shapes are very simple with few
internal contours. The exceptions to this, Kennedy and
Domander (1985) and the demonstration in Green and
Courtis (1966), used more complex shapes with more
internal contours. Similarly, we are working with real-
world scenes, where objects are not isolated from the
background and from each other. In a complex scene,
with many objects and surfaces, junctions have been
shown to help resolve the three-dimensional structure
of the scene (Anderson & Julesz, 1995; Clowes, 1971;
Guzmán, 1968; Huffman, 1971; Mackworth, 1976;
Malik, 1987). So, on the one hand, we have the
suggestion that the interpretation of a complex scene
involves analysis of the junctions, but on the other
hand junctions appear to be less useful when objects are
more complex. We find that the relationships between
contour middle segments dominate junctions in scene
categorization. We hypothesize this may be due to
ambiguity about which line segments should connect to
one another. Biederman and Cooper (1991) suggested
that junctions are useful because they more easily allow
for contour completion; in our stimuli, the completion
problem is more ambiguous when only junctions are
present. In this situation, it appears that the junctions
are less important than the segments between the
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junctions. Enns and Rensink (1991) looked at the role
of junctions in interpreting the 3D structure of line
drawings of simple objects. They showed that in order
to rapidly determine the 3D orientation of a cube, the
junctions needed to be physically connected. Comple-
tion required a much slower, and error prone, process.
Their stimuli were simpler than scenes, so the
connections of the different junctions were less
ambiguous than in our full scenes. Still, participants
seemed unable to rapidly fill in the missing contours,
suggesting that presentation duration may also play a
role in the amount of contour completion that can
occur.

What aspects of middle segments help convey
category-relevant information? Panis et al. (2008)
observed that object recognition was more accurate
when based on middle line segments than line segments
around junctions.1 There is an abundance of possible
spatial relationships between contours that affect
perceptual grouping of contour elements, and could
help explain our results. The contour integration
literature has shown that the distance between elements
and orientation of one element relative to a neighbor
(i.e., curvature) is useful (Field, Hayes, & Hess, 1993;
Geisler, Perry, Super, & Gallogly, 2001). Contour
segments can be related through collinearity, as in the
Gestalt principle of good continuation, or through
parallelism, as with the Gestalt principle of symmetry
(Wertheimer, 1938; Koffka, 1935; Metzger, Spillmann,
Lehar, Stromeyer, & Wertheimer, 2006; Wagemans,
Elder, et al., 2012; Wagemans, Feldman, et al., 2012).

When inspecting the junctions-removed images from
Experiment 2, we noticed that many opposing pairs of
contours were retained and presumably aided in
perception. Even though removal of junctions creates
uncertainty about the local relationships between
surfaces, middle segments may reveal longer-range
relations within an image, such as the relative position
of these elements. Inter-contour spatial relationships
were destroyed by the shuffling in Experiment 1, and
this may account for the significant loss of performance
observed there. In Experiment 2, the middle segments
may provide stronger inter-contour grouping cues than
the junctions alone. The relative position of image
features (such as middle segments) appears to be of
importance for intercontour grouping, which is im-
portant for determining scene category.

Conclusion

Scene perception relies on a range of features that
encode the spatial structure of a scene. Summary
statistics of junction information alone is insufficient to
fully explain scene categorization. Rather, spatial

relationships between junctions play an important role.
Furthermore, the middle segments of contours between
junctions are more important for interpreting spatial
structure of complex scenes than simple objects. In
simple objects, contours define the outer boundary of
the shape of the object or self-occlusion boundaries of
object parts. In complex arrangements of objects and
surfaces, contours additionally define spatial relation-
ships between parts of a scene. Longer-range interac-
tions between elongated sections of contours, such as
parallelism and symmetry, may therefore play a more
important role in such complex stimuli. More research
is needed to better understand the role that different
structural image features play in grouping, organizing,
and recognizing visual information in complex, real-
world scenes.

Keywords: scene perception, scene categorization,
contour junctions, perceptual grouping
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Footnote

1 They found the opposite pattern of results when
using dots rather than line segments: A single dot at the
high curvature points was more informative than a
single dot along the middle segments.
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