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Server-customer interaction tracker; a computer vision-based 

system to estimate dirt loading cycles 

Ehsan Rezazadeh Azar1, Sven Dickinson2, and Brenda McCabe3 

Abstract 

Real-time monitoring of the heavy equipment can help practitioners improve machine-

intensive and cyclic earthmoving operations. It can also provide reliable data for future 

planning. Surface earthmoving job sites are among the best candidates for vision-based 

systems due to relatively clear sightlines and recognizable equipment. Several cutting 

edge computer vision algorithms are integrated with spatiotemporal information, and 

background knowledge to develop a framework, called server-customer interaction 

tracker (SCIT), which recognizes and measures the dirt loading cycles. The SCIT system 

detects dirt loading plants, including excavator and dump trucks, tracks them, and then 

uses captured spatiotemporal data to recognize loading cycles. A novel hybrid tracking 

algorithm is developed for the SCIT system to track dump trucks under visually noisy 

conditions of loading zones. The developed framework was evaluated using videos taken 

under various conditions. The SCIT system with novel hybrid tracking engine 

demonstrated reliable performance as the comparison of the machine-generated and 

ground truth data showed high accuracy.  
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CE Database subject headings:  Construction management; automatic identification 

systems; data collection; imaging techniques; earthmoving; construction equipment.  

Introduction 

Earthmoving operations are a major component of certain types of construction and 

mining industries, including heavy civil operations, sand and gravel pits, rock quarries, as 

well as surface mining for minerals, ores, and oil sands. These all depend on heavy 

equipment and have a repetitive character; slight reductions in cycle durations may result 

in considerable improvements in productivity, cost savings, and reductions in carbon 

emissions. For this reason, timely and reliable data are critical. 

Manual real-time monitoring where workers watch the operations are costly, tedious, and 

error-prone. As a result, some sensing technologies, such as global positioning system 

(GPS) and radio frequency identification (RFID) have been used to monitor earthwork 

machines and to provide real-time locational data. GPS can calculate the three-

dimensional location of the plant, and then a central processing unit analyzes the 

spatiotemporal pattern of the machine to recognize the action and therefore the 

productivity. However, there are a number of shortcomings associated with these devices. 

First, a receiver antenna needs to be installed on the equipment, which may be difficult 

for rented plants. Second, the acquired data is limited to time and location which 

sometimes makes it difficult to distinguish between productive and non-value added 

movements. Finally, these spatiotemporal records cannot help in the review process to 

find the events that caused abnormal cycles. 
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Computer vision-based methods are another possible solution to monitor earthmoving 

activities if clear sightlines can be selected and earthmoving machines are fairly 

recognizable at that distance. Different approaches are available to monitor earthmoving 

equipment using computer vision. The first approach is to develop software to analyze 

the visual capture from common electronic tools, such as video cameras. Recent wireless 

cameras and high-capacity storage devices are available at relatively low-cost, therefore it 

has become a common practice to monitor construction sites by CCTV systems (Zou and 

Kim 2007; Gong and Caldas 2011). Although this is a cheap alternative, normal cameras 

provide only 2D projections of the real world, thereby limiting the analysis to 2D. The 

second method is to employ other sensing devices together with video cameras to obtain 

more data from the scene. LASER range-finder, infrared cameras, and the application of 

multiple cameras at the same scene can provide 3D coordinates, but they are expensive 

and must remain accurately calibrated to work properly.   

A novel pipeline framework developed in this research, called server-customer 

interaction tracker (SCIT), combines image and video processing modules, 

spatiotemporal reasoning, and expert logic. SCIT is used to detect the machines involved 

in loading actions, track them, recognize their interactions, and estimate the cycle times. 

Two different frameworks have been implemented using the same object recognition and 

action interpretation modules but different tracking engines: one has a classic tracking 

engine while the other uses an innovative framework to track the loading dump truck.  

This research has two main contributions. First, it introduces a novel tracking algorithm 

to track dump trucks under moderate occlusion. Secondly, it proposes an action 

recognition framework to estimate dirt loading cycles in actual job site conditions.  
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The structure of the paper is as follows. First, it describes related advancements in 

construction research and highlights the motivations of this research. Then the modules 

and the structure of the SCIT framework are explained. Next, test results are provided for 

both systems using several test videos captured in different construction sites under 

varying visual conditions. Finally, the potential applications and shortcomings of the 

developed prototype are discussed.  

Literature Review 

The earthmoving sector has a longer history of the application of automated monitoring 

systems than other segments of the construction industry (Navon 2005). Due to the 

permanent and manufacturing nature of surface mining operations, faster technology 

adoption to locate and dispatch the large equipment fleet has been encouraged. Sensing 

technologies were gradually employed in heavy construction projects due to common 

equipment used in mining and heavy construction. 

GPS antennas have been the main tool to track machines in construction projects and then 

measure their productivity such as grading and leveling (Navon and Shpatnisky 2005; 

Navon et al. 2004) and asphalt paving (Navon and Shpatnisky 2005; Peyret et al. 2000). 

Manual preparation, indirect data interpretation, and the intrusive character of the GPS 

receivers are the main shortcomings of this system.  

RFID tags were also used to estimate the loading, hauling, and dumping times of the 

dump trucks. Fixed readers installed in entrance gates of the loading and dumping sites 

record the entrance and exit of RFID tags attached to dump trucks. The time differences 

are considered as loading, traveling, and dumping cycle times (Montaser and Moselhi 
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2012). Implementation of this system is cumbersome in linear projects (e.g. highway 

construction). Further, it can not confirm whether the truck is actually loaded.  

Computer vision techniques are relatively new data collection tools that have significant 

potential to monitor earthmoving equipment. Several advances have been achieved in 

construction for video processing including object tracking (Brilakis et al. 2011; Park et 

al. 2011) and object recognition (Rezazadeh Azar and McCabe 2012; Chi and Caldas 

2011; Jog et al. 2011; Rezazadeh Azar and McCabe 2011), and productivity measurement 

including labour (Peddi et al. 2009; Weerasinghe and Ruwanpura 2009), concrete 

pouring (Gong and Caldas 2011), and earthmoving equipment (Gong and Caldas 2011). 

However, the research has a long way to go before a reliable and automated system can 

be implemented in the construction industry. This is due in part because computer vision 

is itself a continually evolving field of science. At the present time, existing algorithms 

for object recognition, tracking, and segmentation can fail under certain conditions, 

particularly in the visually noisy images and videos typical of a construction site. Further, 

the construction industry is resistant to new technologies (Navon and Sacks 2007), unless 

they are shown to reduce costs, be easy to use, and decrease the amount of non-

productive time required from their staff. Despite the significant progress made to be able 

to use computer vision techniques in construction, much more research is needed as most 

developments to date have limited applicability, operate only under specific conditions, 

and require a high level of human intervention. 

For example, color-based approaches to monitor earthmoving plants are not invariant 

against occlusion, lighting conditions, and the existence of other similarly coloured 

objects (Zou and Kim 2007). A vision-based system was developed to measure working 
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cycles of a mini loader (Gong and Caldas 2011). It uses background subtraction to isolate 

moving equipment, and then classifies it using Bayes or neural network algorithms (Chi 

and Caldas 2011). This framework however, has difficulty in processing unfamiliar 

moving entities which typically appear in job sites. Detecting smaller tools that are 

dedicated to one activity type, such as a concrete hopper, also posed challenges as they 

required manual defining of the work zone (Gong and Caldas 2011, Almassi and McCabe 

2008). 

Our research intends to close the practicability gap between vision-based systems and 

earthmoving productivity measurement processes, where it can recognize and estimate 

dirt loading cycles under broader visual conditions such as different viewpoints and with 

the presence of multiple types of construction equipment. In addition, our system requires 

limited human intervention in the initial setup of the camera viewpoint. 

SCIT Modules 

Both of the developed SCIT systems use the same object recognition techniques and 

action interpretation modules, but they have different trackers. The following subsections 

describe these modules. 

Object recognition 

Details of the background effort for the object recognition module of this research to 

detect dump trucks is described in Rezazadeh Azar and McCabe (2011) where the 

Histogram of Oriented Gradients (HOG) (Dalal and Triggs 2005) algorithm used to 

detect dump trucks from eight viewpoints. Unfortunately, this method is computationally 

intensive and the runtimes were too high for real-time purposes. This is because the HOG 
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object recognition method is rather brute force; and its classifier window searches for the 

target object in every location and scale of the image. For example, it takes about 26 

seconds to scan a 640x480 frame for all eight orientations on a 2.93 GHz dual core CPU, 

as shown in Table 1.  

Parallel implementation of the HOG algorithm using a Graphics Processing Unit (GPU) 

can accelerate the standard sequential code by over 67x (Prisacariu and Reid 2009). The 

parallel computing platform and programming model (CUDA) technology developed by 

NVIDIA is used for this research (NVIDIA 2012).  This new generation of the GPUs 

have hundreds of cores, allowing them process thousands of threads in parallel and 

enable non-uniform access to memory (NUMA). In this framework, the host CPU first 

loads the frame and copies it to GPU memory. The GPU processes all of the scales and 

windows of the image and returns calculated support vector machines (SVM) scores of 

each search window to the host CPU. The host CPU formats the results, which include 

the score and position of each window, and finally performs the non-maximal 

suppression to fuse the detected boxes. The reason to process fusion operations on CPU 

is that they require a lot of connections to RAM.   

The runtimes for scanning the same eight views with the same CPU (2.93 GHz dual core) 

and a GeForce GT 440 GPU with 2.1 compute capability were reduced drastically (see 

Table 1). Therefore, it is now possible to use the standalone HOG method as the truck 

recognition engine of the system, with an acceptable detection rate, and maintain the real-

time video stream. 

<Insert Table 1 here> 
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Unlike the rigid figures of dump trucks, the articulated features of hydraulic excavators 

make them a more difficult recognition target. A recognition algorithm was developed 

that uses a part-based approach and spatiotemporal reasoning to detect an excavator in 

consecutive frames of a video (Rezazadeh Azar and McCabe 2012). The excavator 

recognition module in SCIT has been also implemented using GPU which the recognition 

process of 640x480 frames has been reduced from 6.5-7.0 seconds to 0.35-1.2 seconds. 

Mean-shift track ing 

In comparative studies of tracking algorithms applied to the harsh and visually noisy 

construction environment, researchers agree that the Mean-shift algorithm is reliable for 

tracking equipment (Gong and Caldas 2011; Park et al. 2011), and the addition of the 

Kalman filter and Particle filter can stabilize its performance (Gong and Caldas 2011). 

Mean-shift tracking is a Kernel-based algorithm that searches for a local peak in the 

density distribution of a dataset, and ignores the outliers far from the maxima (Comaniciu 

et al. 2003). As a result, the first framework developed here used a modified version of 

the Mean-shift algorithm, called continuously adaptive Mean-shift or Camshift (Bradski 

1998), as the main tracking engine. Mean-shift and Camshift trackers can track different 

feature types; application of hue, saturation, and value (HSV) color features is the most 

common approach. HSV color histogram and intensity response of the HOG detectors 

were used as tracking features for this research. In the second approach, the dense 

greyscale image of the HOG detector response is provided for the Mean-shift tracker. The 

maximum response is colored with the highest intensity and the rest of the responses are 

normalized based on their HOG detection score. The Mean-shift method however, has a 

limitation: since this algorithm searches for local maxima, the tracking blob may expand 
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or shift to a nearby object of similar color or to similar textures that the algorithm uses. 

This issue, along with other problems we encountered, are described further in the 

discussion section.  

Hybrid track ing 

Because existing tracking methods have difficulty performing well when applied to 

construction videos (Gong and Caldas 2011; Park et al. 2011), a new hybrid tracking 

technique was developed by the authors to overcome the shortcomings of the Mean-shift 

method. The hybrid tracking method is inspired by a new recognition-based tracking and 

activity interpretation framework (Barbu et al. 2012). They employed a latent SVM 

detection method (Felzenszwalb et al. 2010) with lowered thresholds to produce tracking 

candidates, and also applied a feature tracker (Tomasi and Kanade 1991) to project each 

detection five frames forward to compensate for false negatives of the raw detector.  

Then a dynamic-programming algorithm (Viterbi 1971) selects a temporally coherent set 

of detections for tracking.  

Our hybrid technique incorporates the HOG algorithm to help track identified equipment. 

This is achievable because equipment profiles do not change drastically between time 

steps. After recognizing that a truck is being loaded, the system continues to search for 

trucks, but in an optimized manner using much shorter time intervals. In these settings, 

the recognition module searches for only three orientations every two seconds, i.e., the 

initial orientation of the target dump truck and the two adjacent viewpoints, which takes 

about 0.39 seconds with the same GPU and processor. For example, if the target truck 

was in a side-left orientation, the framework only scans for front-left, side-left, and rear-
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left viewpoints. This way, changes in the trajectory of the machine are caught quickly, 

but the computational effort required to check all eight orientations is not necessary using 

a priori knowledge. In addition, the thresholds are decreased to avoid false negatives; 

however, the rate of false alarms increases as well. Each detection creates a bounding box 

to mark the location of the potential target. 

Two issues exist with the pure recognition-based tracking. First, even lowering the 

thresholds cannot guarantee continuous detection of the equipment, which can result in 

losing the target. Second, there were several instances in the test videos where a second 

truck entered the frame and waited in the loading zone with a similar orientation as the 

truck being loaded. This often misled the recognition-based tracking algorithm, as did 

nearby false positives. 

Thus, a tracking tool was added to the framework to artificially generate new bounding 

boxes in new frames to eliminate the risk of losing the truck, and also keep track of the 

actual target. In this approach, the center point of the loading truck is tracked by the KLT 

feature tracker (Tomasi and Kanade 1991) to project that bounding box to the next 

scanning frame. The KLT method is a differential method to estimate the optical flow, 

which is based on three assumptions: 1) brightness constancy, 2) temporal persistence, 

and 3) spatial coherence. The KLT optical flow estimator projects a rectangle in addition 

to the true positive and false alarm windows generated by the recognition engine in every 

new frame.  

A simple disjoint-set data structure algorithm is then used to partition the detection that is 

temporally coherent with the projected rectangle, yielding a new bounding box and 
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eliminating other boxes. Two boxes are considered to be in the same subset if their 

bounding regions overlap. All of the distances between x and y elements of the matching 

corners should be less than the minimum average of the width and height of the boxes 

times a threshold to group two rectangles (Viola and Jones 2001). The corners of the final 

box are the average of the corners of the projected rectangle and the overlapping 

detection. If there is not temporally coherent detection, the projected box will be taken as 

the final rectangle. 

The flowchart and the visual sequence of the entire process are presented in Figure 1 and 

Figure 2, respectively. Figure 2a shows the truck of interest (the next section explains 

how to select the loading truck among others), and frames b and c depict the result of the 

object recognition and projected box by KLT tracking two seconds later. The final fusion 

result of the algorithm is presented in Figure 2d. After creation of the new box, the center 

of that rectangle becomes a feature for the KLT tracker. The KLT feature tracker is very 

sensitive to any object passing in front of the tracking features, such as workers or the 

bucket of an excavator. Even the shadow of the bucket could distract the tracker; 

however, the hybrid nature of this novel tracker means that the continuous HOG object 

recognition in short time intervals prevents equipment from being lost, improving the 

performance of this hybrid tracker.  

<Insert Figure 1 here> 

<Insert Figure 2 here> 
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Action recognition module 

There are two main activity recognition approaches in the computer vision community: 

logical reasoning and artificial intelligence plan recognition algorithms. In logic-based 

methods, a set of consistent logical constraints is developed where all must be met to 

confirm the action. In artificial intelligence approaches, however, probability theory and 

machine learning models, such as Hidden Markov Models and support vector machines, 

are used to interpret the events and allow for uncertainty. It was argued that any plan 

recognition system should include some theory of uncertainty (Charniak and Goldman 

1993) to find the most probable plan between two or more feasible candidates.  In 

addition, artificial intelligence task recognition algorithms can continually learn the new 

unknown situations.  

Every detected dump truck and excavator is defined by the system with its 2D 

coordinates, dimensions of the bounding box that represents the detected equipment, and 

its orientation. To identify a loading action, a dump truck should be within range of the 

excavator’s boom and be in the proper orientation. Thus, the configuration and the 

distance of the equipment are two key data in recognition of the action. Together with 

time, these spatiotemporal data are used in SCIT to interpret the interaction of the 

detected machines. 

A combination of the logical reasoning and a pattern recognition algorithm were used to 

develop a module which can recognize dirt loading activity. The first component of this 

algorithm is a logical reasoning framework that checks equipment orientations for 

loading. For example, a right facing boom and a side-left dump truck located in the right 
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of the excavator will never result in loading. Since this logical reasoning only intends to 

filter candidates, inclusion of uncertainty is not an issue.  Table 2 presents the logical 

loading configurations based on the location of the excavator and orientation of dump 

trucks. 

<Insert Table 2 here> 

Dump trucks that pass this phase will be sent to the second stage, which examines the 

distance and size ratio of the server and customer. The corner of the excavator boom’s 

bounding box closest to the hinged support of the boom is set as the base point. For 

example, if the boom is right-sided, the base point would be the bottom left corner of the 

bounding rectangle. The algorithm measures the distances between the base point of the 

excavator and four corners of the dump truck, and then these distances are divided by the 

width of the excavator bounding box to incorporate the size factor. Figure 3 illustrates 

these distances. The resulting numbers form a vector with four elements. Several positive 

and negative sample vectors were collected to train a linear support vector machines 

(Cortes and Vapnik 1995) under supervised learning as the second filter of the action 

recognition process. Seven videos with total duration of fifty one minutes were used to 

train the action recognition classifier. The bounding boxes of the dump trucks appearing 

in the videos were manually labeled as if they are being loaded by the existing excavator. 

This manual labeling produced 514 positive and 828 negative samples to train the 

classifier. Open source SVM-light software (Joachims 1999) trained the classifier.  

<Insert Figure 3 here> 
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This classifier checks the dump trucks that passed the first phase. The distances between 

the base point of the excavator and four corners of the available dump trucks are 

computed and then divided by the excavator’s width to produce a vector with four 

elements, which was then classified by the trained SVM classifier. The scalar product of 

the classifier and test vectors produces a score and the objects with scores greater than a 

threshold are accepted. If two or more dump trucks pass the classification stage, the 

system will pick the machine with the highest classification score as a loading truck. 

In addition to action recognition, these constraints enable the system to ignore the trucks 

and false positives which do not meet the constraints, and allow the truck recognition 

thresholds to be lowered to result in fewer false negatives. 

Structure of SCIT Systems 

As mentioned before, the SCIT system was developed using two different tracking 

engines and this section explains the structure of both SCIT frameworks.  They were 

implemented using open source OpenCV 2.3.1 library (OpenCV 2011) in Visual C++ 

express 2010 environment.  

In this approach, the system searches for an excavator. Once found (Figure 4.a), it sends 

the detected bounding box to the Mean-shift tracking engine (Figure 4.b). The current 

prototype of SCIT stops searching at one excavator, but it is possible to modify the 

framework to process videos with two or more loading units. In addition to tracking the 

excavator, the system also starts to scan for dump trucks in predetermined time intervals 

(see Figure 4.c). Since it takes about 1.07 seconds to scan a 640x480 pixel frame for all 

eight orientations, the system can be set to search for dump trucks in any time interval 
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greater than 1.07 seconds. In this case, the recommended four second intervals were used 

(Rojas 2008). The action recognition module analyzes all of the detected dump trucks in 

each recognition interval to check if any of them pass the classification. As soon as the 

system confirms the loading action (see Figure 4.d), it will stop searching for dump 

trucks and pass the loading truck to the tracking module (see Figure 4.e, this image shows 

the Mean-shift tracker), define the loading zone, and record the start time of the loading 

cycle. The loading zone is defined as 1.25 times the truck length and 1.5 times the truck 

height (dark blue rectangles in frame d and e in Figure 4). This loading zone is defined 

relatively large due to minor movements of dump trucks during loading for better 

positioning, and to accommodate the relatively small spatial variations used by the 

tracking algorithms thereby reducing the risk of early termination of the tracking. As 

shown in frame d and e of Figure 4, the center of the loading zone is not the same as the 

center of the detected truck and is shifted toward the hydraulic excavator. This formation 

handles the slight truck movements, which are mostly backward, and reduces the 

difference between the actual and SCIT finish times.  

The tracking module continues tracking the truck until the center of the tracking blob 

exits the loading zone. At that moment, it records the finish time, terminates tracking of 

the dump truck, deletes the loading zone (see Figure 4.f), and begins to search for new 

dump trucks. The entire flowchart of this frame work is depicted in Figure 5.   

<Insert Figure 4 here> 

<Insert Figure 5 here> 
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Experimental Results 

To test and compare the two developed methods, eighteen videos with total duration of 

two hours and twenty seven minutes were captured of excavation activities at two 

condominium complexes in downtown Toronto, Ontario. None of these videos were used 

in training stage. The equipment of these two projects had very similar productivity rates, 

which resulted in a homogenous productivity dataset. Two types of hydraulic excavators 

(Caterpillar 245B and Caterpillar 345D), and several makes of urban dump trucks with 

similar hauling capacity, such as Mack, Sterling, Volvo, and Kenworth appeared in the 

videos. These videos were recorded by one of the authors during eight site visits under 

different lighting conditions in all four seasons, from ground and elevated angles with 

two different makes of digital cameras. Figure 6 shows some of these views. 

<Insert Figure 6 here> 

The excavators had typical construction colors, but the urban dump trucks were painted 

in a wide range of colors. The SCIT systems processed the test videos with varied action 

recognition thresholds and the results are presented together with manual observation as 

ground truth in Table 3.  This table shows the statistics of true positives, false alarms, and 

average cycle times of true positive cycles. In the manual observation, the loading time 

starts when a dump truck completely stops in front of the excavator; the action ends as 

the truck starts moving out of the zone. The tests with smaller ID numbers have lower 

action recognition thresholds, and the threshold rises as the test number increases.  

<Insert Table 3 here> 
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As shown in Table 3, the best performance was SCIT with hybrid, test 3. The threshold 

of test 3 is optimal as it had the highest true positive cycles along with test 2, and its 

deviation was less than test 2. Only one test round was carried out with the Mean-shift 

algorithm (one with HSV colors and one with HOG response) using the optimal threshold 

found in the Hybrid 3 test, but the performance was substandard, so the other tests were 

aborted.  

Discussion 

Lowering the threshold increases the risk of false positives e.g. accepting a false positive 

object or accepting a waiting truck as the one being loaded. In addition, lower thresholds 

may produce longer cycle times as they detect the loading truck before it completely 

positions for loading. The results reveal that increasing the thresholds improved the 

average time. However, it improves the performance up to a certain level (hybrid test 3 in 

Table 3) and afterwards causes some missing cycles as the SVM classifier does not 

accept the actual loading truck. For instance, the test 4, which had the highest threshold, 

missed three more cycles than the test 3.   

All of the processed videos were studied manually to identify the root of the errors. Both 

systems failed to recognize one loading cycle due to occlusion where the loading truck 

was entirely masked by another truck. This case is difficult even for a human to track 

(Figure 7a, b, and c). Both of the frameworks detected and tracked the foreground 

machine (green truck) instead of the real loading truck (dark blue) and produced wrong 

outcomes. This only occurred in a video captured from ground level; videos with 

overlooking views did not have trucks mostly masked by another. Frames d, e, and f in 
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Figure 7 show the same work zone with the same configuration of the equipment that 

were captured only a few minutes later from a higher angle. In this case, the SCIT with 

hybrid tracker correctly detected and tracked the loading truck. These results show the 

importance of the proper viewpoint of the camera for robust outcomes. The camera can 

be installed on nearby buildings, tower cranes, peaks of slopes, or temporary posts; 

however, some construction sites do not have this luxury where there are no overlooking 

points around, or they are not accessible. Application of multiple cameras is another 

possible solution for such cases, but this is beyond the scope of this research.  

<Insert Figure 7 here> 

The SCIT with the Mean-shift algorithm using color features had serious difficulty 

tracking dirty gray, white, or black dump trucks as their color histogram was similar to 

the background color (frames a and f in Figure 6). In several cases, it missed the target, 

thereby thinking that the loading activity was complete. This resulted in early termination 

of the loading clock, resetting of the cycle upon the next detection of the same truck, and 

therefore inaccurate productivity data. Since the HOG method is invariant to color, the 

Mean-shift with HOG response and the hybrid algorithms could successfully process 

those cycles. In addition, the Mean-shift method with color histograms failed in some 

cases where the tracking blob moved or expanded from the target to a nearby truck of the 

same color (frames a to c in Figure 8), again resulting in incorrect results. The same issue 

occurred in Mean-shift with HOG response regardless of the machine color, because both 

dump trucks had similar orientations resulting in high detection scores. SCIT with the 

hybrid tracker flawlessly processed all of the mentioned cases (frames d to f in Figure 8).  
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<Insert Figure 8 here> 

Both methods, regardless of their tracking engine, had some variations in recording the 

start and finish times, which resulted in different average cycle times (Table 3). In 

reviewing the data, the errors fell into three main causes: 

 The videos were scanned for new dump trucks every four seconds, so 0 to 4 

second variations of the activity start times compared to manual observation are 

inevitable; 

 SCIT was slow to find the loading truck although it was in place when it was 

scanning for it;  

 It takes a few seconds after the truck begins to pull away for the center of the 

tracking blob to leave the loading region. This resulted in variations in recording 

the activity finish times in SCIT whereas the human observer instantly recorded 

the finish time when the loading truck started to leave.   

Practical Applications 

There are two main applications for the automated productivity measurement of dirt 

loading cycles: production confirmation and productivity improvement. 

The system can count the number of trips made by an earthmoving subcontractor, thereby 

confirming the work achieved for payment. It is also possible to approximate the quantity 

of earth moved using the number of trips and the standard capacity of dump trucks. These 

data are currently handled by foremen, who are also responsible for directing trucks in 
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the loading zone. This is one of the most hazardous areas in construction sites due to 

slewing excavators, and the forward and reverse movement of dump trucks in a confined 

area (Edwards and Nicholas 2002). SCIT will eliminate the distracting recording task and 

help the foremen focus on site safety.  

Activity duration data can be used to study productivity, find bottlenecks, and enhance 

ongoing operations. They can also be used in advanced analysis such as stochastic 

simulation for planning future activities (AbouRizk and Halpin 1992).  

Table 4 provides the detailed results of test number 3. This table excludes the one false 

positive cycle and is based on the rest of 54 correctly detected cycles. These productivity 

data are grouped into the eight site visits because the productivity durations and visual 

conditions were different in each visit. The best case had 100% accuracy in average cycle 

times (site visit 6) and the worst was 86.3% (site visit 2). The overall accuracy of the 

average cycle times was 95% with the standard deviation of 4.5%. The accuracy of 

average cycle times is calculated as: 1-(software data-manual data)/manual data. 

<Insert Table 4 here> 

These promising results demonstrate the practicability of the SCIT system to estimate dirt 

loading cycles, but they also highlight the constraints to employ this system. It is critical 

for the system to have a clear view of the scene and the loading trucks should be mostly 

visible during the loading operation. Moreover, since the object recognition framework 

for excavator can currently detect only one excavator, the SCIT performance is restricted 

to one operating excavator and the job sites with more than one loading units require 

more cameras accordingly.  
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Conclusion 

Fifty-five years ago, Herbert Simon promised that in a foreseeable future, machines could 

think, learn, and create like a human (Simon and Newell 1958). We apparently are far 

from that goal even after half a century, although the technology is gradually moving in 

that direction.  

In this research, we introduce a vision-based framework, named SCIT, which can 

recognize and estimate dirt loading cycles. The prototype software was developed using 

two different tracking methods and then evaluated using several test videos captured from 

two construction sites under different visual conditions. The SCIT with the novel hybrid 

tracking engine outperformed the SCIT with the well-known Mean-shift tracker. The 

results showed that this system could recognize and measure 98.2% of the loading cycles 

with 95% accuracy in durations; however, the system is vulnerable against harshly 

occluded target objects. From this issue, the proper location of the camera is seen to be a 

key factor for accurate results. In addition, the current version of the SCIT can only 

process videos with one operating excavator. The contribution of this research is to 

introduce a novel tracking method and an action recognition module to practically 

estimate dirt loading cycles. The future work will focus on the expansion the system to 

recognize and measure other types of earthmoving operations with multiple plants. 
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List of Figures 

Figure 1. Flowchart of the hybrid tracking algorithm 

Figure 2. a: detected truck at frame x1; b: HOG recognition result with lowered thresholds for 
three viewpoints in frame x2; c: projected box of previous frame (frame x1) to frame x2 using 
KLT feature tracker; d: fusion of the rectangles in b and c 

Figure 3. Distances between the corners of trucks and the base point in both left and right 
configurations 

Figure 4. a: Detection of the excavator; b: tracking the excavator; c: detection of a truck that does 
not meet loading criteria; d: detection of the loading truck; e: tracking of the both equipment; f: 
truck leaves the zone and tracking of the truck terminates 

Figure 5. Flowchart of the SCIT systems 

Figure 6. Some of the dirt loading views 

Figure 7. Upper row: recognition and tracking of the wrong loading truck due to severe 
occlusion; bottom row: correct recognition and tracking of the same loading configuration from 
an elevated view 

Figure 8. a through c: mixture and wrong shifting of the tracking blob to nearby same color 
truck, d through f: hybrid algorithm correctly tracked the target in the same scenario 
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Table 1. Runtimes of the HOG recognition process for eight viewpoints of a dump truck 

                       Detector 
 
Image size 

CPU Dual core  
2.93 GHz (Sec) 

GPU NVIDIA  
GeForce GT440 (Sec) 

640x480 26 1.07 
1024x768 69 2.8 

1920x1080 186 7.6 
2592x1944 455 18.8 
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Table 2. Possible loading configurations 

                       Excavator 
 
Dump truck 

Located on the left of the 
dump truck 

Located  on the right  of 
the dump truck 

Front   

Front-left   

Front-right   

Side-left   

Side-right   

Rear   

Rear-left   

Rear-right   
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Table 3. Results of the experiments on test videos 

 Number of 
detected 
cycles 

False 
negative 
cycles 

False 
positive 
cycles 

Average cycle time (based on 
true positive cycles only) 

Seconds 

Manual 55 0 0 101.87 

Test 1: SCIT with hybrid,  53 0 4 106.49 

Test 2: SCIT with hybrid 54 0 2 106.43 

Test 3: SCIT with hybrid 54 0 2 105.93 

Test 4: SCIT with hybrid 51 3 1 105.08 

Test 3a: SCIT with mean-shift 
using HOG response 

48 0 2 104.40 

Test 3b: SCIT with mean-shift 
using color features 

30 0 2 105.00 
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Table 4. Detailed results of the dirt loading analysis 

Site visit No of  
cycles 

 Data  
type 

Total 
loading 
time 

Total time 
between 
cycles 

Average 
loading 
 time 

Accuracy  
% 

Average time 
between cycles 

1 17 
Manual 0:28:54 0:16:05 0:01:42 

97.1% 
0:00:57 

Software 0:29:47 0:15:12 0:01:45 0:00:54 

2 6 
Manual 0:10:12 0:04:17 0:01:42 

86.3% 
0:00:43 

Software 0:11:35 0:02:54 0:01:56 0:00:29 

3 3 
Manual 0:03:55 0:06:14 0:01:18 

88.5% 
0:02:05 

Software 0:04:21 0:05:48 0:01:27 0:01:56 

4 2 
Manual 0:04:32 0:02:28 0:02:16 

96.3% 
0:01:14 

Software 0:04:42 0:02:18 0:02:21 0:01:09 

5 3 
Manual 0:05:42 0:02:25 0:01:54 

93.9% 
0:00:48 

Software 0:06:03 0:02:04 0:02:01 0:00:41 

6 5 
Manual 0:06:11 0:04:16 0:01:14 

100.0% 
0:00:51 

Software 0:06:08 0:04:19 0:01:14 0:00:52 

7 6 
Manual 0:10:27 0:04:53 0:01:44 

95.2% 
0:00:49 

Software 0:10:53 0:04:27 0:01:49 0:00:45 

8 12 
Manual 0:21:25 0:12:36 0:01:47 

98.1% 
0:01:03 

Software 0:21:51 0:12:10 0:01:49 0:01:01 

Overall 54 
Manual 1:31:18 0:53:14 0:01:41 

95.0% 
0:00:59 

Software 1:35:20 0:49:12 0:01:46 0:00:55 
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