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Abstract
A complete representation of 3D objects requires characterizing the space of deformations in an interpretable manner, from
articulations of a single instance to changes in shape across categories. In this work, we improve on a prior generative model
of geometric disentanglement for 3D shapes, wherein the space of object geometry is factorized into rigid orientation, non-
rigid pose, and intrinsic shape. The resulting model can be trained from raw 3D shapes, without correspondences, labels, or
even rigid alignment, using a combination of classical spectral geometry and probabilistic disentanglement of a structured
latent representation space. Our improvements include more sophisticated handling of rotational invariance and the use of
a diffeomorphic flow network to bridge latent and spectral space. The geometric structuring of the latent space imparts an
interpretable characterization of the deformation space of an object. Furthermore, it enables tasks like pose transfer and pose-
aware retrieval without requiring supervision. We evaluate our model on its generative modelling, representation learning,
and disentanglement performance, showing improved rotation invariance and intrinsic-extrinsic factorization quality over the
prior model.
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1 Introduction

A major goal of representation learning is to discover and
separate the underlying explanatory factors that give rise to
some set of data (Bengio et al., 2013). For many objects,
such as 3D shapes of biological entities, structuring their
representation within a learned model means understand-
ing the different modes of their deformation spaces. For
instance, rotating a chair does not affect its category, nor does
articulated deformation of a cat alter its identity. In general,
different geometric deformations may be semantically dis-
tinct, e.g., shape style (Marin et al., 2020), intrinsic versus
extrinsic alterations (Corman et al., 2017), or geometric tex-
ture details (Berkiten et al., 2017). In other words, for many
objects, we can naturally factorize the associated deforma-
tion space, based on geometric characteristics (Fig. 1).

Such a disentanglement can provide a useful structuring of
the 3D shape representation. For example, in a vision context,
one could constrain inference of a 3D model from a motion
sequence to change in pose, but not intrinsic shape. Or, in
the context of graphics, separating shape and pose allows for
tasks such as deformation transfer or shape interpolation.
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Fig. 1 Depiction of overall framework goal. We factorize the latent
deformation space of a given 3D object into rigid pose zR , extrinsic
non-rigid pose zE , and intrinsic shape zI , without supervision
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Fig. 2 A schematic overview of the combined two-level architecture
used as the generative model. A point cloud P is first encoded into
(q, xc) by a deterministic AE, where q is the quaternion representing
the rotation (rigid pose) of the shape, and xc the compressed repre-
sentation of the input P , in its canonical orientation. (q, xc) is then
further compressed into a latent representation z = (zR, zE , zI ) of a
VAE. The hierarchical latent variable z has disentangled subgroups in
red (representing rotation, extrinsics, and intrinsics, respectively). The
intrinsic latent subgroup zI is used to contain the information in the
LBO spectrum λ using an invertible mapping. Both the extrinsic zE and
intrinsic zI are utilized to compute the shape x̂c in the AE’s latent space.
The latent rotation zR is used to predict the quaternion q̂. Finally, the
decoded representation (̂q, x̂c) is used to reconstruct the original point
cloud ̂P . The deterministic AE mappings are shown as dashed lines;
VAE mappings are represented by solid lines

In this work, we consider a purely geometric decom-
position of object deformations, separating the space into
rigid orientation, non-rigid pose, and shape. Our method is
based onmethods from spectral geometry, utilizing the isom-
etry invariance of the Laplace–Beltrami operator spectrum
(LBOS). The LBOS characterizes the intrinsic geometry of
the shape; in contrast, we refer to the space of non-rigid iso-
metric deformations of the shape as its extrinsic geometry,
in a manner similar to Corman et al. (2017). This decom-
position is performed in the latent space of a generative
model, using information-theoretic methods for disentan-
gling random variables, resulting in three latent vectors for
rigid orientation, pose, and shape. We apply our model to
several tasks requiring this factorized structure, including
pose-aware retrieval andpose-versus-shape interpolation (for

which pose transfer is a special case). See Fig. 2 for an
overview of our approach.

We focus on minimizing the supervision required for our
model, eschewing requirements for identical meshing, cor-
respondence, or labels. Thus, our method is orthogonal to
advances in neural architectures, as it can be applied to any
encoder or decoder model. For the same reason, it is also
agnostic to the 3Dmodality (e.g., meshes, voxels, or implicit
fields). We include experiments on meshes and point clouds,
to showcase the versatility of our method with respect to
shape modality, but we choose to focus on the latter, as they
are a common data type in computer vision.1

Ourmethodbuilds on apriormodel (Aumentado-Armstrong
et al., 2019), the geometrically disentangled VAE (GDVAE),
with two major algorithmic improvements: (1) we enhance
the ability of the network to factorize rotation, and (2) we
replace a simple spectrum regressor with a diffeomorphic
flow network. For the first point, we investigate two represen-
tation learning approaches that allow the model to discern a
canonical rigid orientation, with or without assuming aligned
training data. The latter change not only guarantees that spec-
tral information is preserved by the mapping (due to the
invertibility requirement), but it can be readily applied to
generative modelling (due to the tractability of the likelihood
calculation) and it permits shape-from-spectrum computa-
tions that prevent contaminating learned latent intrinsics
with extrinsic information. This allows us to define a better
training procedure, in which we use a shape-from-spectrum
starting point, instead of the initial input shape, thus ensur-
ing that the latent intrinsics cannot access extrinsics. These
two improvements result in superior disentanglement quality,
compared to the prior GDVAE model.

2 Background

2.1 Rotation Invariant Shape Representation

Invariance to rotation is generally a desirable property of
shape representations, since many tasks (such as catego-
rization or retrieval) tend to consider orientation a nuisance
variable. Hence, there is a significant body of work on how
to learn such rigid invariance.

Classical research includes many types of geometric fea-
tures, directly computed from input shapes, that are rotation
invariant (e.g., Guo et al., 2014), such as structural index-
ing (Stein et al., 1992), signature of histogram orientations
(Tombari et al., 2010), spin images (Johnson & Hebert,
1999), and point signatures (Chua & Jarvis, 1997). More
recently, SRINet (Sun et al., 2019), ClusterNet (Chen et al.,

1 However, we note that, by default, we use spectra derived from
meshes, unless otherwise specified (but see Sect. 5.3.3).
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2019a), and RIConv (Zhang et al., 2019) design rotation
invariant hand-crafted features that can be extracted from
point clouds (PCs), for use in learning algorithms.

Separately, rotation equivariance has been achieved in
voxel shapes using group convolutions (Worrall & Bros-
tow, 2018) and spherical correlations (Cohen et al., 2018),
which can be utilized to obtain invariance. PRIN (You et al.,
2018) computes rotation invariant features for point clouds,
but requires the application of convolutions on spherical
voxel grids. SPHNet (Poulenard et al., 2019) attains rota-
tion invariance without voxelization, by extending feature
signals defined on a shape into R3, and then using a specific
non-linear transformof the signal, convolvedwith a spherical
harmonic kernel. Additional network architectures have been
applied to modelling equivariances, including tensor field
networks (Thomas et al., 2018; Fuchs et al., 2020), graph-
theoreticmethods (Kondor et al., 2018) and quaternion-based
approaches (Zhao et al., 2020; Zhang et al., 2020). See also
Dym and Maron (2020) for additional discussions and theo-
retical analysis.

Other works focus on changing the input and/or uti-
lizing other representation learning techniques, which are
more closely related to our work. The PCA-RI model (Xiao
et al., 2020) achieves rotation invariance by transforming
each shape into an intrinsic reference frame, defined by
its principal components, handling frame ambiguity (due to
eigenvector signs) by duplicating the input. Info3D (Sanghi,
2020) uses techniques from unsupervised contrastive learn-
ing to encourage rotation invariance in the representation,
including the ability to handle unaligned data. Li et al. (2019)
attain equivariance by rotating each input point cloud by
a discrete rotation group. Similar to this, an approximately
rotation invariant encoder can be defined by feeding in ran-
domly rotated copies of the input (Sanghi & Danielyan,
2019). We build on this latter approach to define one ver-
sion of our 3D autoencoder (AE). For our other approach,
we utilize Feature Transform Layers (FTLs) (Worrall et al.,
2017), which allow us to make latent space rotations equiv-
alent to 3D data space rotations. In both cases, rather than
removing rigid transforms from the embedding, we attempt
to factorize such transforms out, as part of the deformation
space of the object.

More specifically, we consider two general approaches
to learning rotation invariant representations, building on
related work as noted above. Both methods are modality
agnostic (e.g., not requiring spherical voxelization), architec-
ture independent (e.g., not necessitating particular types of
convolution), able to avoid information loss in feature extrac-
tion, and do not increase the cost of a forward pass (e.g., no
duplication of inputs). In this sense, our method is largely
orthogonal to architectural improvements for PC processing,
as well as the aforementioned approaches to rotation invari-
ance. Indeed, they can be readily applied to other 3D shape

modalities. This is because our approaches modify only the
latent representation and loss calculation procedure, allow-
ing the use of arbitrary features as input, including rotation
invariant ones. Nevertheless, we show that, despite obtain-
ing features from a simple PointNet (Qi et al., 2017), we can
still approximately attain rotation invariance without archi-
tectural alterations. Finally, the utility of much of the related
work above for generative modelling and/or autoencoding
is unclear; hence, we choose to use simpler architectures
already known to work for these purposes (Achlioptas et al.,
2017; Aumentado-Armstrong et al., 2019).

2.2 Shape Analysis via Spectral Geometry

Any 3D surface can be viewed as a 2D Riemannian manifold
(M, g), withmetric tensor g, which allows the application of
differential geometry to shape analysis in computer graph-
ics and vision. One major technique in this area is the use
of spectral geometry, which is mainly concerned with the
Laplace–Beltrami Operator (LBO), Δg , and its associated
spectrum (i.e., the eigenvalues λ of −Δgφi = λiφi ) for
shape processing (Patané, 2016). Use of the spectrum gen-
eralizes classical Fourier analysis on Euclidean domains to
manifolds, transferring concepts from signal processing to
transforms of non-Euclidean geometry itself (Taubin, 1995).
The LBO spectrum (LBOS) characterizes the intrinsic prop-
erties of a manifold (Lévy, 2006; Rustamov, 2007; Vallet
& Lévy, 2008), sufficiently matching human intuition on
the meaning of “shape”, to the extent it is considered as its
“DNA” (Reuter et al., 2006). Mathematically, intrinsic prop-
erties of a shape are those that depend only on its metric
tensor, independent of its embedding (Corman et al., 2017);
this includes, for example, geodesic distances and the LBOS.
Among the most useful advantages of intrinsic shape proper-
ties is isometry invariance, meaning intrinsics do not change
in response to alterations that do not affect the metric. This
includes rigid transforms, as well as certain non-rigid defor-
mations, such as biological articulations (approximately).
Algorithms relying on shape intrinsics are therefore able to
ignore such deformations (e.g., recognize a person regardless
of articulated pose).We show some examples of the intrinsic-
extrinsic geometric decomposition provided by the LBOS in
Figs. 3 and 4. We remark that we also refer to extrinsic shape
as non-rigid pose, since this is the most intuitive interpreta-
tion for the case of approximately isometrically articulating
objects, like animals.

Intrinsic spectral geometry processing has thus yielded
numerous useful techniques for vision and graphics, often
due to its isometry invariance. This includes semi-localized,
articulation invariant feature extraction, such as the heat
(Gebal et al., 2009; Sun et al., 2009) and wave (Aubry et
al., 2011) kernel signatures, later extended to learned gen-
eralizations (Boscaini et al., 2015b). Similar techniques can
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Fig. 3 Pose versus shape factorization via LBOS. A t-sne (van der
Maaten & Hinton, 2008) plot of LBOSs from the Dyna dataset
(Pons-Moll et al., 2015), with illustrative accompanying point cloud
representations for several spectra. Different body shapes are mapped
close together, regardless of articulated pose
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i

Fig. 4 Visual explanation of the use of spectral geometry in character-
izing intrinsic versus extrinsic shape. We display two rows of animals,
showing different intrinsics (first row) and extrinsics (second row),
across the columns per inset. The plots show the LBOS λ across shapes
(indices i range from 1 to 50); notice the lack of variability as extrinsics
change

be applied to a variety of downstream tasks for 3D shapes
as well, including correspondence (Ovsjanikov et al., 2012;
Rodolà et al., 2017), retrieval (Bronstein et al., 2011), seg-
mentation (Reuter, 2010), analogies (Boscaini et al., 2015a),
classification (Masoumi & Hamza, 2017), and manipulation
(Vallet & Lévy, 2008). Beyond the standard LBOS, more
recent research has also explored localizedmanifold harmon-
ics (Melzi et al., 2018; Neumann et al., 2014), modifications
of the LBO (Andreux et al., 2014; Choukroun et al., 2018),
and extrinsic spectral geometry (Liu et al., 2017; Wang et al.,
2017; Ye et al., 2018).

While the above applications rely on the spectral intrinsics
of existing shapes, the inverse problem seeks to reconstruct a
shape from an intrinsic operator (or function thereof), such as
the LBO (Boscaini et al., 2015a; Chern et al., 2018; Huang
et al., 2019). In particular, the shape-from-spectrum (SfS)

task seeks to recover a shape from its LBOS, an instance of
an “inverse eigenvalue problem” investigated in other fields
(e.g., Chu & Golub, 2005; Panine & Kempf, 2016). This
enables useful spectral-space tasks, such as shape style trans-
fer and correspondence matching (Cosmo et al., 2019; Marin
et al., 2021). Fortunately, despite theoretical results suggest-
ing such recovery is not always possible, due to the existence
of non-isometric isospectral shapes (i.e., “one cannot hear
the shape of a drum”) (Gordon et al., 1992; Kac, 1966), it
appears practically possible in many circumstances (Cosmo
et al., 2019; Panine & Kempf, 2016). Indeed, Cosmo et al.
(2019) show several applications of their approach to SfS
recovery, though it is computationally costly and difficult to
constrain. More recently, Rampini et al. (2021) utilize spec-
tral perturbations to define universal geometric deformations,
while Moschella et al. (2022) apply a learning framework to
process unions of partial shapes in the spectral domain. Clos-
est to our work,Marin et al. (2020, 2021) apply a data-driven
approach to the SfS problem, among other tasks.

In this work, we focus on utilizing the classical LBOS as
a purely intrinsic characterization of the shape. By exploit-
ing the approximate articulation invariance conferred by its
isometry invariance, we gain access to a signal that can
separate intrinsic shape from articulated pose, without super-
vision beyond the geometry itself. While the LBO has been
used to performdisentangled shapemanipulations in the con-
text of computer graphics and vision, such as isometric shape
interpolation (Baek et al., 2015), spectral pose transfer (Yin
et al., 2015), and shape-from-spectrum recovery (Cosmo et
al., 2019), we show how to do such manipulations within a
generative model, as a byproduct of the learned representa-
tion.

2.3 Learning Shape-Pose Disentanglement

A common task that has been tackled in the context of
computer graphics is pose transfer. Utilizing a small set
of correspondences, an optimization-based approach can be
applied to perform deformation transfer (Sumner & Popović,
2004). Later work utilized the LBO eigenbases to perform
pose transfer (Kovnatsky et al., 2013; Yin et al., 2015), via
exchanging low-frequency coefficients of the manifold har-
monics. In our work, we use the LBOS instead, which avoids
issues of basis computation and spectral compatibility (Kov-
natsky et al., 2013). Basset et al. (2020) consider transferring
shape instead of pose; due to our symmetric formulation, our
approach is also capable of this. We refer to Roberts et al.
(2020) for a survey of related work.

Recently, several works have attacked pose transfer from
a machine learning point of view. Gao et al. (2018) present a
method for mesh deformation transfer using a cycle consis-
tentGANand a visual similaritymetric, but require retraining
new models for each source and target set. Levinson et al.
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(2019) utilize a mesh VAE, which relies on data having iden-
tical meshing, to separate pose and shape via batching with
identical pose and shape labels. LIMP (Cosmo et al., 2020)
disentangles intrinsic and extrinsic deformations in a gen-
erative model, utilizing a differentiable geodesic distance
regularizer; identical meshing or labels are not required,
though correspondence is. Zhou et al. (2020) devise amethod
for separating intrinsics and extrinsics using corresponding
meshes known only to have the same shape but different
pose, and applying a powerful as-rigid-as-possible geometric
prior. Similarly, Fumero et al. (2021) make use of data pairs
with shared transforms to obtain a general disentanglement
mechanism. Su et al. (2021) also use identity-based seman-
tic supervision, but with an adversarial mechanism on point
clouds. Finally, Marin et al. (2020) consider learning a bijec-
tive mapping of the LBOS as well, examining its use in the
context of neural networks for several tasks, including spec-
trum estimation from point clouds and shape style transfer;
however, they do not focus on deformation space factoriza-
tion or generative representation learning. Followup work
Marin et al. (2021) investigates shape-from-spectrum tasks,
as well as shape-pose disentanglement via optimization.

In our work, we focus on learning a generative representa-
tion that factorizes the latent deformation space into intrinsic
shape and extrinsic pose, without supervision. We do not
require labels (e.g., identity, pose, or shape), identical mesh-
ing, correspondence, or even rigid alignment—only the raw
geometry, which we use to compute the LBOS. Rather than
targeting pose transfer specifically, in our model, the ability
to transfer articulation arises naturally from the learned rep-
resentation. In particular, we build on the GDVAE model
(Aumentado-Armstrong et al., 2019), which disentangles
shape and pose into two continuous and independent latent
factors. Our method, which we refer to as the GDVAE++
model, includes adding a bijective mapping from an LBO
spectrum to the space of latent intrinsics, and defining a new
training scheme based on this function. We show that the
resulting model is significantly improved in terms of disen-
tanglement.

3 Autoencoder Model

Ourmodel consists of two components: an autoencoder (AE)
on the 3D shape data and a variational autoencoder (VAE)
defined on the latent space of the AE. We show an overview
of the complete framework in Fig. 2.

In this work, the AE is used to map a 3D point cloud (PC)
to a latent vector, and then decode it back to a reconstruc-
tion of the original input. In contrast to the AE used in the
prior GDVAE model (Aumentado-Armstrong et al., 2019),
we specifically consider the rotational invariance properties
of the AE architecture.

Notation We assume our input is a PC P ∈ R
Np×3, which

wewant to reconstruct as ̂P ∈ R
Np×3. To do so, we encode P

into a rigid rotation, represented as a quaternion q ∈ R
4, and

canonically oriented non-rigid latent shape, xc ∈ R
n , using

learned mappings Er and Ex . We can also obtain a canonical
PC, Pc = D(xc) ∈ R

Np×3, via a decoder D. The details for
obtaining this rigid versus non-rigid factorization are given
below.

3.1 Autoencoder Architecture

We consider two possible AE architectures on PCs. Both
models attempt to regress a rotation matrix and a rotation
invariant latent shape representation from an input. The first
type, which we denote “standard” (STD), uses a straightfor-
ward reconstruction loss, but also includes a random rotation
before attempting to encode the shape, inspired by prior work
(Li et al., 2019; Sanghi & Danielyan, 2019). The second
type relies on feature transform layers (FTLs) (Worrall et al.,
2017) to learn a latent vector space that transforms covari-
antly with the 3D data space under rotation, thus allowing
the model to learn how to “derotate” to a canonical represen-
tation (denoted “FTL-based”).

Implementation-wise, we use PointNet (Qi et al., 2017) to
encode an input point cloud, P (which allows us to handle
dynamic PC sizes), and fully connected layers (with batch
normalization and ReLU) for all other learned mappings,
unless otherwise specified. See Appendix F.1 for details.

3.1.1 Standard Architecture

Let P be an input PC, that has potentially undergone an arbi-
trary rotation. We learn two mappings as our encoder, Er

and Ex , which map P to a quaternion q = Er (P) and a
latent shape embedding xc = Ex (P). Our decoder D gen-
erates a canonically oriented PC Pc = D(xc), which can be
rotated to match the input via ̂P = PcR(q), where R(q)

is the parameter-less conversion from quaternion to rotation
matrix. Inspired by Li et al. (2019) and Sanghi andDanielyan
(2019), we insert an additional layer before Ex that randomly
rotates P (i.e., xc = Ex (P˜R), ˜R being a random sample),
to further encourage learning rotation invariant features. We
only do this for the standard architecture, shown in Fig. 5.

3.1.2 FTL-Based Architecture

We also consider a slightly more complex architecture with a
latent space designed for interpretability under rotation trans-
formations, using a Feature Transform Layer (FTL) (Worrall
et al., 2017). Several methods have utilized latent-space rigid
transforms for mapping 3D data between views (Chen et
al., 2019d, c; Rhodin et al., 2018, 2019). Our design is in
particular inspired by prior work that extracts canonical rep-
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Fig. 5 STD AE architecture. Our standard AE encodes an input PC P
into a rigid pose component (quaternion q) and canonically oriented
shape embedding xc. Before passing P to the shape encoder Ex , a ran-
dom rotation ˜R is sampled and applied. The decoder D then generates
the canonical PC Pc, which is rotated by R(q) into the final reconstruc-
tion ̂P

Fig. 6 Desired commutativity structure of FTL-based architecture. Ide-
ally, latent rotations should have the same effect as in the data space

resentations in the context of 3D human pose using FTLs
(Remelli et al., 2020). Nevertheless, the architecture com-
ponents of the FTL-AE are nearly the same as those of the
STD-AE.
Rotational Feature Transform Layers The main idea behind
FTLs is to view a latent vector x ∈ R

n as an ordered set
of subvectors U (x) = (u(x)1, . . . , u(x)Ns ) ∈ R

Ns×3, where
Ns = n/3 and u(x)i ∈ R

3, by simply folding it into a matrix.
Consider rotating a point cloud P ∈ R

Np×3 by a 3D rotation
operation R ∈ R

3×3, to get a new shape PR. By folding,
one can analogously perform this rigid transformation on a
“latent point cloud”, as U (x)R. Ideally, applying R to P or
U (x) has the same effect (i.e., rotates the underlying shape in
the sameway), resulting in an interpretable latent space, with
respect to rotation.We define the rotational feature transform
layer F(R, x) = U−1(U (x)R) as a latent rotation R of the
subvectors of x , where the inverseU−1 “unfolds” the ordered
set of subvectors into a single vector-valued latent variable
again (as opposed to the “folding” operator U ). We will use
the FTL mapping F to enforce a rotation equivariant struc-
ture onto the latent space, thus allowing us to “derotate” the
shape embedding to some canonical rigid pose. We depict
the desired duality over rotations in Fig. 6.
ArchitecturalDetailsUtilizing similar notation to Sect. 3.1.1,
we first encode q = Er (P), as before, and convert it to a pre-
dicted rotation ̂R = R(q). We then compute a non-canonical
latent shape x̃ = ˜Ex (P), which encodes the rotated shape
P . We then use the FTL to obtain the canonical latent shape
via xc = F(̂R, x̃), which can be decoded via Pc = D(xc)
with shared parameters. As before, we obtain the final recon-
struction via ̂P = PĉR. For notational consistency, we write
Ex (P) = xc = F(̂R, ˜Ex (P)). See Fig. 7 for a visual depic-
tion.

Fig. 7 FTL-based AE architecture. An input PC, P , is encoded into a
quaternion q and a pose-aware embedding x̃ , representing the rotated
(rather than the canonical) shape. The rotational FTL F is then used
to de-rotate x̃ to obtain the canonically oriented shape xc = Ex (P) =
F(R(q), x̃). Finally, a reconstruction of the input, ̂P , is produced by
rotating the decoded canonical PC Pc = D(xc) using the predicted rigid
pose R(q)

ThisFTL-based architecture provides greater interpretabil-
ity in terms of the effect of a rigid transform on the
representation; rather than trying to remove the dependence
on rotation, we attempt to explicitly characterize it. Rotations
in the 3D data space should thus have an identical effect on
the resulting latent space representation (and vice versa).

3.2 Autoencoder Loss Objective

The overall loss function for the AE can be written

LAE = Lc + LR + LP + Lx , (1)

where the terms control representational consistency Lc,
rotation prediction LR , reconstruction LP and regulariza-
tion Lx . These terms will be different depending on whether
one uses the STD-AE (Sect. 3.1.1) or FTL-AE (Sect. 3.1.2).

3.2.1 Standard Loss Objective

Reconstruction Loss The reconstruction loss term for the
STD architecture is LP = γP DP (P, Pc), where DP

includes a Chamfer distance and an approximate Hausdorff
loss, similar to prior work (Aumentado-Armstrong et al.,
2019; Chen et al., 2019b):

DP (P1, P2) = αCdC (P1, P2) + αHdH (P1, P2), (2)

in which the squared L2 distance is used between matched
points.
Cross-Rotational Consistency Loss is a simple loss designed
to promote consistency of the latent representation across
rotations of the input, i.e., encourage rotation invariance.
First, we split each batch into NR copies of the same PCs; we
then apply a different random rotation to each copy. Letting
xc,i be the embedding of P after having undergone the i th
rotation, the loss is then

Lc = γc

Mc

NR
∑

i=1

∑

j>i

||xc,i − xc, j ||22, (3)
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where Mc is the number of pairwise distances. Note that,
unlike combining features across rotated copies (Xiao et al.,
2020; Li et al., 2019), this approach does not increase the
computational cost of a forward pass for a single input.
Rotation Loss depends on whether we assume the data is
rigidly aligned or unaligned, i.e., whether we have rota-
tional supervision or not. In the supervised case, where the
canonical rigid pose is shared across data examples, we
simply predict the real rotation for every example: LR =
γRdR(R, ̂R), where

dR(Rk, R�) = 1

π
arccos

(

tr(Rk RT
� ) − 1

2

)

(4)

is the geodesic distance on SO(3) (Huynh, 2009).
In the unsupervised case, we enforce a consistency loss

across rotational predictions, which does not rely on a ground
truth P being canonical across multiple shapes. Instead,
it only asks that the predicted rotations of an object have
the same relative difference as the original rotations of the
input (which should be true regardless of whether P was
originally canonically oriented). Consider rotations of a PC,
Pi = P0R0Ri , where our data follows P = P0R0, in which
P0 (the ground truth PC in canonical orientation) and R0 (the
rotation of the ground truth datum) are both unknown. Our
predictions are ̂Pi = PĉRi , so for any two rotations of a sin-
gle observed PC (e.g., Pi and Pj ), we want ̂Ri ≈ R0Ri and
̂R j ≈ R0R j , meaning we want to predict Rk relative to R0.
Combining these equations means we want RT

i
̂Ri ≈ RT

j
̂R j

for each such pair. Formally, we write this constraint as

LR = γr

Mc

NR
∑

i=1

∑

j>i

dR(RT
i

̂Ri , R
T
j
̂R j ), (5)

where Rk and ̂Rk are the true and predicted rotations for
the kth copy in the duplicated batch, respectively. As noted
above, in the unsupervised case, we do not necessarily wish
to regress Ri as ̂Ri , because the initial (derotated) input P is
not assumed to be in the canonical orientation of Pc.
Regularization Loss The primary purpose of the AE is to pro-
vide a space with reduced complexity and dimensionality,
for training the generative VAE model. Following work on
learning probabilistic samplers with latent-space generative
autoencoders (Ghosh et al., 2019), we apply a small weight
decay and latent radius loss: Lx = γwL2(Θ) + γd ||xc||22,
where L2(Θ) is an L2 weight decay on the network param-
eters Θ .

3.2.2 FTL-based Loss Objective

Similar to the network functions, the FTL-AE objective
terms, as well as the training regime, are largely reused from

the STD-AE. The only major difference is that we compute
reconstruction losses for both the instance representation, x̃ ,
and the canonical representation, xc:

LP = γ
˜P DP (Pr , ˜P) + γP DP (P, Pc). (6)

Here, the decoder output ˜P = D(̃x) is encouraged to be
similar to the rotated input Pr .

We note that the penalty Lc, enforcing consistency of the
canonical latent shape vectors xc, j in the FTL architecture,
ties the non-canonical embeddings, x̃ j , through an FTL oper-
ation (across rotated inputs), as follows:

||xc,i − xc, j ||22 = ||(U (̃xi )Ri −U (̃x j )R j )R
T
i ||2F (7)

= ||U (̃xi ) −U (̃x j )R j R
T
i ||2F , (8)

where we have used U (xc,k) = U (̃xk)Rk , and the orthogo-
nality of Rk implies ||Rkv||22 = ||v||22 for any v ∈ R

3.

4 Latent Variational Autoencoder Model

4.1 Overview

Our goal is to define a disentangled generative model of 3D
shapes, using a VAE. The model should be capable of encod-
ing for representation inference, decoding random noise for
novel sample generation, and allowing factorized latent con-
trol of intrinsic shape and extrinsic non-rigid pose. The latter
decomposition is made possible by use of the LBO spec-
trum, which allows us to separate non-rigid deformations
into intrinsic shape and extrinsic (articulated or non-rigid)
pose (see Sect. 2.2).

Following Ghosh et al. (2019) and Achlioptas et al.
(2017), we use the AE latent space to define our genera-
tive model and disentangled representation learning. This
allows us to train with much larger batch sizes (useful
for information-theoretic objectives based on estimating
marginal distribution properties from samples), and gener-
ally obtain better computational efficiency. See Fig. 2 for a
pictographic overview.

Compared to our prior GDVAE model (Aumentado-
Armstrong et al., 2019), we replace a simple predictor of the
LBOS from the latent intrinsic shape with a diffeomorphic
mapping between the two quantities. This allows us to use
the spectrum directly in training (see Sect. 4.4) and increase
the dimensionality of the latent intrinsics, improving repre-
sentation performance.
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4.2 Model Architecture

4.2.1 Hierarchically Factorized VAE

The core of our VAE model is the Hierarchically factorized
VAE (HFVAE) model (Esmaeili et al., 2018), which permits
penalization of mutual information between sets of vector-
valued random variables. This allows us to enforce the latent
intrinsics to be separate from the latent extrinsics, specifi-
cally.

Let (q, xc) be an encoded input from the AE. We define
zR ∼ N (μR(q),ΣR(q)), zE ∼ N (μE (xc),ΣE (xc)), and
zI ∼ N (μI (xc),ΣI (xc)) to be the latent encodings of the
rotation, extrinsic shape, and intrinsic shape, respectively,
sampled from their variational latent posteriors. Our decoder
is deterministic: q̂ = Dq(zR) and x̂c = Dx (zE , zI ). All
three variables use isotropic Gaussians as latent priors. See
Appendix F.2 for further details.

4.2.2 Normalizing Flow for Spectrum Encoding

In order to encourage zI to hold only shape intrinsics, we uti-
lize the LBOS. In particular, we define an invertiblemapping
between λ and μI . Let μ̃I = fλ(λ) be the latent encod-
ing of a real spectrum (i.e., computed from a shape), λ, and
̂λ = gλ(μI ) be the predicted spectrum, with gλ = f −1

λ . We
implement fλ as a normalizing flow network (Papamakarios
et al., 2019; Kobyzev et al., 2020), defining a bijective map-
ping between zI -space and the space of spectra. For VAE
calculations, we use z̃ I ∼ N (μ̃I , ˜ΣI (λ)).

Briefly, flow networks are specialized neural modules
with two general properties: (1) being a diffeomorphic map-
ping, and (2) having a simple analytic Jacobian determinant.
These properties allow tractable exact likelihood compu-
tations through the network, via the probability chain rule
through each layer (Papamakarios et al., 2019). Many archi-
tectures have been proposed with these functional properties
(e.g., Kingma et al., 2016; Kingma & Dhariwal, 2018; Dinh
et al., 2014; 2016) and they have been applied to generative
modelling tasks in both 2D and 3D (Kingma & Dhariwal,
2018; Yang et al., 2019), as the tractable exact likelihood
allows for stable training of the distribution matching loss to
the prior, at the cost of requiring the dimensions of the input
and output space tomatch and restricting the class of allowed
neural architectures.

Using a flow mapping ensures that fλ(λ) can hold com-
plete information about λ, since the learned network is
guaranteed to be diffeomorphic (i.e., it is invertible and differ-
entiable in either direction). Unlike Aumentado-Armstrong
et al. (2019), this approach also allows various “shape-
from-spectrum” applications (Marin et al., 2020), which we
explore in Sect. 5.4.2. Thus, the flow network confers an
additional benefit, which is the presence of a mapping from

λ-space to zI -space, which allows us to define a novel train-
ing regime that prevents encouraging the network to store
extrinsic information in the zI -space for reconstruction, by
instead using μ̃I for reconstruction and pushing μI to match
it (see Sect. 4.4). Finally, it has the benefit of being specif-
ically designed for likelihood-based generative modelling,
hence its trainingprocedure synergizeswellwith theHFVAE.
In particular, since we want the latent intrinsic space zI to
conform to a Gaussian prior (which we enforce with the
HFVAE prior-matching losses), we also wish to ensure any-
thingmapped fromλ-space to there does aswell. Fortunately,
the tractable likelihood of flow networks allows us to directly
optimize a prior-matching likelihood, which is not an upper-
bound (unlike for VAEs). See Sect. 4.3.2 for details.

4.3 VAE Loss Function

The VAE model is trained with the following objective:

LVAE = LHF + Lλ + LF + LD, (9)

whereLHF is the hierarchically factorizedVAE loss (Esmaeili
et al., 2018), Lλ measures the likelihood defined by the
spectral flow network between spectra λ and latent intrin-
sics zI , LF is a consistency loss between the VAE (mapping
between xc and z space) and the flow network, and LD is an
additional disentanglement penalty. We next define the com-
ponent loss functions used in this complete objective in detail.
Note that we assemble two versions of this loss, expounded
in Sects. 4.4.1 and 4.4.2, which differ in whether to use the
latent intrinsics derived from xc or λ.

4.3.1 HFVAE LossLHF

Recall that our latent space z = (zR, zE , zI ) is structured, in
that we can partition it into three sub-vectors. Our goals are
to (1) push z to follow an isotropic Gaussian latent prior and
(2) force each component group zg , with g ∈ {R, E, I }, to
be independent from the other two groups, in an information-
theoretic sense. Specifically, we use total correlation (TC), a
measure of multivariate mutual information, between latent
groups to optimize disentanglement (Watanabe, 1960).

Prior work on structured disentanglement (Esmaeili et al.,
2018) has shown that the VAE objective can be decomposed
in a hierarchical fashion via

LHF[z] = ωRLR + β1

∑

g

ITC[zg]

+ β2

∑

d,g

DKL[qφ(zg,d) || P(zg,d)]

+ β3I[xc, z] + β4ITC[z] (10)
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where LR denotes the reconstruction loss, the β1 term con-
trols the intra-group total correlation, the β2 term penalizes
the dimension-wise KL-divergence from the latent prior, the
β3 term controls the mutual information between xc and z,
and the β4 term controls the inter-group total correlation.
The latter term, ITC(z), is themost important for our applica-
tion, as it encourages statistical independence between latent
intrinsics and extrinsics—this is our disentanglement objec-
tive.

Recall that the VAE input is a quaternion q and canonical
shape vector xc, while the output are the regressions q̂ and
x̂c. The reconstruction loss, LR , is written as follows:

LR((q, xc), (̂q, x̂c)) = ||xc − x̂c||22
n E[||xc||22]

+ ωqdq(q, q̂), (11)

where n = dim(xc), the expected normE[||xc||22] normalizes
for differing AEs (making hyper-parameter setting across
models easier), and dq(q1, q2) = 1 − |q1 · q2| is a distance
metric on rotations, through unit quaternions q1, q2 (Huynh,
2009).

4.3.2 Flow Likelihood LossL�

Since fλ is a normalizing flow network and we want to
enforce z̃ I to follow the Gaussian latent prior, we can simply
use the standard likelihood objective (Kobyzev et al., 2020;
Papamakarios et al., 2019):

Pλ(λ) = PzI ( fλ(λ)) |detJ [ fλ](λ)| , (12)

where PzI represents the density of an isotropic Gaus-
sian (latent prior of zI ) and J [ f ] is the Jacobian of f .
We use a weighted log-likelihood as the final loss: Lλ =
−ωp log Pλ(λ). This loss enforces z̃ I to follow the latent
prior, as in most flow-based generative models. While it is
similar to the HFVAE loss on zI , it is an exact likelihood
(Kobyzev et al., 2020; Papamakarios et al., 2019), rather
than a lower bound. As discussed in Sect. 4.2.2, this is intu-
itively possible due to the use of a diffeomorphic transform,
constrained to have an computationally tractable Jacobian
determinant.

4.3.3 Spectral Intrinsics Consistency LossLF

We also want the VAE encoder to be consistent with the
spectral flownetwork, sowe apply a loss between the spectral
and latent intrinsic space outputs:

LF = ωI ||μI − μ̃I ||22 + ωλdλ(λ,̂λ). (13)

μ̃I = fλ(λ), ̂λ = gλ(μI ), and dλ is a weighted distance
between spectra (Aumentado-Armstrong et al., 2019),

dλ(λ,̂λ) = 1

Nλ

Nλ
∑

n=1

|λn −̂λn|
n

, (14)

where Nλ is the number of elements used in the spectrum.
This formulation is inspired by Weyl’s estimate (Reuter et
al., 2006; Weyl, 1911), which posits approximately linear
eigenvalue growth asymptotically. Themotivation is to avoid
overweighting the higher elements of the spectrum (corre-
sponding to higher geometric frequencies and thus noisier,
small-scale shape details). See alsoCosmo et al. (2019). Note
that this does not assume a particular structure for the LBO,
nor for the growth of its eigenvalues; rather, it is a heuris-
tic for reducing the effect of the monotonic growth of λ (i.e.,
non-linear growthwill simply change the relative importance
of the frequencies in the loss).

4.3.4 Additional Disentanglement LossesLD

Following Aumentado-Armstrong et al. (2019), we utilize
two additional losses to promote disentanglement. The first is
motivated by Kumar et al. (2017), penalizing the covariance
between latent groups:

LΣ =
∑

g �=g̃

∑

i, j

∣

∣ ̂Σ[μg, μg̃]i, j
∣

∣ , (15)

where ̂Σ is the empirical covariance matrix between latent
vectors, computed per batch, and g, g̃ ∈ {R, E, I }. The
second takes advantage of the differentiable nature of the
networks involved, directly penalizing the rate of change in
the intrinsics as the extrinsics are varied (and vice versa).
This is implemented as a penalty on the Jacobian between
latent groups

LJ =
∣

∣

∣

∣

∣

∣

∣

∣

∂μ̂E

∂μI

∣

∣

∣

∣

∣

∣

∣

∣

2

F
+

∣

∣

∣

∣

∣

∣

∣

∣

∂μ̂I

∂μE

∣

∣

∣

∣

∣

∣

∣

∣

2

F
, (16)

where μ̂g = μg (̂xc) is the re-encoding of the reconstructed

shape from the AE, x̂c = Dx (zE , zI ), such that ∂μ̂g
∂μg̃

=
∂μ̂g
∂ x̂c

∂ x̂c
∂μg̃

for g �= g̃ and μg is the approximate posterior mean
from which zg is sampled. Hence, the final loss term is given
by LD = ωΣLΣ + ωJLJ .

4.4 Training Regimes

Weconsider twomethods of training,whichdiffer in theman-
ner in which the latent variables are obtained at training time.
The first is similar to the originalGeometricallyDisentangled
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Fig. 8 Diagram of VAE mappings, depicting the ability to use latent
intrinsics derived from xc versus λ. Black lines indicate mappings
always run in training. The blue arrow is used when predicting the latent
reconstruction from xc rather than λ, which is useful at inference time
(when λ may not be known) and for the GDVAE-FO training scheme
(see Sect. 4.4). The red arrows depict using latent intrinsics directly
procured from the LBOS λ, as in the GDVAE++ training scheme (Color
figure online)

VAE (GDVAE) model, where zI is used for reconstruc-
tion and predicting the spectrum. This is the “flow-only”
(FO) model. The second takes advantage of the shape-from-
spectrum capabilities of the bijective flow mapping, using
μ̃I = fλ(λ) for reconstruction (which does not depend on
xc), and encouraging μI (xc) to be close to μ̃I . We refer to
these models as GDVAE-FO and GDVAE++, respectively.
Notice that the latter approach more stringently separates
extrinsics and intrinsics, as the decoder has more limited
access to extrinsics from fλ(λ), as opposed to using xc. We
visualize the two pathways in Fig. 8. Notice that the two
training regimes do not differ in their architecture, hyper-
parameters, and structure of the forward pass at inference,
but only in the structure of the forward pass at training time.

4.4.1 GDVAE-FO Loss

The “flow-only” model is most similar to the prior GDVAE
model (Aumentado-Armstrong et al., 2019). We want the
encoded intrinsic shape vector μI (xc) to hold as much
information as possible about the spectrum. This is accom-
plished through the diffeomorphic mapping to λ and the
spectral losses in LF . In other words, we reconstruct via
x̂c = Dx (zE , zI ) and ̂λ = gλ(μI ). The disentanglement
losses LHF and LD are computed with μI .

4.4.2 GDVAE++ Loss

For the GDVAE++ loss, we use the known spectrum to
compute the output latent shape. The idea during training
is to enforce the latent intrinsics used for reconstruction
(in this case, z̃ I ) to only hold intrinsic geometry (using
fλ(λ)), and push zI (inferred from xc) to be close to it.
Thus, x̂c = Dx (zE , z̃ I ) is used for reconstruction, where
z̃ I ∼ N (μ̃I = fλ(λ), ˜ΣI (λ)). In addition, the disentangle-
ment lossesLHF andLD are computedwith μ̃I . Note that this
training strategy does not preclude us fromprocessing shapes
without spectra at test time, which we do for our evaluations.

5 Experimental Results

5.1 Datasets

We use the same datasets as in Aumentado-Armstrong et
al. (2019). Specifically, we consider MNIST (LeCun et al.,
1998), SMAL (Zuffi et al., 2017), and SMPL (Loper et
al., 2015). We also assemble a Human-Animal (HA) mixed
dataset by combining data from SMAL and SMPL. Note
that, in all cases, we perform a scalar rescaling of the dataset
such that the largest bounding box length is scaled down to
unit length. This scale is the same across PCs (otherwise the
change in scale would affect the spectrum for each shape dif-
ferently). We apply random rotations about the gravity axis
(SMAL and SMPL) or the out-of-image axis (MNIST). For
rotation supervision, the orientation of the raw data is treated
as canonical. We also remark that we use LBOSs derived
from the mesh shape, rather than PCs, unless otherwise spec-
ified. See Appendix D for additional dataset details.

5.2 Autoencoder Results

Our AE is designed to factorize out rigid pose, as well as
encode a complete representation of a canonical shape. In
Fig. 9, we show example reconstructions, as well as the
canonicalization capability of the model. In Fig. 11, we show
latent embeddings of the shape representations xc across dif-
ferent rotations of input shapes. The results show that the
AE is not only able to accurately reconstruct the inputs, but
also correctly derotate the canonical PCs in 3D, and that the
encodings are close to being orientation invariant in the latent
space.

We consider two AE types, the STD and FTLmodels with
their differing rotation handling techniques.We also examine
two ablations: the unsupervised (U) scenario, which removes
the assumption of aligned data, and the HA-trained model,
which eliminates the use of specialized single models for
SMAL and SMPL.

Quantitatively, we evaluate our autoencoders on (1) recon-
struction capability and (2) rotation invariance in their
representation. Reconstruction quality is computed with the
standard Chamfer distance between the output PC and a uni-
form random sampling from the raw shapemesh.We average
over five randomly rotated copies of the test set.

Rotation invariance is assessed with two measures. The
first is in 3D space, and checks that canonicalizations of the
same PC under different rotations are close (according to the
Chamfer distance between PCs):

C3D = 1

MR

mR
∑

i=1

∑

j �=i

dC
(

D(E(Pi )), Pj
)

, (17)
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Fig. 9 ExampleAE reconstructions and rigid canonicalizations of input
point clouds. Per inset, the top row shows input point clouds P under
random rotations, while the bottom row displays the resulting canonical
decodings Pc. Colors indicate depth. Architectures used are SMPL-
FTL-S, SMAL-FTL-S, and MNIST-FTL-U, respectively (see Table 1).
Since MNIST is unsupervised, we rotate the canonical output by a con-
stant rotation for visualization purposes. In particular, notice that thefirst
two MNIST insets (“9” and “6”) are rotated to match (which would be

incorrect in the supervised case). We show some failure cases in the
last column of each row: for SMPL, the pose (e.g., arms) is incorrectly
reconstructed; for SMAL, the hind-legs of the third canonical PC does
not match its counterparts, though the overall pose does; for MNIST,
the canonical decoding simply fails to match across rotations. Note that
we show additional reconstructions (through the VAE) in Fig. 10 (Color
figure online)

Table 1 AE evaluation on held-out test data

Dataset Model dC (P, ̂P) ↓ C3D ↓ CX ↑
MNIST STD-U 1.19 1.57 0.92

FTL-U 0.94 2.73 0.65

SMAL STD-S 0.35 0.03 0.97

FTL-S 0.10 0.14 0.93

STD-U 0.29 0.01 0.97

FTL-U 0.10 0.21 0.88

SMPL STD-S 0.34 0.03 0.97

FTL-S 0.19 0.30 0.71

STD-U 0.23 0.05 0.97

FTL-U 0.18 0.45 0.70

HA STD-S 0.36/0.44 0.03/0.05 0.97/0.97

FTL-S 0.11/0.19 0.24/0.22 0.66/0.62

STD-U 0.33/0.34 0.02/0.06 0.97/0.97

FTL-U 0.11/0.19 0.20/0.20 0.72/0.66

Metrics (left to right) refer to the Chamfer distance in reconstructions
and the rotational consistency measures (in 3D and xc-space, respec-
tively). HA is the humans and animals dataset (SMPL+SMAL). For
each model, STD and FTL refer to the type of AE architecture, and U
and S denote the use (S) or lack of (U) rotational supervision. For the
HA dataset, a/b denote the values on the SMAL and SMPL test sets,
respectively. Also, note that, for HA, SMPL shapes are scaled with the
SMALmaximumbounding box length; therefore, we scale the Chamfer
distances in the evaluations to match the other SMPL models, to make
them comparable. ↑ (↓) means the higher (lower) the better

Fig. 10 Reconstructions through the VAE. Odd rows are inputs; even
rows are reconstructions. Since the model is learned in xc-space, recon-
struction error manifests as shapes being valid, but slightly off in shape
and/or pose (e.g., left-most and right-most insets of top row). Allmodels
use the FTL-based AE. See Fig. 9 for qualitative example reconstruc-
tions through only the AE. Note that inputs and outputs have the same
number of points

where mR is the number of random copies we use for evalu-
ation and MR is the number of pairs tested.

The second measure is in the latent canonical shape space
(i.e., xc). Since latent distances are less meaningful (e.g.,
dimensions may have very different scales) and will differ
across AEs, we choose to measure performance by cluster-
ing quality. Ideally, a representation that canonicalizes an
input shape should map rotated copies of a given PC to the
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Fig. 11 Latent rotational invariance via t-sne plots of xc vector embed-
dings. Plots are done with the HA-FTL-U (left) and HA-STD-U (right)
models, respectively (see Table 1). Colors denote a single shape; mark-
ers with the same color are rotations of that single shape. Marker types
are only meant to help tell apart shapes with similar colors. Notice
the non-FTL (STD) architecture gives a tighter latent invariance (Color
figure online)

same latent encoding—exactly fulfilling this would make it
rotation invariant. Hence, we create rotated copies of many
input shapes, encode them, and then cluster in theAE embed-
ding space.We expect that rotated copies of the same instance
should cluster together; hence, we treat instance identity as a
ground truth cluster label and use Adjusted Mutual Informa-
tion (AMI) to measure quality (Vinh et al., 2010). An AMI
of 1 indicates perfect matching of the predicted and real par-
titions, while an AMI of 0 is the expected value of a random
clustering. We average AMIs over clusterings obtained from
different random sample sizes (i.e., the number of unique
shapes duplicated and clustered). The resulting “area-under-
the-curve”-like latent space clustering metric for rotational
invariance is denoted CX . See Appendix C.1 for additional
details.

The original GDVAE model (Aumentado-Armstrong et
al., 2019) was trained on limited angles of rotation about the
canonical one, since otherwise reconstruction quality was
degraded but in this work we always consider full rotation
about a single axis. Despite the fact that two models use
essentially the same architectural components, our AE is bet-
ter able to obtain canonical orientations, while maintaining
reconstruction quality.

The results in Table 1 show a few patterns between the
AE types.2 First, we find the that the FTL-based AE has
superior reconstruction quality, while the STD AE has much
better rotation invariance. Second, the difference between the
unsupervised and supervised scenarios is relatively smaller,
with the unsupervised reconstruction quality being slightly
better than the supervised, whereas the supervised case has
superior rotation invariance. Finally, performance on the HA
dataset (which is a union of the SMAL and SMPL data) is
only slightly degraded compared to the per-category models
(moreso for FTL than STD).

2 We remark that these results utilize single-axis (planar) rotations; we
refer the reader to Appendix G for tests with full rotations, which results
in reduced rotational robustness.

Fig. 12 Random sample generations from the VAE. All models use the
FTL-based AE. Note that the MNIST model was trained on digits at all
orientations and thus should output samples at any orientation (as for
SMAL and SMPL). Rows: SMAL, SMPL, MNIST, and HA

5.2.1 Results Summary

Since the FTL-based AE maintains strong rotation invari-
ance, with superior latent interpretability and reconstruction
error, we suggest using it as a starting point. We also find that
rotation factorization can be donewithout aligned data super-
vision, at little cost to reconstruction or rotational invariance
quality.

5.3 Latent Variational Autoencoder Results

We evaluate our VAE model on three main criteria: (1)
representational fidelity, (2) generative modeling, and (3)
intrinsic-extrinsic disentanglement. Representational fidelity
is captured simply as the reconstruction error, measured
via the Chamfer distance between input and output (see
Fig. 10 for qualitative examples). To assess generative mod-
eling capability, we utilize the coverage and fidelity metrics
(Achlioptas et al., 2017), which examine how well samples
from our VAE represent a held-out test set. In addition, utiliz-
ing our flownetwork, we canmeasure the quality of spectrum
generation using the standard log-likelihood. Finally, using
the known ground truth intrinsics and extrinsics of our
synthetic SMAL and SMPL data, we can measure disentan-
glement quality via a pose-aware retrieval task. We discuss
our results and the details of these metrics in the follow-
ing sections. Figures 15, 16, and 17 (as well as Appendix
Table 5) show our quantitative results on metrics for all of
these criteria.

We explore two variants of our model, using the STD
and FTL AEs, as well as several ablations. Two ablations
involve the AE: removing rotational supervision (the “S” vs.
“U” models) and using only one model for both SMAL and
SMPL (via the HA dataset), as opposed to having special-
ized models for each. Note that the latter scenario not only
increases data complexity without altering model capacity,
but it also removes some regularities that are present in the
independent datasets due to their restricted categories. The
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Fig. 13 Intrinsic-extrinsic latent space interpolations using the dis-
entangled VAE representation. In each 4 × 4 panel, top-left and
bottom-right shapes are reconstructions of real inputs. Along the hori-
zontal axis, we interpolate along the intrinsics (zI ), whereas we do so
for the extrinsics (zE ) along the vertical axis. Notice that the bottom-
left and top-right shapes are pose transfers, for which one of the latent

factors is exchanged, while the other remains unchanged. SMAL and
SMPL shapes are shown in the learned canonical orientation (using
FTL-S); for MNIST only (using FTL-U), we interpolate the estimated
AE rotation encodings q as well, via slerping the quaternions (Shoe-
make, 1985) between the two inputs alongwith the extrinsics (i.e., along
the vertical axis)

remaining ablations affect only the VAE: using a PC-derived
LBO (rather than the mesh-derived one we use by default),
altering our algorithm to not use the spectrum-derived latent
intrinsics in training (GDVAE-FO), and removing the addi-
tional disentanglement loss LD (see Sect. 4.3.4).

5.3.1 Generative Modeling

We measure generative modeling quality using the met-
rics introduced by Achlioptas et al. (2017). Consider two
sets of PC shapes: ςG , a random set of generated samples,
and ςR , a set of real PCs. Note that generations are com-
puted via P = D(Dx (zE , zI ))R(Dq(zR)) ∈ ςG , where
zR, zE , zI ∼ N (0, I ) (see Sects. 3.1 and 4.2.1). Briefly, we
consider two measures: coverage, which checks how well
ςG covers the modes of ςR (a proxy for set diversity), and

fidelity, which considers how faithful each element in ςG is
to its closest counterpart in ςR (a proxy for per-element real-
ism). Coverage is computed by matching each Q ∈ ςG to
its closest PC in ςR , and counting the percent of PCs chosen
(matched) in ςR (high coverage meaning most of the PCs
in ςR are represented in ςG). Fidelity (also called minimum
matching distance) is computed by matching each P ∈ ςR to
its closest pair in ςG , taking the Chamfer distance between
them, and averaging these distances over the dataset. Fidelity
is needed because coverage does not measure the quality of
the matchings (e.g., low quality PCs could be used to cover
a given real PC). Matching is always computed as the mini-
mum Chamfer distance. Similar to Achlioptas et al. (2017),
we generate a synthetic set five times larger than the held-out
test set, and report the average of running the same eval-
uation twice. See Fig. 15 for a plot of generative metrics
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Query Extrinsic Retrievals (via zE) Intrinsic Retrievals (via zI)

Fig. 14 Example retrievals using the disentangled factors of the
GDVAE++ latent representation. Shapes are in order of latent similar-
ity from left to right). SMAL, SMPL, and MNIST use FTL-S, FTL-S,
and FTL-U AE models, respectively. For SMAL and SMPL, notice
that zE retrieves a variety of animals/body types in the same articu-
lated pose, while zI retrieves the same animal/body type in an array
of different non-rigid poses. Though MNIST does not have a natural
sense of articulation, notice that the extrinsic retrievals tend to have the

same digit identity, but vary most noticeably in thickness (which is a
non-isometric alteration). In contrast, digits retrieved via zI appear to
be bent largely isometrically; that is, “wiggled” around in a way that
preserves the metric tensor (and the distribution of geodesic distances
among points)—see the “8” digit. For the “6”, notice that it retrieves
several “9” digits, showing its blindness to orientation, as well as two
“5” shapes that were “thickened” sufficiently in a manner similarly to
the query

and Appendix Table 5 for quantitative scores. For qualita-
tive visualizations, random sample generations are shown in
Fig. 12.

Separately, our flowmodel fλ provides a generativemodel
on LBOSs. Using its bijectivity, we can directly compute the
log-likelihood (shown in Fig. 18 andAppendix Table 5). This
measures how well our spectral encoder maps real spectra
into the Gaussian latent space of the intrinsics.

Looking at Figs. 15 and 18 (as well as Appendix Table 5),
we can see that the GDVAE++ and GDVAE-FO score simi-
larly for generative fidelity and coverage, and obtain mixed
results on log Pλ(λ) (the FO method performs better or
similar with the FTL AE, but worse with the STD AE),
but GDVAE-FO always has better reconstruction results. In
terms ofAE type, results aremixed, though the FTLapproach
does tend to have slightly better coverage and worse fidelity.

We discuss results related to disentanglement quality in the
next subsection.

5.3.2 Shape-Pose Disentanglement

To measure disentanglement quantitatively, we rely on a
pose-aware retrieval task in which ground truth continuous
values for intrinsics and extrinsics are known.

We start with a set of shapes (SMAL or SMPL) for
which parameters for intrinsic shape β and extrinsic pose
θ are known. These shapes were not used in training.
Let point cloud Pi have parameters (βi , θi ). Using our
model, we encode Pi into a latent representation ρi ∈
{xc(Pi ), z(Pi ), zE (Pi ), zI (Pi )}. We then measure distances
between representations as dρ(Pi , Pj ) = ||ρi − ρ j ||22, and
rank the retrieved shapes based on ρi . We measure the disen-
tangled retrieval quality for a retrieved PC, Pj , using query
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Fig. 15 VAE generative modelling evaluation scores on SMAL (left)
and SMPL (right) with the FTL AE architecture. Notationally, “S”/“U”
refers to the supervised/unsupervised AE settings (see Sect. 3.2.1),
PCLBO refers to the LBOS being procured from a point cloud
(see Sect. 5.3.3), NCNJ refers to our disentanglement ablation (see
Sect. 5.3.4), and HA refers to a model trained on both SMAL and
SMPL at the same time (see Sect. 5.3). All methods use the GDVAE++
setting (see Sect. 4.4), except for the FO case. The upper-left corner of
the plots is preferred. See Appendix Table 5 for detailed values. Notice
that NCNJ tends to have poor generative quality, while the GDVAE++
(S or U) and GDVAE-FO generally perform well. In most cases, HA
underperforms the GDVAE++ (except for the SMAL-FTL case), likely
due to the additional complexity of the dataset straining model capacity

Fig. 16 VAE reconstruction quality evaluation, measured in Chamfer
distance (lower is better), using the STD (left) and FTL (right) architec-
tures. See Fig. 15 for explanation of model types and Appendix Table 5
for detailed values. We find that the PCLBO and HAmodels are similar
or worse, while NCNJ and FO are similar or slightly better, compared
to GDVAE++ (S). Note that NCNJ can take advantage of the weaker
disentanglement requirements, while the FO case simply fails to disen-
tangle (see Fig. 17)

Fig. 17 VAE disentanglement quality evaluation (see Sect. 5.3.2 and
Eq. 18 for discussion of the disentanglement score S). See Fig. 15 for
explanation of model types and Appendix Table 5 for detailed values.
Compared to the regularGDVAE++, the flow-only (FO) case is severely
degraded, whereas PCLBO, HA, and NCNJ experience moderate dete-
rioration (for the latter case, moreso on SMPL than SMAL)

Pi , by separately checking how well the intrinsic shape
and non-rigid pose match. This is done by comparing the
query ground truth parameters, (βi , θi ), to (β j , θ j ), from the
retrieved shape.

We compute the distance between these parameters, as
the mean squared error between β values and the average
rotational distance dq across corresponding joint rotations,
denoted Eβ and Eθ , respectively. Note that we normalize
Eβ and Eθ by the mean pairwise error across the dataset
for each measure, so that it is relative to the expected error
of a uniformly random retrieval algorithm (1 corresponds to
random retrieval, while 0 implies obtaining the same param-
eter set). More specifically, we use the encoding(s) ρ of a
PC P , to retrieve the three closest shapes (in terms of dρ),
and compute the errors Eβ and Eθ averaged over these three
retrievals, to obtain two errors per shape. For a fixed encod-
ing type ρ ∈ {xc(P), z(P), zE (P), zI (P)}, we get a final
error by averaging over an entire held-out test set. Hence, we
obtain two scalars Eβ and Eθ for each choice of ρ.

We then convert these errors into scores, sψ(ρ) = 1 −
Eψ(ρ), where ψ ∈ {θ, β}. We expect using zE for retrieval
(i.e., as ρ) to result in a high intrinsic error Eβ(zE ) (low score
sβ(zE )), but a low extrinsic error Eθ (zE ) (high score sθ (zE )).
Using zI should result in the converse: a high intrinsic score
sβ(zI ) and a low extrinsic score sθ (zI ). We expect retrieval
with xc or z to obtain high scores for both parameters.

Lastly, we wish to have a final scalar score that expresses
the quality of disentanglement obtained by themodel. Notice
that sβ and sθ are normalized with respect to a random
retriever, but are still not comparable (as the errors are
originally different units and at different scales). Hence we
compute ŝψ(zg) = sψ(zg)/sψ(xc), with zg ∈ {z, zE , zI },
normalizing beta and theta retrievals to be in approximately
the “same” units (both are errors relative to the AE).

With these normalizations, we make the following inter-
pretations: ŝψ(zg) = 0 means that using zg to retrieve shapes
is no better (with respect toψ) than random retrieval. In con-
trast, ŝψ(zg) = 1 implies that zg performs just as well as
using xc; this comparison is relevant, because the AE lim-
its the amount of information available to the VAE. Higher
scores (e.g., ŝψ(zg) = 2) imply that zg performs ŝψ× better
than xc (specifically for retrieving pose alone, when ψ = θ ,
or intrinsic shape alone, when ψ = β).

Our normalized retrieval scores ŝψ(zg) are then used to
compute a final disentanglement scalar

S = ŝβ(zI ) + ŝθ (zE ) − ŝβ(zE ) − ŝθ (zI ). (18)

HigherS requires accurate extrinsics-based retrieval in terms
of pose (high ŝθ (zE )), but poor retrieval (when using zE )
with respect to intrinsics β (low ŝβ(zE )); at the same time,
it requires the opposite performance for the latent intrin-
sics zI . Note that random retrieval performance results in all
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Fig. 18 Pose-aware retrieval scores with the FTL AE model. Model
notation refers to the GDVAE++ model with (S) or without (U) rota-
tion supervision, use of the PC-derived LBOS (PC; see Sect. 5.3.3), and
the partial disentanglement loss ablation (NCNJ; see Sect. 5.3.4). The
lighter (partially transparent) counterparts of each point corresponds to
using z̃ I = fλ(λ) instead of zI for retrieval. The leftmost two insets
show results with SMAL, while the rightmost two do so for SMPL; for
each set of two, left and right correspond to scores in intrinsic (̂sβ ) and
extrinsic (̂sθ ) retrieval, respectively. Preferred values lie in the bottom-
right for intrinsic scores and top-left for extrinsic scores. See Appendix

Fig. 22 for plots with the STD AE and Appendix Table 6 for detailed
values.We see that (i) usingλ-derived (rather thanmesh-derived) latents
is consistently better for intrinsic retrieval, but more mixed for extrin-
sic retrieval (particularly for SMAL); (ii) the PCLBO struggles more
on intrinsic than extrinsic retrieval scores (see also Sect. 5.3.3); and
(iii) removing disentanglement losses (NCNJ) increases the intrinsic
score on the extrinsics ŝβ(zE ) (meaning more intrinsic information is
erroneously in zE ), but allows for a modest improvement in extrinsic
score sθ (zE ), potentially due to the weaker constraints on the latent
representation

terms being zero (hence S = 0); however, one also obtains
S = 0 if performance for each term is the same as the AE
(since all four terms would be one). In other words, good per-
formance retrieving intrinsics (extrinsics) with zI (zE ) will
be cancelled out by good performance retrieving extrinsics
(intrinsics) with zI (zE ). This shows that a high S requires
disentanglement between zE and zI .

Disentanglement scores are shown in Fig. 17 (as well as
Appendix Table 5). Note that retrieval scores S are 1.08
and 1.04, for SMAL and SMPL respectively, in the original
GDVAEwork. As such, theGDVAE++model obtains signif-
icantly superior disentanglement scores across both datasets
(including from the HAmodel)—around double the score of
the original model.

From Fig. 18 (as well as Appendix Table 6 and Fig. 22),
we also observe the superiority of z̃ I = fλ(λ) over zI in
retrieving intrinsics, suggesting one should use the spectrum
directly when it is available for such a task, though the raw
spectrum λ cannot be used for other tasks (e.g., smooth inter-
polation, generation, or same-pose-different-shape retrieval).

Qualitatively, we can assess disentanglement by looking
at interpolations within the factorized latent space (shown
in Fig. 13). The interpolation plots also show examples of
pose transfers (upper-right and lower left corners per inset).
For SMAL and SMPL, one can see that the network cor-
rectly disentangles articulated pose and shape. For MNIST,
where an obvious notion of articulation is not present, mov-
ing in zI tends to change digit thickness or allow large-scale
shape alterations, while changing zE approximately leaves
geodesic distance distributions unchanged (though it can
change major factors, like topology).

We can also consider the retrievals qualitatively based on
the disentangled latent vectors. Figure 14 shows what shapes
the networks think are most similar to each query, in terms
of intrinsics versus extrinsics. We observe that zE is able to

retrieve very similar articulations acrossmany animals and/or
human body types, while zI correctly retrieves similar shapes
without regard for non-rigid pose. For MNIST, retrieval with
zE tends to mostly return the same digit with differing thick-
nesses, while retrieval with zI also largely results in the same
digit, but under isometric (non-geodesic-altering) deforma-
tions. There are some exceptions to these, such as the nines
retrieved by the zI from the six (as the spectrum is unaffected
by rotation) or the fives there (potentially due to the closeness
of the end of the last stroke in the five to the upper portion of
the digit, as well as its thickness, leading to greater intrinsic
similarity). The ones retrieved for the eight by zE are less
obvious to interpret; they may be due to the low dimension-
ality of zE or the similarity of ones to thin eights.

We conclude by noting that theGDVAE++ (S or U) gener-
ally has the best disentanglement scores (see Fig. 17), while
NCNJ has the second-best, but suffers fromworse generative
quality (Figs. 15 and 19). In comparison, theHA and PCLBO
models are generally slightly worse across all metrics (gener-
ation, reconstruction, and disentanglement). The FO scenario
has by far theworst disentanglement score among all models,
underscoring the importance of our altered training regime.
While there is some noise (e.g., higher reconstruction error
for SMAL-FTL-U in Fig. 16 or superior generative quality
for HA on SMAL-FTL in Fig. 15), these trends broadly hold
across datasets and AE types (STD and FTL), suggesting our
new approach is generally better.

5.3.3 Spectral Robustness

Although we use PCs as our shape representation for these
experiments, our spectra are computed on the mesh forms of
the shapes, via the cotan weight formulation (Meyer et al.,
2003). This provides a usefulmeasure of performance for our
model (effectively bounding the performance we can expect
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with lower quality LBOs), as well as allowing comparison
to the original GDVAE model, upon which we are trying
to improve. Further, we expect methods for LBOS extraction
fromPCs to improve over time (e.g., via advances inmachine
learning (Marin et al., 2021) and geometry processing (Sharp
et al., 2021)),making the use of higher quality operatorsmore
feasible.

However, for completeness, we also investigated the effect
of computing the spectra directly on our subsampled point
clouds. This mesh-to-point-cloud conversion process intro-
duces several additional sources of noise: for instance, parts
far in geodesic distance may be close in Euclidean space
(altering the LBO), and the subsampling of the surface (our
PCs being smaller than the number of vertices in SMPL and
SMAL) also introduces noise. Hence, we expect results to
be degraded, compared to the prior section. For computing
the point cloud LBO (PCLBO), we use the robust “tufted”
Laplacian operator (Sharp & Crane, 2020).

The scalar disentanglement results are shown in Fig. 17
and Appendix Table 5. While the scores do decrease overall,
they are still superior to the scores from the original GDVAE
(whichusedmesh-derivedLBOSs to obtain 1.08 and1.04, for
SMAL and SMPL respectively) and theGDVAE-FOmodels.
From Fig. 18 (as well as Appendix Table 6 and Fig. 22),
we see that two major terms are negatively affected in the
PCLBO case, likely due to noise in the estimated LBOSs: (1)
the ability of zI to capture intrinsics degrades, indicated by
the decline in ŝβ(zI ), scores; and (2) intrinsic information is
not removed as effectively from zE , indicated by high values
of ŝβ(zE ) (especially for SMPL).

5.3.4 Ablations

Lastly, we consider the effect of ablating two aspects of
the model: the additional disentanglement loss LD and the
shape-from-spectrum reconstruction used in the GDVAE++
training.

First, we investigate the utility of the additional disen-
tanglement penalties. By removing these losses, we have no
covariance and no Jacobian terms; we denote this scenario
NCNJ. For SMAL, the disentanglement scores seem unaf-
fected by this ablation; however, it seems to have introduced
a trade-off between reconstruction and generative modelling
errors, with dC improving (see Fig. 16), but coverage and
log Pλ(λ) degrading (see Figs. 15 and 19). For SMPL, NCNJ
results in degradations in the disentanglement and generative
coverage scores (seeFigs. 15 and17).Note that since theVAE
prior is Gaussian, it presupposes latent independence (Hig-
gins et al., 2017); hence, disentanglement is likely to affect
the prior fitting (and hence generative quality and log Pλ(λ)

as well).
Second, we look at the effectiveness of the “flow-only”

training approach, where we do not perform latent shape-

from-spectrum during training to perform reconstruction,
and instead only use the direct encoding of the AE out-
put. We find that this incurs the most significant degradation
in terms of disentanglement score across both datasets (see
Fig. 17), showing the importance of using the uncontami-
nated spectrum for training, rather than relying on the LF

to force zI to carry only intrinsic information. One may
notice that, even thoughGDVAE-FO is similar to theGDVAE
model (Aumentado-Armstrong et al., 2019),3 it has a much
lower disentanglement score. This can be partly explained by
the increase in dimensionality of the latent intrinsics, as the
newer model has a 4–5 times larger dim(zI ) than the original
GDVAE, making disentanglement more difficult.

5.3.5 Results Summary

The GDVAE++ shows substantial improvements over the
original GDVAE model in terms of disentanglement. Using
the PCLBO or the combined model (HA dataset) ablations
decrease performance, but still maintain this advantage. This
improvement also holds regardless of AE type or whether
rotational supervision is ablated, showcasing the robustness
of our model to AE settings. Much of this gain stems from
our shape-from-spectrum training regime: when ablated (the
GDVAE-FO model), disentanglement capabilities are crip-
pled.

5.4 Mesh Experiments

The previous results demonstrated the improvements of our
approach over the prior GDVAE model. To illustrate appli-
cability to a different 3D shape modality, as well as facilitate
comparison to other works, we also tested our method on
mesh data.

5.4.1 Human Bodies (AMASS)

First, we utilize the AMASS dataset (Mahmood et al., 2019),
which combines a number of human motion datasets and
provides parametric fitting via SMPL, in order to compare
with “Unsupervised Shape and Pose Disentanglement for 3D
Meshes” (USPD) (Zhouet al., 2020) ondisentangled retrieval
and pose transfer tasks.

We alter the AE to (1) process a mesh input, instead of
a PC, and (2) output ordered vertex coordinates instead of
arbitrary PC sample points. Following other work (Marin
et al., 2021; Tan et al., 2018), we use a fully connected
encoder. Each output position of the decoder is now seman-
tically associated to a fixed vertex. We alter the loss function
to use vertex-to-vertex mean squared error for reconstruc-
tion, rather than Eq. (2) (with other terms remaining the

3 Except for the flow network and altered AEs.
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Fig. 19 VAE spectral negative log-likelihood (NLL) evaluation, mea-
suring generative quality of the diffeomorphic flow network on the
LBOS (see Sect. 4.3.2). See Fig. 15 for explanation of model types
and Appendix Table 5 for detailed values. In most scenarios, NCNJ
experiences some degradation, while NLL in the FO case increases
only for the STD case

same). Notice that we use the vertex correspondence to com-
pute reconstruction loss during the AE training, but this
information is not utilized for disentanglement by the VAE,
which only has access to latent encodings x in our two-stage
training regime. See Appendix H.1 for details, including
hyper-parameter settings.

We test on two tasks, pose transfer and pose-aware
retrieval, on held-out subsets of AMASS. We use the same
evaluation methodology and splits as USPD for consistency,
which induces minor differences with the evaluations on PCs
from previous sections. We first measure pose transfer qual-
ity: given two meshes, we can obtain a ground truth transfer

by exchanging the SMPL parameters for articulation θ , while
fixing those for body shape β, and obtain our prediction by
doing so for zI and zE . After decoding, we can measure the
average vertex-to-vertex Euclidean distance between the pre-
dicted and true transfers. These values are shown in Table 2.
While we greatly outperform the original GDVAE, we still
underperform USPD for this task. Nevertheless, beyond the
additional requirements of USPD (subject labels and ver-
tex correspondence), we note that our VAE is trained to
reconstruct AE latent vectors (i.e., it is not trained end-to-
end to reduce real-space vertex-to-vertex error), which also
potentially contributes to worse performance on this task. In

Table 2 Pose transfer scores (lower is better) on mesh data from
AMASS, measured in vertex-to-vertex distance in millimeters (with
comparative numbers from Zhou et al., 2020)

GDVAE GDVAE++ USPD

Error ↓ 54.44* 31.54 19.43

Note that the GDVAE model (which outputs a PC) measures error via
themore forgiving one-sided Chamfer distance instead (as in Zhou et al.
2020). See Sect. 5.4.1 for additional details.We find that our GDVAE++
outperforms the GDVAE, but underperforms the more strongly super-
vised USPD, which uses subject labels and mesh correspondence for
disentanglement. Wemark the GDVAE score with a *, as it is computed
with a different (more lenient) metric

Fig. 20 Latent interpolations of AMASS validation mesh shapes. As
in Fig. 13, per inset, horizontal or vertical movement traverses latent
intrinsics zI or extrinsics zE , respectively, via linear interpolation. See

Sect. 5.4.1 for model details. Upper-left and lower-right shapes corre-
spond to real input meshes; upper-right and lower-left shapes therefore
correspond to pose transfers
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Fig. 20, we show example latent interpolations in the disen-
tangled space, including pose transfers.

We then examine pose-aware retrieval quality. For ease of
comparison, we use the error measures on SMPL parameters
from USPD: ˜Eβ(zψ) = EMQ ||β(MQ) − β(M(zψ(MQ)))||2
and ˜Eθ (zψ) = EMQ ||q(θ(MQ)) − q(θ(M(zψ(MQ))))||2,
where ψ ∈ {E, I }, β, θ refer to shape and pose SMPL
parameters, MQ is a query mesh from a held-out test set,
M(zψ(MQ)) is the nearest neighbour mesh to MQ as mea-
sured by MSE in zψ space, and q converts pose angles to
unit quaternions. We also examine the differences Δ(˜Eβ) =
˜Eβ(zE ) − ˜Eβ(zI ) and Δ(˜Eθ ) = ˜Eθ (zI ) − ˜Eθ (zE ), which
should ideally be high. Quantitative results are compiled
in Table 3. Compared to USPD, our method has higher
˜Eβ(zI ) and ˜Eθ (zE ), but outperforms in terms of both dif-
ferences Δ(˜Eβ) and Δ(˜Eθ ). Intuitively, when querying
with latent intrinsics/extrinsics, USPD obtains shapes with
very close intrinsics/extrinsics, but those shapes also have
similar extrinsics/intrinsics; in other words, some shape-
pose entanglement remains. By comparison, the GDVAE++

Table 3 Pose-aware disentangled retrieval scores on mesh data from
AMASS

Retrieval with latent: Intrinsics Extrinsics Δ

GDVAE ˜Eβ 2.80 ↓ 4.71 ↑ 1.91 ↑
˜Eθ 1.47 ↑ 1.44 ↓ 0.03 ↑

GDVAE++ ˜Eβ 0.41 ↓ 1.36 ↑ 0.94 ↑
˜Eθ 1.15 ↑ 0.80 ↓ 0.35 ↑

USPD ˜Eβ 0.14 ↓ 0.92 ↑ 0.78 ↑
˜Eθ 0.94 ↑ 0.76 ↓ 0.18 ↑

GDVAE++ (PCA) ˜Eβ 0.50 ↓ 1.49 ↑ 0.98 ↑
˜Eθ 1.21 ↑ 0.82 ↓ 0.40 ↑

USPD (PCA) ˜Eβ 0.34 ↓ 2.14 ↑ 1.80 ↑
˜Eθ 1.23 ↑ 0.87 ↓ 0.36 ↑

Note that our latent intrinsics and extrinsics nomenclature refers to the
latent “shape” and “pose” (or articulation) vectors in other works. Com-
parative numbers from Zhou et al. (2020). See Sect. 5.4.1 for additional
details and Appendix H.1.3 for empirical standard deviations. We show
the difference Δ between retrieval scores as well (˜Eβ(zE ) − ˜Eβ(zI )
and ˜Eθ (zI ) − ˜Eθ (zE )), such that higher is better. The GDVAE appears
to perform well on Δ(˜Eβ); however, this is due to the high overall error
magnitude in intrinsics retrieval, ˜Eβ . The authors of USPD previously
observed a reduction in entanglement when using PCA (measured by
Δ); we therefore compare against this dimensionally reduced version
as well (using dim(zI ) = 5 and dim(zE ) = 15).We show the best score
across categories between the PCA and non-PCA models in bold. In
particular, notice that our method underperforms the non-PCA USPD
in terms of ˜Eβ(zI ) and ˜Eθ (zE ), but outperforms it in terms of the Δ

differences; in other words, while USPD retrieves shapes with close
intrinsics/extrinsics (when querying with latent intrinsics/extrinsics),
those shapes also have similar extrinsics/intrinsics, suggesting a level
of shape-pose entanglement remains. In contrast, the PCA-reduced ver-
sion of USPD has betterΔ values; however, in this case, our PCA-based
method has better ˜Eθ (zE ), as well as better Δ(˜Eθ ) overall

has less entanglement (higher error when retrieving intrin-
sics/extrinsics with latent extrinsics/intrinsics), but also
higher error in terms of retrieving intrinsics/extrinsics via
latent intrinsics/extrinsics.

The authors of USPD also considered a version of their
model with reduced dimensionality via PCA, which con-
trolled for the difference in dimensionality between USPD
and the GDVAE. They found it had better disentanglement
properties, as evidenced by the higher differences Δ, but
worse ˜Eθ (zE ) and ˜Eβ(zI ) values.We observe a similar effect
occurs with our model when using PCA to transform zE and
zI to that samedimensionality aswell (from9 to5 for dim(zI )
and 18 to 15 for dim(zE )). Comparing the PCA-reduced case,
USPD has superior retrieval results in terms of intrinsics, but
ours has better values in terms of extrinsics (˜Eθ (zE ) and
Δ(˜Eθ )).

We note that these Δ measures effectively weight the two
terms equally, which may not be ideal. However, we find
that a uniformly random retrieval algorithm incurs average
errors of 6.5 for ˜Eβ and 1.76 for ˜Eθ (as well as Δ values
close to zero), suggesting none of these models are actu-
ally selecting random intrinsics/extrinsics for given query
extrinsics/intrinsics, as one would expect from perfectly dis-
entangled retrieval.

Overall, our model underperforms USPD on pose trans-
fer, but is more competitive on retrieval. However, we remark
that USPD relies on known subject identities to obtain sets of
people with identical intrinsics, but different extrinsic pose,
providing the network with explicit information about the
articulated pose space for a given shape. It also utilizes vertex
correspondence, which ourmethod does not use for disentan-
glement. Together, these provide powerful learning signals
to the network. This is different than our use of the LBOS,
which is specific to a geometric entity, extractable from raw
geometry, and not based on semantic knowledge about iden-
tity. In otherwords, USPDperforms better for these tasks, but
is more specialized, whereas our approach defines a generic
structural prior on the deformation space of objects, which
happens to disentangle articulation and intrinsic shape as a
natural geometric consequence. Other factors, such as our
need for low latent dimensionality and inability to do end-
to-end training (necessitated by our information-theoretic
disentanglement) also contribute to reduced performance.

5.4.2 Human Faces (CoMA)

We also investigated our approach on human face meshes,
derived from the CoMA dataset (Ranjan et al., 2018). In
particular, we consider the utility of our approach on a shape-
from-spectrum task, under identical experimental conditions
to recent work by Marin et al. (2021). Given an LBOS λ, our
goal is to reconstruct the original shape S. Due to our use of
a flow network, we can easily encode λ, to obtain the latent
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intrinsics z̃ I (λ). However, we also require latent extrinsics,
which we must obtain without access to S. Fortunately, our
VAE-based formlation permits a straightforward, principled
solution: simply use the mode of the Gaussian prior over
the latent extrinsics, meaning we set zE ≡ 0. We can then
decode z = (̃zI (S), 	0) to obtain the reconstructed shape ̂S
with “mean” extrinsic pose, according to the prior. In prac-
tice, if we use more eigenvalues, more of the shape will be
represented in z̃ I ; for fair comparison, we use the same num-
ber asMarin et al. (2021) (i.e., dim(λ) = 30). Error is simply
the vertex-to-vertex Euclidean distance between the meshes
S and ̂S. Appendix H.2 contains additional details.

Our results are displayed in Table 4. We consider two
nearest neighbour baselines (λ-NN-L2 and λ-NN-dλ), which
simply retrieve the closest shape in the training set to the
given spectrum, using the Euclidean distance or ourweighted
dλ (Eq. 14), respectively. We remark that using dλ provides
superior retrievals than the L2 metric, as it corrects for the
growth of themonotonic LBOS, which overweights high fre-
quency geometric details. The method byMarin et al. (2021)
outperforms these baselines, but our method (using the mode
of theVAEprior for zE ) performs the best overall.Weobserve
that there is still a performance gap compared to using zE (x)
(bottom row of the table); however, this is to be expected,
since using the truncated spectrumalonewill lose some infor-
mation.

We also provide example latent interpolations on the
CoMA dataset in Fig. 21. Notice that our latent intrinsics
capture overall head shape, while the latent extrinsics con-
tain deformations of the mouth and other facial expressions,
despite only using raw meshes as input to the algorithm.
Compared to Marin et al. (2021), which must perform a reg-
ularized optimization to obtain such disentanglement, our
method simply linearly interpolates zI and zE .

6 Discussion

In this work, we have devised a method for separating
the deformation space of an object into rigid orientation,
non-rigid extrinsic pose, and intrinsic shape. We require no
information other than the geometry of the shapes themselves
(i.e., no labels or correspondences). Our method relies on the
isometry invariance of the LBOS, which can be estimated
from the geometry directly, and uses disentanglement tech-
niques to partition the latent space of a generative model into
these independent components.

In particular, we have built upon the GDVAE model
(Aumentado-Armstrong et al., 2019) with two primary tech-
nical improvements. First, we investigated two approaches
to improving rotation factorization: STD, which utilizes ran-
domly rotated inputs to enforce rotation invariance (Li et
al., 2019; Sanghi & Danielyan, 2019), and FTL, which pro-

Table 4 Empirical shape-from-spectrum results on CoMA, following
the experimental settings of Marin et al. (2021)

Method Error ↓ Spectrum Only

λ-NN-L2 4.47 Yes

λ-NN-dλ 2.63 Yes

Marin et al. (2021) 1.61 Yes

z̃ I (λ) & zE ≡ 0 (Ours) 1.52 Yes

Full z (Ours) 1.24 No

Columns: reconstruction methods, test set error (in terms of vertex-
to-vertex L2 distance), and whether or not some form of information
about the shape extrinsics is used. Rows refer to different approaches:
λ-NN-L2 simply retrieves the closest shape in the training set, based
on the L2 distance between LBOSs; λ-NN-dλ is the same nearest
neighbour approach, but using our dλ metric (Eq. 14) instead (which
avoids over-emphasizing high frequency geometric details); “̃zI (λ) &
zE ≡ 0” denotes simply setting zE to be zero; and “Full z” means
z = (zI (x), zE (x)) is used, which forms a lower bound on the error
we can expect, as it uses both intrinsic and extrinsic information from
the full shape S. Our approach with zE ≡ 0 uses only the spectrum
λ of the shape (and no other information from S or x); it is equiv-
alent to simply choosing zE as the mode of the VAE prior, over the
space of latent extrinsics. Overall, our method, which separates latent
intrinsics and extrinsics, as well as guarantees invertibility, performs
best. We observe the standard error of the mean for our two VAE-based
approaches as 0.02 (using only λ) and 0.009 (using full z). All error
values are ×10−5

vides an interpretable latent space in which 3D rotations
in a “folded” latent space mirror the effects of those rota-
tions in real-space (Remelli et al., 2020; Worrall et al.,
2017). Compared to the GDVAE, which was only able to
maintain robustness to small rotations, both new AEs can
handle arbitrary rotations about a single axis; the FTLmethod
has the additional benefit of latent interpretability. Second,
we utilized a diffeomorphic normalizing flow network to
map between LBOSs and latent intrinsic space. Unlike the
GDVAE, which did not have a mapping from LBOS space
to latent intrinsic space (and thus could not architecturally
stop latent intrinsics zI computed from an encoded shape x
from being affecting by extrinsic pose information), utiliz-
ing this mapping in our GDVAE++ training procedure (see
Sect. 4.4) allows us to compute reconstructions through z̃ I
instead, guaranteeing this separation. Further, the bijectivity
of the flow ensures that (i) spectral information is not lost
and (ii) generative likelihood is tractably computable. Alto-
gether, these changes result in greatly improved unsupervised
disentanglement, without sacrificing other representational
aspects.

Our results show that we have significantly improved on
the GDVAE. Firstly, we are able to handle larger orientation
changes with far better robustness in both the 3D data space
and latent space (see Sect. 5.2), utilizing rotational invariance
techniques that do not rely on a specific feature extraction
or neural architecture. Secondly, we obtain nearly double
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Fig. 21 Example latent interpolations on the CoMA dataset. Per inset,
horizontal movement corresponds to linear changes in zI , while vertical
movement corresponds to linear changes in zE . Upper left and lower
right images are starting and ending points; upper right and lower left are
thus pose (or intrinsics) transfers. Themodel is capable of correctly pre-
serving identity when the intrinsics, zI , are fixed (i.e., within columns),
as well as representing subtle expressions (e.g., the orientation of the

mouth in the leftmost inset).We remark that there are a few failure cases
(e.g., bottom row of the third inset, top row of the fourth inset) where the
non-rigid pose (facial expression) is not exactly preserved as the latent
intrinsics change. However note that our formulation demands only that
latent shape and extrinsics are disentangled; it does not directly enforce
which non-rigid pose should semantically correspond across different
intrinsics

the quantitative disentanglement score, for data from both
SMAL and SMPL, using our GDVAE++ training scheme
(see Sect. 5.3.2). We also examined the ability of the model
to generate novel shape samples, its capacity to smoothly and
independently control latent shape and non-rigid pose (see
Figs. 13 and 20), and the effect of several ablations and mod-
ifications of the model. Finally, we compare the GDVAE++
to existing techniques for disentanglement and shape-from-
spectrum recovery.

For future work, we expect research on localized spec-
tral geometry (Melzi et al., 2018; Neumann et al., 2014),
LBO modifications (Andreux et al., 2014; Choukroun et al.,
2018), and extrinsic spectral shape (Liu et al., 2017; Wang
et al., 2017; Ye et al., 2018) to be potentially useful. Fur-
thermore, our formulation is readily applicable to other 3D
shape modalities (e.g., tetrahderal meshes or implicit fields),
as the only elements of our architecture that would require
alteration are the AE encoders (Er and Ex ) and decoder (D),
provided one has a way to estimate the LBOS. Our VAE
model is also agnostic to the neural architecture of the AE.
Hence, our approach could be used in conjunction with other
methods for factorizing deformations. Lastly, our method
can also be utilized for applications in computer vision. For
instance, it can be used for controllable shape generation
or manipulation, for regularizing visual inference (e.g., by
acting as a prior on expected deformation types), or for pose-
aware shape retrieval. In general, we hope that our model can

serve as an interpretable unsupervised prior for understand-
ing shape deformations.

Acknowledgements Wearegrateful for support fromNSERC(CGSD3-
534955-2019) and Samsung Research.

Data Availability All datasets are from publicly available sources,
detailed below.

A Glossary of Notation

Symbol Sec/Eq Definition

P Section 3 Shape
xc Section 3 Canonical AE encoding
x̃ Section 3.1.2 Non-canon FTL-AE encoding
q Section 3 Quaternion
DP Equation 2 Distance between PCs
zI Section 4.2.1 Latent intrinsics
zE Section 4.2.1 Latent extrinsics
zR Section 4.2.1 Latent rigid pose
λ Section 2.2 LBO Spectrum
z̃ I Section 4.2.2 Latent intrinsics (from λ)
fλ Section 4.2.2 Spectral flow network
gλ Section 4.2.2 Inverse of fλ
S Equation 18 Disentanglement score
Eβ Section 5.3.2 Retrieval error wrt SMPL shape
Eθ Section 5.3.2 Retrieval error wrt SMPL pose
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Symbol Sec/Eq Definition

Pλ(λ) Equation 12 Spectral likelihood
dλ Equation 14 Distance between spectra
dR Equation 4 Distance between rotations
LAE Section 3.2 AE total loss
Lc Section 3.2.1 AE x-consistency
LR Section 3.2.1 AE rotation prediction
LP Section 3.2.1/3.2.2 AE shape prediction
LV AE Section 4.3 GDVAE total loss
LHF Section 4.3.1 HFVAE loss
LR Section 4.3.1 VAE reconstruction loss
Lλ Section 4.3.2 Spectral log-likelihood loss
LD Section 4.3.4 Additional disentanglement loss
LF Section 4.3.4 Intrinsics-Spectrum consistency

B Invariant FTL-BasedMapping

As an aside, in an FTL-based model, we remark that
it is possible to transform x ∈ X , in a way that is
invariant to latent-space rotation operators. Let I[x] =
(U (x)Ti U (x) j )i, j∈[1,Ns ];i≤ j be the collection of inner prod-
ucts of the subvectors of x . Then I[x] is rotation invariant;
i.e., I[x] = I[F(R, x)], for any R ∈ SO(3). This idea is
noted by Worrall et al. (2017).

However, we found that using I[x] only slightly improved
rotation invariance, yet slightly decreased reconstruction per-
formance, and further was computationally expensive, due to
the quadratic dependence of dim(I[x]) on Ns . Nevertheless,
this may be specific to our particular architectural setup, and
could still be an interesting direction for future work.

C EvaluationMetric Details

C.1 Latent Rotation Invariance Measure

We provide a more detailed description of the latent cluster-
ing metric CX here. Recall that our goal is to take a set of
random shapes (potentially differing in intrinsics, non-rigid
extrinsics, and orientation) and duplicate each shape, before
randomly rotating the copies. We then encode each shape
into xc-space and cluster them. We use K-means clustering
(MacQueen et al., 1967) to obtain the labeling. We expect
our canonicalization method to bring the latent representa-
tions close in latent space, such that rotated copies should
cluster together. We can therefore measure rotational invari-
ance by supervised clustering quality metrics, in which the
instance identity (i.e., which shape a vector originated from)
is a ground truth cluster label.We use AdjustedMutual Infor-
mation (AMI) for this (Vinh et al., 2010), which returns 1 for
a perfect partitioning (as compared to the ground truth) and
a 0 for a random clustering.

While this captures the representational invariance to
rotation in the embedding space, the number of disparate
sample shapes to use is unclear. We therefore average over a
sequentially larger set of samples, thus giving an “area-under-
the-curve”-like measure of quality across sample sizes.

More formally, let Γ = {P1, . . . , PNI } be a set of |Γ | =
NI PC shape instances. Now consider a set that includes Nrc

rotated copies of each PC: ˜Γ = ⋃NI
k=1{˜Pk,1, . . . , ˜Pk,Nrc },

where ˜Pk, j = Pk ˜R j for a randomly sampled ˜R j and |˜Γ | =
NI Nrc. We then encode the set into canonical representa-
tions ˜ΓE = {Ex (˜Pk, j ) ∀ ˜Pk, j ∈ ˜Γ } and run our clustering
algorithm on ˜ΓE to get AMI(NI ) for a given instance set
size NI . Let NS be a set of sample sizes (we chose eight
sizes, linearly spaced from 20 to 103). Finally, the xc-space
rotational consistency metric is given by

CX = 1

|NS|
∑

NI∈NS

AMI(NI ). (19)

Note that for each size we always run two clusterings with
different randomly chosen sample shapes, and use their aver-
age AMI in the above equation. For implementations, we use
scikit-learn (Pedregosa et al., 2012).

D Dataset Details

Except for HA, all our datasets are identical to those in
(Aumentado-Armstrong et al., 2019). We denote Np as the
size of the input point cloud (PC) and Nλ as the dimension-
ality of the spectrum used. In all cases, we output the same
number of points as we input.

We also perform a scalar rescaling of the dataset such that
the largest bounding box length is scaled down to unit length.
This scale is the same across PCs in a given dataset (other-
wise the change in scale would affect the spectrum for each
shape differently). For augmentation and rigid orientation
learning, we apply random rotations about the gravity axis
(SMAL and SMPL) or the out-of-image axis (MNIST). For
rotation supervision, the orientation of the raw data is treated
as canonical.

D.1 MNIST

Meshes are extracted from the greyscale MNIST images,
followed by area-weighted point cloud (PC) sampling. See
Aumentado-Armstrong et al. (2019) for extraction details.
We set Np = 512 and Nλ = 20. The dataset has 59483
training examples and 9914 testing examples.
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D.2 SMAL

Using the SMALmodel (Zuffi et al., 2017),we generate set of
3D animal shapes with varying shape and pose. Using densi-
ties provided by authors, we generate 3200 shapes per animal
category, Following 3D-CODED (Groueix et al., 2018), we
sample poses by taking aGaussian about the joint angleswith
a standard deviation of 0.2.We use 15,000 shapes for training
and 1000 for testing, and set Np = 1600 and Nλ = 24.

D.3 SMPL

Based on the SMPLmodel (Loper et al., 2015), we again fol-
low the procedure in 3D-CODED (Groueix et al., 2018) to
assemble a dataset of human models. This results in 20500
meshes per gender, using random samples from the SUR-
REAL dataset (Varol et al., 2017), plus an additional 3100
meshes of “bent” people per gender, following Groueix et al.
(2018). Ultimately, we get 45,992 training and 1199 testing
meshes, equally divided by gender, after spectral calcula-
tions. We used Np = 1600 and Nλ = 20.

D.4 Human-Animal (HA)

Since our model uses only geometry, we are able to simply
mix SMAL and SMPL data together. The testing sets are left
alone, and used separately during evaluation (for comparison
to the unmixedmodels). For training,weuse the entire SMAL
training set, plus 9000 unbent and 1500 bent samples from
the SMPL training set, per gender. We set Np = 1600 and
Nλ = 22.

Note that the use of a single scalar scaling factor (setting
the maximum bounding box length to 1) means that SMPL
models are smaller in the HA data than in the isolated SMPL
dataset. We correct for this in the evaluation tables so that
they are comparable (e.g., for Chamfer distances).

E Results Tables

In this section, we provide the detailed results tables for the
experiments discussed in Sect. 5.3. See Table 5 for measure-
ments of VAE quality, including reconstruction, generative
modelling, and disentanglement metrics. See Table 6 for
pose-aware retrieval scores, with various choices of latent
vector, and Fig. 22 for plots of those scores for the STD AE
(as well as Fig. 19 for the FTL AE case).

F Implementation Details

All models were implemented in Pytorch (Paszke et al.,
2019). Notationally, let n = dim(xc), nE = dim(zE ),

nI = dim(zI ), and nR = dim(zR). For this section, we
assume that the number of points Np in a point cloud (PC)
is the same for inputs and outputs (though the architectures
themselves do not require this). Validation sets of size 40
(or 250 for MNIST) were set aside from the training set
to observe generalization error estimates. Hyper-parameters
were largely set based on qualitative examination of training
outputs.

F.1 Autoencoder Details

F.1.1 AE Network Architectures

Both the STD and FTL architectures used the same net-
work components, with slight hyper-parameter alterations.
Our encoders Er : R

3Np → R
4 and Ex : R

3Np → R
n

were implemented as PointNets (Qi et al., 2017) without
spatial transformers, with hidden channel sizes(64, 128,
256, 512, 128) and (128, 256, 512, 836,
1024). The inputs are only the point coordinates (i.e., three
channels) and the output is a four-dimensional quaternion
for Er and an n-dimensional vector for Ex . The decoder
D : R

n → R
3Np is implemented as a fully connected

network, with hidden layer sizes (K, 2K, 4K), where
K = 1200 for STD and K = 1250 for FTL. Within D, each
layer consisted of a linear layer, layer normalization (Ba et
al., 2016), and ReLU (except for the last, which had only a
linear layer). For the MNIST dataset only, we changed the
hidden layer sizes of the decoder D to be (512, 1024,
1536).

F.1.2 AE Hyper-Parameters and Loss Weights

For architectural parameters, in the FTL case, we set Ns =
333, and hence n = 999. For STD, we let n = 600 and did
not notice improvements when increasing it. For MNIST, we
set Ns = 32 and, for the STD case, n = 150. Regarding
loss parameters, we set the reconstruction loss weights to
αC = 200, αH = 1, γ̃P = 100, and γP = 20, in the FTL
case, altering only γP = 250 in the STD case. Rotational
consistency and prediction loss weights were set to γc = 1
and γr = 10. Regularization loss weights were γw = γd =
2 × 10−5. For MNIST, we altered γc = 50 for STD, while
we let γd = 10−6, γw = 5 × 10−5, and γc = 100 for FTL.

F.1.3 AE Training Details

We train all AEs with Adam (Kingma & Ba, 2014), using
an initial learning rate of 0.0005. For supervised AEs, we
pretrain the rotation predictor for 2000 iterations before the
rest of the network. We use a scheduler that decreases the
learning rate by 5%uponhitting a loss plateau, until it reaches
0.0001. We trained MNIST, SMAL, SMPL, and HA for 200,
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Table 5 VAE Evaluation on held-out test data

Dataset VAE Model AE Model dC (P, ̂P) ↓ Fidelity ↓ Coverage ↑ log Pλ(λ) ↑ S ↑
SMAL GDVAE++ STD-S 0.56 0.83 0.77 −121.60 2.07

FTL-S 0.40 1.20 0.62 −144.17 2.12

STD-U 0.39 0.68 0.66 −114.73 2.02

FTL-U 0.73 0.99 0.75 −135.21 2.07

GDVAE-FO STD-S 0.48 0.81 0.72 −147.60 0.49

FTL-S 0.24 0.90 0.73 −143.39 0.43

GDVAE++ STD-S 0.51 0.89 0.65 −116.62 1.83

(PCLBO) FTL-S 1.05 1.09 0.65 −111.12 1.11

GDVAE++ STD-S 0.44 1.20 0.47 −151.32 2.14

(NCNJ) FTL-S 0.34 1.09 0.57 −196.15 2.06

SMPL GDVAE++ STD-S 0.50 1.21 0.73 −131.82 2.58

FTL-S 0.38 1.38 0.80 −137.06 2.46

STD-U 0.36 1.11 0.67 −151.74 2.46

FTL-U 0.43 1.38 0.80 −135.45 1.93

GDVAE-FO STD-S 0.43 1.21 0.65 −232.73 0.32

FTL-S 0.26 1.33 0.79 −94.65 0.64

GDVAE++ STD-S 0.53 1.16 0.80 −164.64 1.43

(PCLBO) FTL-S 0.37 1.47 0.77 −145.43 1.35

GDVAE++ STD-S 0.43 1.36 0.54 −178.26 2.01

(NCNJ) FTL-S 0.36 1.44 0.58 −123.40 2.24

HA GDVAE++ STD-S 0.54/0.64 0.89/1.32 0.63/0.68 −130.13/−125.44 1.86/1.92

FTL-S 0.40/0.65 1.06/1.54 0.74/0.59 −117.82/−108.69 1.72/1.83

The first three columns denote the dataset, the VAE type, and the AE type (S and U mean supervised and unsupervised, respectively). GDVAE-FO
means using the xc-derived latent intrinsics (as opposed to the λ-derived one) in training; PCLBO and NCNJ denote using point cloud-based LBOs
and ablating the LD loss, respectively. The five right-most columns are evaluation metrics, considering reconstruction (dC ), generative modelling
(Fidelity, Coverage, and log Pλ(λ)), and unsupervised disentanglement (S). See Sects. 5.3.4 and 5.3.3 for additional details on the alterations (PCLBO
and NCNJ), Sect. 4.4 for the difference between GDVAE++ and GDVAE-FO, Sect. 5.3.1 for the generative modelling metrics, and Sect. 5.3.2 for
the scalar disentanglement measure. For the HA dataset, we show A/B as the scores on the SMAL and SMPL test sets, respectively, and we also
scale Chamfer distances for the HA dataset to make them comparable across datasets, as in Table 1. We see that the GDVAE++ model obtains much
better disentanglement scores than the GDVAE model (across SMAL, SMPL, and HA), while GDVAE-FO does significantly worse. In terms of
retrieval quality, using the PCLBO degrades performance, but it stays above the GDVAE as well, while ablating LD (the NCNJ scenario) worsens
performance on SMPL but has little effect for SMAL

1250, 350, and 400 epochs, respectively, and batch sizes of
64/100 (FTL/STD) and 36/40 for MNIST and non-MNIST
datasets.We set the number of rotated copies (which expands
the batch sizes above) to NR = 3, except in the case of
MNIST (for which we used NR = 6 in the FTL case and
NR = 4 in the STD case). Finally, note that, during training,
for the supervised case only, we replace the predicted rotation
̂R with the real one R in all operations.

F.2 Variational Autoencoder Details

For implementation of the HFVAE, we use ProbTorch
(Narayanaswamy et al., 2017). Our normalizing flow sub-
network used nflows (Durkan et al., 2020).

F.2.1 VAE Network Architectures

For the VAE, all networks except for the flowmapping fλ are
implemented as fully connected networks (linear-layernorm-
ReLU, as above). Approximate variational posteriors have
diagonal covariances. Thus, we have the followingmappings
with their hidden sizes:

– The rotation distribution parameter encoders, μR :
R
4 → R

nR and ΣR : R
4 → R

nR , are implemented
with an initial shared network, with hidden sizes (256,
128) into an intermediate dimensionality of 64, fol-
lowed by single linear layer each.

– The quaternion decoder Dq : RnR → R
4 is structured as

(64, 128, 256).
– The intrinsic and extrinsic parameter encoders, μξ :
R
n → R

nξ and Σξ : R
n → R

nξ , for ξ ∈ {E, I },
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Table 6 Retrieval scores

Data Model ŝψ z ↑ zE zI z̃ I

SMAL STD-S ŝβ 1.46 0.23 ↓ 1.63 ↑ 2.04 ↑
ŝθ 0.69 0.83 ↑ 0.16 ↓ 0.08 ↓

FTL-S ŝβ 1.52 0.13 ↓ 1.66 ↑ 1.77 ↑
ŝθ 0.61 0.68 ↑ 0.11 ↓ 0.12 ↓

STD-U ŝβ 1.35 0.19 ↓ 1.56 ↑ 1.90 ↑
ŝθ 0.73 0.79 ↑ 0.15 ↓ 0.06 ↓

FTL-U ŝβ 1.54 0.15 ↓ 1.77 ↑ 1.99 ↑
ŝθ 0.63 0.66 ↑ 0.21 ↓ 0.18 ↓

STD-S ŝβ 1.15 0.16 ↓ 1.30 ↑ 2.00 ↑
(PCLBO) ŝθ 0.74 0.89 ↑ 0.20 ↓ 0.04 ↓
FTL-S ŝβ 0.74 0.25 ↓ 0.96 ↑ 1.84 ↑
(PCLBO) ŝθ 0.56 0.62 ↑ 0.21 ↓ 0.09 ↓
STD-S ŝβ 1.38 0.20 ↓ 1.60 ↑ 1.93 ↑
(NCNJ) ŝθ 0.73 0.91 ↑ 0.17 ↓ 0.07 ↓
FTL-S ŝβ 1.55 0.19 ↓ 1.69 ↑ 1.91 ↑
(NCNJ) ŝθ 0.73 0.70 ↑ 0.13 ↓ 0.07 ↓

SMPL STD-S ŝβ 0.72 0.12 ↓ 1.97 ↑ 1.73 ↑
ŝθ 0.94 0.93 ↑ 0.20 ↓ 0.34 ↓

FTL-S ŝβ 0.85 0.12 ↓ 1.78 ↑ 2.11 ↑
ŝθ 0.90 0.95 ↑ 0.15 ↓ 0.25 ↓

STD-U ŝβ 0.65 0.06 ↓ 1.95 ↑ 1.80 ↑
ŝθ 0.90 0.87 ↑ 0.30 ↓ 0.29 ↓

FTL-U ŝβ 0.97 0.30 ↓ 1.58 ↑ 2.03 ↑
ŝθ 0.87 0.89 ↑ 0.24 ↓ 0.28 ↓

STD-S ŝβ 0.42 0.23 ↓ 0.90 ↑ 1.74 ↑
(PCLBO) ŝθ 0.93 0.91 ↑ 0.14 ↓ 0.31 ↓
FTL-S ŝβ 0.71 0.43 ↓ 1.09 ↑ 2.01 ↑
(PCLBO) ŝθ 0.91 0.91 ↑ 0.21 ↓ 0.30 ↓
STD-S ŝβ 1.26 0.24 ↓ 1.63 ↑ 2.23 ↑
(NCNJ) ŝθ 0.74 0.96 ↑ 0.34 ↓ 0.38 ↓
FTL-S ŝβ 1.35 0.22 ↓ 1.66 ↑ 2.24 ↑
(NCNJ) ŝθ 0.77 0.96 ↑ 0.15 ↓ 0.32 ↓

All models use the GDVAE++ training regime. ↑ (↓) means the higher
(lower) the better. See Sect. 5.3.2 for additional details

have identical network architectures across latent group
types: (2000, 1600, 1200, 400) and (2000,
1200, 400), for μξ and Σξ , respectively.

– The only mapping that is not a fully connected network
is the bijective flow fλ (and its inverse, gλ). Recall that
we use fλ as μ̃. Hence, fλ : R

Nλ → R
nI and Nλ =

nI . This is implemented as a normalizing flow with nine
layers, where each layer consists of an affine coupling
transform (Dinh et al., 2016), an activation normalization
(actnorm) (Kingma & Dhariwal, 2018), and a random
feature ordering permutation. The last layer does not have
normalization or permutation. Each affine coupling uses
an internal FC network with one hidden layer of size 400.

– For the GDVAE++ training regime, we require a covari-
ance parameter estimator for inference during training:
Σξ : RNλ → R

nI . This is implemented via hidden layers
(2nI,2nI).

– The shape decoder Dx : RnI+nE → R
n is an FC network

with hidden layers (600, 1200, 1600, 2000).

F.2.2 VAE Hyper-Parameters and Loss Weights

Recall that the loss hyper-parameters control the following
terms: the intra-group total correlation (TC) β1, dimension-
wise KL divergence β2, mutual information β3, inter-group
TC β4, log-likelihood reconstruction ωR , relative quaternion
reconstruction ωq , flow likelihood ωp, intrinsics consistency
in zI -space ωI , intrinsics consistency in λ-space ωλ, covari-
ance disentanglement ωΣ , and Jacobian disentanglement
ωJ .

In all cases, we set nR = 3, β1 = 1, β3 = 1, ωp = 1,
ωJ = 200, and ωq = 10. See Table 7 for dataset-dependent
parameters. An additional L2 weight decay was applied to
all networks, with a strength of 10−4. For the flow-only
(GDVAE-FO) approach, the parameters are the same per
dataset, except for ωI and ωλ (which were tuned more in
line with original GDVAE model, in an effort to improve
disentanglement). For the FO case, we set ωλ = 800 and ωI

to 0, 250, and 0, for SMAL, SMPL and HA, respectively.

F.2.3 VAE Training Details

As in the AE case, optimization is done with Adam, using
a reduce-on-plateau scheduler. The initial learning rate was
set to 0.0001, with a minimum of 0.00001. A batch size of
264 was used, except for MNIST, for which we used 512.
The networks were trained for 25000 iterations for MNIST
and 40000 iterations for all other datasets. We note that for
the GDVAE++ mode only, we also cut the gradient of the
ωI loss term from flowing through μ̃I (preventing extrinsic
information in μI from contaminating μ̃I ).

G Full Rotation-Space Experiments

We also provide some limited tests our method on full 3D
rotations, rather than single-axis rotations. We find that the
invariance properties are severely reduced in this more diffi-
cult scenario. In particular, we train two AEs on SMAL, both
using the FTL architecture and allowing arbitrary rotations.
We try both the supervised (S) and unsupervised (U) cases.

Results are shown in Table 8.We see that both reconstruc-
tion and rotation invariance are worsened; however, note that
(1) C3D is of a smaller magnitude than dC (P, ̂P), suggesting
the presence of some rotation invariance, and (2)CX are larger
than zero (the expected value if there were no latent structure
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Fig. 22 Pose-aware retrieval scores with the STD AE model. Model
notation refers to the GDVAE++ model with (S) or without (U) rota-
tion supervision, use of the PC-derived LBOS (PC; see Sect. 5.3.3), and
the partial disentanglement loss ablation (NCNJ; see Sect. 5.3.4). The
lighter (partially transparent) counterparts of each point corresponds to
using z̃ I instead of zI for retrieval. We reproduce the FTL AE plots
(from Fig. 19) to aid in comparison. See also Appendix Table 6 for
detailed values. Compared to the FTL case, for SMPL, U performs rel-

atively better on intrinsic scores, while S and U are relatively similar
for extrinsic scores. For SMAL, we see that the extrinsic scores are
generally better with the STD AE, compared to the FTL one. We also
see that, in the STD case, the PCLBO scenario performs relatively bet-
ter on SMAL than its S/U counterparts. Finally, we note that using the
spectrum-derived latents z̃ I are generally better, but not always (e.g.,
on SMPL-STD)

in the space). Corroborating this latter point, in Fig. 23, we
can qualitatively see that the tight latent clustering of rotated
objects (as in Fig. 11) is no longer present, but that there
is still some structure in the space, by which same-identity
objects stay nearby under rotation.

We utilized slightly different hyper-parameters compared
to the standard AE case. In particular, for S, we set the batch
size to B = 3 and NR = 48 trained for 24 epochs; for U,
we set B = 2 and NR = 60. Decoder layers were set via
K = 1400 (see Sect. F.1). Loss weights were modified to
γc = 8000, γ̃P = 50/7, γP = 10/7 (S case) and γc = 500,
γ̃P = 400/7, γP = 80/7 (U case), to compensate for the
larger rotational space.

H Mesh Experiments

H.1 AMASS Experiments

H.1.1 AE Settings

Following other works (e.g., Marin et al., 2021; Tan et
al., 2018), we use a fully connected AE for the AMASS
meshes. In particular, the encoder and decoder have hid-
den layers (1024, 512) and (512, 1024). A latent
dimension of dim(x) = 128 was used. Both networks use
the SELU activation (Klambauer et al., 2017) and no nor-
malization. Note that AMASS shapes use the SMPL mesh,
with NSMPL = 6890 nodes.

Table 7 VAE hyper-parameters across datasets

β2 β4 ωR ωΣ ωI ωλ nE nI

MNIST 50 100 350 80 600 0 4 24

SMAL 10 50 400 40 300 200 8 24

SMPL 20 100 350 80 600 0 12 20

HA 20 80 360 60 450 100 10 22

These values are for the GDVAE++ training method. See text in
Appendix F.2.2 for details

Table 8 AE evaluation on held-out test data with full 3D rotations

Dataset Model dC (P, ̂P) ↓ C3D ↓ CX ↑
SMAL FTL-S 0.46 [0.10] 0.41 [0.14] 0.11 [0.93]

FTL-U 0.29 [0.10] 1.32 [0.21] 0.17 [0.88]

Metrics (left to right) refer to the Chamfer distance in reconstructions
and the rotational consistency measures (in 3D and xc-space, respec-
tively); see Sect. 5.2.We place the scores obtained by the corresponding
single-axis models in square brackets beside each value (from Table 1),
for ease of comparison. Notice the deterioration in both reconstruction
and rotation invariance, compared to the single axis case. Nevertheless,
note that (1) C3D is of a smaller magnitude than dC (P, ̂P), suggesting
the presence of some rotation invariance, and (2) CX are larger than zero
(the expected value if there were no latent structure in the space)

The loss utilized for training modifies only LP , which (in
the FTL case) is given by

LP = γP DV (V , ̂V ), (20)
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Fig. 23 Qualitative visualization of latent AE space with respect to
full 3D rotation. Similar to Fig. 11, we show a t-SNE of the latent
embeddings of random shapes under random rotations (we show more
rotations as the set of rotations is now much larger). Heuristically, we
can see there is some clustering structure in the space, but it does not
have the tight invariance of the single-axis case.We show the supervised
(S) case on the left and unsupervised (U) case on the right. See Sect. G
for additional details

where DV (V1, V2) is the vertex-to-vertexmean squared error
between the input nodal coordinate sets. Other loss terms
remain the same as in the PC case. We set γP = 5 and
use weight decay with γw = 10−3. For simplicity, following
Zhou et al. (2020), we include the global rotation in zE rather
than using a separate latent variable. Note that the input and
output size is much larger for AMASS than for the PC case
(6890 vs. 1600 points). The same learning setup was used
as in the PC case, except we apply AdamW (Loshchilov &
Hutter, 2017) with a learning rate of 10−4 and batch size of
100. We run for 250 epochs, using the same train, validation,
and test splits as USPD. Notice that, while the AE uses the
identical meshing of the input for the reconstruction loss,
it does not perform any disentanglement. The VAE, which
does perform disentanglement, uses only the raw x values
(and does not update the AE), without correspondence or
label information.

H.1.2 VAE Settings

We slightly modify the architecture of the VAE, removing
batch normalization and replacing ReLU with SELU (as in
the AE). We also increase the layer sizes: the flow network is
given 10 layers, the encoders that predict μE and μI use
hidden layers (2400, 2000, 1600, 800), and the
decoder uses (2000, 1800, 1600, 800) for hidden
layers; other networks are unchanged.We then use following
hyper-parameters, with the SMPL (PC) settings as the default
unless otherwise mentioned ωR = 750, β2 = 5, β4 = 500,
ωΣ = 5 ωJ = 50, ωI = ωλ = 1000, nE = 18, and nI = 9.
No weight decay was used. We trained with a batch size of
2200 for 40K iterations, starting from initial learning rate
5 × 10−5.

Table 9 Pose-aware retrieval standard errors of the mean on mesh data
from AMASS

Retrieval with latent: Intrinsics Extrinsics

GDVAE++ ˜Eβ ± σ(˜Eβ) 0.41 ± 0.0162 1.36 ± 0.0272
˜Eθ ± σ(˜Eθ ) 1.15 ± 0.0065 0.80 ± 0.0066

GDVAE++ ˜Eβ ± σ(˜Eβ) 0.50 ± 0.0179 1.49 ± 0.0282

(PCA) ˜Eθ ± σ(˜Eθ ) 1.21 ± 0.0065 0.82 ± 0.0067

Data is shown as mean plus/minus standard error (with means from
Table 3). Note that our latent intrinsics and extrinsics nomenclature
refers to the latent “shape” and “pose” (or articulation) vectors in other
works. See Sect. H.1.3 for additional details

H.1.3 Empirical Variation

We also compute variabilities on our mesh experiments (see
Sect. 5.4.1), to give an indication of the variability in the
results for our method. For pose transfers, we obtain a stan-
dard deviation of 8.08. Table 9 shows the standard errors
of the mean for the pose-aware retrieval task. In general,
the standard deviations are fairly high. However, following
USPD, the held-out data sets fromAMASS are of size 10,733
for pose transfer and 11,738 for retrieval, meaning the stan-
dard error of the mean is relatively small.

H.2 CoMA Experiments

H.2.1 Dataset

We use the same data as in Marin et al. (2021), namely 1853
training meshes with 100 faces from an unseen subject for
the shape-from-spectrum recovery test set. We also use their
data and dimensionality for the LBOS eigenvalues, so we set
dim(λ) = 30, and treat the meshes at full resolution (3931
vertices and 7800 faces).

H.2.2 AE Settings

Following Marin et al. (2021), we use the same fully con-
nected AE to derive the initial latent representation x : tanh
was used as the non-linearity, no normalization was applied,
and the hidden layers were given by (300, 200, 30,
200) (with input and output in R

3|V |), with dim(x) = 30.
The reconstruction loss was the vertex-to-vertex MSE, with
weight γP = 5. We set the weight decay to γw = 0.01, the
radial regularization to γd = 0, and the batch size to 16. Since
this dataset has no orientation changes, we fix our rotation
prediction to be identity.

H.2.3 VAE Settings

We use the same VAE architecture as the PC experiments.
Only the hyper-parameters and training settings are altered,
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which we leave at the SMPL settings by default, except
for the following changes (see also Sect. F.2.2 for details):
ωR = 250, β2 = 5, β4 = 250, ωΣ = 100 ωJ = 250,
ωI = ωλ = 1000, nE = 1, and nI = 30. A lighter weight
decay of 10−6 was used. We trained with a batch size of 720
for 30K iterations, starting from initial learning rate 5×10−5.
While this setup works well for the shape-from-spectrum
task, and it mimics the dim(λ) = 30 setting from Marin et
al. (2021), we found qualitatively that disentangled interpola-
tions could be improved by altering these settings to nE = 4,
nI = 12, ωR = 50, and β4 = ωJ = 500, which we use for
Fig. 21. This is likely due to facial deformations not being
exactly isometric; hence, using too high LBOS dimensional-
ity (and too low dim(zE )) leads to zI capturing information
we might not expect to be intrinsic (but improving shape-
from-spectrum performance).
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