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Abstract Skeletonization algorithms typically decompose
an object’s silhouette into a set of symmetric parts, offer-
ing a powerful representation for shape categorization. How-
ever, having access to an object’s silhouette assumes correct
figure-ground segmentation, leading to a disconnect with
the mainstream categorization community, which attempts
to recognize objects from cluttered images. In this paper,
we present a novel approach to recovering and grouping
the symmetric parts of an object from a cluttered scene. We
begin by using a multiresolution superpixel segmentation to
generate medial point hypotheses, and use a learned affinity
function to perceptually group nearby medial points likely
to belong to the same medial branch. In the next stage, we
learn higher granularity affinity functions to group the result-
ing medial branches likely to belong to the same object. The
resulting framework yields a skeletal approximation that is
free of many of the instabilities that occur with traditional
skeletons. More importantly, it does not require a closed con-
tour, enabling the application of skeleton-based categoriza-
tion systems to more realistic imagery.
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1 Introduction

The medial axis transform (Blum 1967) decomposes a closed
2-D shape into a set of skeletal parts and their connections,
providing a powerful parts-based decomposition of the shape
that’s suitable for shape matching (Siddiqi et al. 1999; Sebas-
tian et al. 2004). While the medial axis-based research com-
munity is both active and diverse, it has not kept pace with the
mainstream object recognition (categorization) community
that seeks to recognize objects from cluttered scenes. One
reason for this disconnect is the limiting assumption that the
silhouette of an object is available—that the open problem of
figure-ground segmentation has somehow been solved. Even
if it were possible to segment the figure from the ground in all
circumstances, a second source of concern arises around the
instability of the resulting skeleton—the skeletal branches
often do not map one-to-one to the object’s coarse symmet-
ric parts. However, these limitations should in no way deter us
from the goal of recovering an object’s symmetric part struc-
ture from images. We simply need an alternative approach
that does not assume figure-ground segmentation and does
not introduce skeletal instability.

In this paper, we introduce a novel approach to recovering
the symmetric part structure of an object from a cluttered
image, as outlined in Fig. 1. Drawing on the principle that a
skeleton is defined as the locus of medial points, i.e., centers
of maximally inscribed disks, we first hypothesize a sparse
set of medial points at multiple scales by segmenting the
image (Fig. 1a) into compact superpixels at different super-
pixel resolutions (Fig. 1b). Superpixels are adequate for this
task, balancing a data-driven component that is attracted
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Fig. 1 Overview of our approach for multiscale symmetric part detec-
tion and grouping: a original image, b set of multiscale superpixel
segmentations (different superpixel resolutions), c the graph of affini-
ties shown for one scale (superpixel resolution), d the set of regu-
larized symmetric parts extracted from all scales through a standard
graph-based segmentation algorithm, e the graph of affinities between
nearby symmetric parts (all scales), f the most prominent part clus-
ters extracted from a standard graph-based segmentation algorithm,
with abstracted symmetry axes overlaid onto the abstracted parts, g
in contrast, a Laplacian-based multiscale blob and ridge decomposi-

tion, such as that computed by Lindeberg and Bretzner (2003), shown,
yields many false positive and false negative parts, h in contrast, classi-
cal skeletonization algorithms require a closed contour which, for real
images, must be approximated by a region boundary. In this case, the
parameters of the N-cuts algorithm (Shi and Malik 2000) were tuned to
give the best region (maximal size without region undersegmentation)
for the swimmer. A standard medial axis extraction algorithm applied
to the smoothed silhouette produces a skeleton (shown in blue) that
contains spurious, unstable branches, and poor part delineation

to shape boundaries while maintaining a high degree of
compactness. The superpixels (medial point hypotheses) at
each scale are linked into a graph, with edges connecting
adjacent superpixels. Each edge is assigned an affinity that
reflects the degree to which two adjacent superpixels rep-
resent medial points belonging to the same symmetric part
(medial branch) (Fig. 1c). The affinities are learned from a set
of training images whose symmetric parts have been identi-
fied by human annotators. A standard graph-based segmenta-
tion algorithm applied to each scale yields a set of superpixel
clusters which, in turn, yield a set of regularized symmetric
parts (Fig. 1d).

In the second phase of our approach, we address the prob-
lem of perceptually grouping symmetric parts arising in the
first phase. Like in any grouping problem, our goal is to iden-
tify sets of parts that are causally related, i.e., unlikely to co-
occur by accident. Again, we adopt a graph-based approach
in which the set of symmetric parts across all scales are con-

nected in a graph, with edges adjoining parts in close spa-
tial proximity (Fig. 1e). Each edge is assigned an affinity,
this time reflecting the degree to which two nearby parts are
likely to be physically attached. Like in the first phase, the
associated, higher granularity affinities are learned from the
regularities of attached symmetric parts identified in training
data. Consequently, we explore two graph-based methods
for grouping the detected parts. The first method is the same
greedy approach that was used to cluster superpixels into
parts. The second method employs parametric maxflow Kol-
mogorov et al. (2007) to globally minimize an unbalanced
normalized cuts criterion over the part graph. Both methods
yield part clusters, each representing a set of regularized sym-
metric elements and their hypothesized attachments (Fig. 1f).

Our approach offers clear advantages over competing
methods. For example, classical multiscale blob and ridge
detectors, such as Lindeberg and Bretzner (2003) (Fig. 1g),
yield many spurious parts, a challenging form of input noise
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for any graph-based indexing or matching strategy. And even
if an opportunistic setting of a region segmenter’s parame-
ters yields a sufficiently good object silhouette (Fig. 1h), the
resulting skeleton may exhibit spurious branches and may fail
to clearly delineate the part structure. From a cluttered image,
our two-phase approach recovers, abstracts, and groups a
set of medial branches into an approximation to an object’s
skeletal part structure, enabling the application of skeleton-
based categorization systems to more realistic imagery. This
is an extension of the work in Levinshtein et al. (2009).

2 Related Work

Symmetry can serve as a powerful basis for defining object
parts. While not all objects can be easily represented using
a small set of symmetric parts, various symmetry-based part
vocabularies have been shown to be sufficient to represent
a large set of objects, e.g., Biederman’s geons (Biederman
1987). Restricting objects to be modeled using such parts
drawn from a small vocabulary offers many advantages over
global models or templates, including the ability to cope
with occlusion and part articulation. Top-down, model-based
recognition (detection), in which models represent entire
objects may not scale to large databases. Instead, by defin-
ing models first at the part level, a small vocabulary can drive
part recovery, with recovered parts and relations used to drive
object recognition. The only way a recognition system can
scale to support tens of thousands of objects is to recover a
set of domain independent parts and relations which, in turn,
can prune a large database down to a small number of candi-
dates, which can then be verified using object detectors. Over
the last 40 years of recognition systems, symmetry has been
the most common basis for defining a part shape vocabulary.

In 3D, symmetry is the principle behind (Binford’s
1971) generalized cylinders, as well as (Pentland’s 1986)
superquadrics and (Biederman’s 1985) geons , both restricted
forms of generalized cylinders but no less symmetric. Each
of these paradigms demonstrated that a small vocabulary of
parts could be combined to form a very large vocabulary of
objects. In 2D, symmetry has been present in the vision com-
munity even longer. Blum’s (1967) medial axis transform
(MAT) computed the skeleton of an object given its silhou-
ette. The skeleton produced by the MAT is the locus of centers
of maximally inscribed discs of the given shape, and can be
easily computed using a distance transform. Skeletons have
been widely used in the recognition community. For exam-
ple, Siddiqi et al. (1999) computed the singularities (shocks)
in the inward evolution of a silhouette’s boundary and orga-
nized them into a shock graph, in which nodes represented
medial branches (or symmetric parts) and edges captured part
adjacency. A shock subgraph (a small subset of symmetric
parts and their relations) can be used to prune a large database

down to a small set of promising candidates (Shokoufandeh
et al. 2005), and the canadiate models can be matched with
the input shock graph (Siddiqi et al. 1999; Pelillo et al. 1999;
Sebastian et al. 2004). An analogous 3-D medial (symmetric)
representation computed from a 3-D mesh, yielding a graph
of medial surface-based parts, can also form the basis of a
recognition system (Siddiqi et al. 2008).

One issue with skeletonization techniques is that the
resulting skeleton is sensitive to small perturbations in the
shape of the object. Some skeleton extraction algorithms
ignore this, passing the problem on to the recognition mod-
ule. Others try to address the issue by smoothing either
the original contour or the resulting medial axis. Recently,
Macrini et al. (2011) proposed a more principled approach
for the regularization and abstraction of a skeleton by analyz-
ing its ligature structure, generating a bone graph, offering
improved stability and recognition performance over a shock
graph (Macrini et al. 2011). While this represents an impor-
tant step toward shape modeling and categorization, an even
more serious MAT-based approaches is that a silhouette of
an object is typically necessary as input, effectively requiring
a figure-ground segmentation input. Figure-ground segmen-
tation without an object prior is, in general, an open prob-
lem, although some progress has been made recently Carreira
and Sminchisescu (2010), Levinshtein et al. (2010). There-
fore, we focus on the domain of symmetric part recovery
from a complex scene (as opposed to a segmented object),
and review mainly methods that are applicable to cluttered
images. These methods can be grouped into three categories:
(1) filter-based part extraction, (2) contour-based part extrac-
tion, and (3) model-based part extraction. The remainder of
this section will cover related work in each of these cate-
gories.

2.1 Filter-Based Symmetric Part Extraction

The filter-based part extraction category refers to methods
that pass an image through a bank of low-level filters and
analyze the filter responses to find symmetric regions (Linde-
berg 1996; Lindeberg and Bretzner 2003; Crowley and Parker
1984; Lowe 2004; Mikolajczyk et al. 2005). These regions,
referred to as multiscale blobs and ridges, provide a coarse
segmentation of an image into a set of symmetric parts. The
use of filter-based symmetric part detection for multiscale
abstract part extraction was proposed by Crowley and Parker
(1984), Crowley and Sanderson (1987), who detected peaks
(rotational symmetries) and ridges (elongated symmetries) as
local maxima in a Laplacian pyramid, linked together by spa-
tial overlap to form a tree structure. Object matching was then
formulated as comparing paths through two trees. Shoko-
ufandeh et al. (1999) extended this framework with improved
blob response and linked the blobs in a full graph, refor-
mulating object categorization into a coarse-to-fine graph

123



Int J Comput Vis

matching problem. Shokoufandeh et al. (2006) proposed a
more elaborate matching framework based on Lindeberg and
Bretzner’s (2003) multiscale blob model, an extension of Lin-
deberg’s older work (Lindeberg 1996). Finally, Levinshtein
et al. (2005) demonstrate that multiscale blobs and ridges can
serve as a promising basis for automatically learning sym-
metric, part-based, categorical shape models.

More recently, filter-based symmetric regions have been
used to define robust feature descriptors for keypoint features
for stereo matching or exemplar-based object recognition,
made popular by the semi-local SIFT model (Lowe 2004).
Motivated by the work of Lindeberg (1996) where blobs are
detected as the maxima of the scale-normalized Laplacian
of the image, Lowe uses a difference of Gaussians (DoG)
as an approximation to the Laplacian for computational effi-
ciency. Mikolajczyk et al. (2005) compare a number of these
and other region extractors. Alternatives to using a Lapla-
cian or a DoG include the determinant of the Hessian or the
Harris operator for blob detection. All of the aforementioned
blob detectors can be adapted to detect ridges using a pro-
cedure described by Mikolajczyk and Schmid (2002). While
blobs/ridges have proven to be a strong basis for local feature
matching, robustly capturing small homogeneous regions,
the same is not true for object categorization, where large
parts with possibly heterogeneous appearance need to be
extracted. Simply detecting parts as local maxima in a set
of multiscale filter responses leads to many false positives
and false negatives, suggesting that successful part extrac-
tion requires paying closer attention to image contours.

2.2 Contour-Based Symmetric Part Extraction

The second category of symmetry detection approaches is
comprised of methods that find symmetry by grouping image
contours. Most of the techniques in this category are simi-
lar in that they start by detecting contours and then group
the contours into one or more symmetric regions, represent-
ing symmetric parts. Unlike the approaches in the previous
category that overcome the complexity of finding symmet-
ric regions through the application of coarse filters, contour-
based approaches are faced with the task of finding symmetry
in a vast collection of image contours. Coping with the high
complexity of contour grouping has led this subcommunity to
consider heuristics inspired by the perceptual grouping com-
munity, such as proximity, cotermination, collinearity and
co-curvilinearity, to manage the high grouping complexity.
Symmetry is one such grouping constraint.

Early contour-grouping approaches, motivated by work in
skeletonization, attempt to extract skeleton-like representa-
tions from real images. An example of such a technique is the
work of Brady and Asada (1984), showing how smooth local
symmetries (SLS) can be detected. The SLS skeletons are
composed of midpoints of line segments forming the same

angle with both sides of the bounding contour, and are visu-
ally similar to the MAT skeletons. In contrast to skeletoniza-
tion approaches that assume the availability of an object’s
contour, Brady and Asada use circular arcs and straight line
fragments fitted to Canny edges. The final set of local symme-
tries can be quite noisy and fragmented. Connell and Brady
(1987) describe not only how to “clean” up this noisy set of
symmetries using perceptual grouping, but also introduce a
system that uses the resulting groups to model objects. In,
Ponce’s (1990) theoretical analysis examines various skele-
ton formulations and shows, for example, that the MAT skele-
tons are a more constrained set than the SLS skeletons of
Brady and Asada. Ponce’s analysis also results in yet another
skeleton definition, accounting for skewed symmetries that
arise from 3D projection. Yet despite the improvement of
Ponce’s and Connell’s approach over the original technique
of Brady and Asada, all three methods avoid the complexity
of grouping image edges arising from real scenes by working
with simplified imagery. Working with more realistic scenar-
ios introduces significantly more edgels, making the extrac-
tion of closed contours, as well as the detection and grouping
of symmetric parts, far more difficult.

Moving into the domain of more real world imagery, Saint-
Marc et al. (1993) show how symmetries can be extracted
by building on a B-spline representation of image contours.
They fit B-splines to image edges and show how a variety
of symmetries can be extracted by imposing constraints over
pairs of B-splines. Unlike previous approaches, restricted to
the detection of local symmetries, Cham and Cipolla (1995)
employ a similar B-spline representation for the detection of
global skewed symmetries. In Cham and Cipolla (1996), the
they describe a different approach for solving the same prob-
lem, this time using their measure of “geometric saliency”.
In, Liu et al. (1998) propose a more principled approach to
symmetry axis extraction by grouping pairs of points using
Dijkstra’s algorithm. Their method does not require the con-
tour to be available a priori, but it does require an initializa-
tion with a pair of points and produces an open boundary.
Moreover, no preprocessing into image curves is performed.
Therefore, to cope with the complexity of finding the best
sequence among all pairs of points in the image, the authors
resort to using hashing techniques.

Note that all the approaches described so far extract global
unbounded symmetry axes, or extract symmetric sections
by analyzing closed contours or pairs of image curves. The
global symmetry recovered by the first set of approaches
is useful for scene analysis but is insufficient for parts-
based object categorization. On the other hand, the type of
symmetries extracted by the second set of approaches are
ideal for object representation, but are shown to operate on
a very restrictive set of images, usually containing a sin-
gle object with homogeneous appearance. In real images
containing multiple objects with heterogeneous appearance
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imaged against a complex background, it is unlikely that
meaningful closed contours could be recovered bottom-up
or that objects (or their parts) would be bounded by a pair of
extracted image curves. One likely scenario is that an object’s
contour would correspond to far more than a single closed
image contour or a pair of image curves, requiring more elab-
orate grouping strategies.

Ylä-Jääski and Ade (1996) provide such a method by find-
ing partial symmetries between straight edge segments and
then grouping them together into complete axial descriptions.
Stahl and Wang (2008) take a similar approach but use a
much more principled grouping algorithm based on ratio cuts
to obtain their symmetries. The authors start by extracting
linear edge segments and construct symmetric quadrilater-
als which are then used for grouping. The algorithm finds
the best sequence of quadrilaterals that minimizes the gap
in boundary edges, while maintaining a smooth symmetry
axis as well as a compact internal region for the resulting
symmetric part. Even though grouping is polynomial in the
number of graph edges, the number of quadrilaterals, as well
as the possible ways of filling the gaps between them, are
prohibitive. Authors resort to heuristics to reduce the com-
plexity of the problem, and they also provide an iterative
approach for extracting multiple symmetric regions, by find-
ing the best region and repeating the process after removing
all the quadrilaterals associated with that region. Still, quadri-
laterals typically number in the thousands and the running
time is on the order of several minutes per image.

Although great advances were made in contour-based
symmetry detection, the complexity of contour grouping
remains the main challenge faced by all methods. Early work
reduced this complexity by constraining the symmetry rep-
resentation or working with simplified images, while recent
approaches work under less constrained scenarios but have
to rely on suboptimal grouping algorithms and/or group-
ing heuristics. Nonetheless, being dominantly data-driven
in nature, compared top–down coarse filtering techniques,
such approaches prove to be much more suitable for part-
based symmetry detection despite their problematic com-
plexity. For a more complete survey of symmetry detection
from real imagery, the reader is encouraged to consult the
definitive survey on symmetry detection by Liu et al. (2010).

2.3 Model-Based Symmetric Part Extraction

The third category of bottom-up symmetry detection, called
model-based grouping, refers to methods that employ a top-
down deformable symmetric shape model during the part
extraction process. In fact, any filter-based technique can
be seen as a model-based approach, as it detects parts by
employing a top-down coarse shape model. However, unlike
the case of filter-based techniques, where model detection
is approximated by analyzing low-level filter responses, the

models here are matched against image contours. More-
over, the assumption of having a model is made much more
explicit, with models ranging from simple symmetric parts
to complex arbitrary shapes (e.g., entire objects). While most
techniques in this category model object shape, some address
the domain of perceptual grouping and part shape. That said,
the object detection approaches can sometimes be modified
to detect simple shapes, and thus provide useful insight into
symmetric part detection.

Work with deformable shape models has its roots in Kass
et al. (1988). Their model restricts the shape to have a smooth
boundary with strong underlying image edge support. Given
such a weak shape model, the method is more suitable as a
low-level segmentation approach. Moreover, the algorithm
requires a rough global initialization of the model prior to
image alignment. Unlike Kass et al. (1988) and Cootes et
al. (1995) use object-specific deformable models in their
work. However, the model still needs to be initialized close
to the object for the approach to work. Examples of more
practical techniques, attempting to automatically find mul-
tiple instances of a deformable shape model include Pent-
land (1990), Sala and Dickinson (2008), Sclaroff and Liu
(2001). Pentland (1990) solves the problem using a filter-like
approach. Representing object parts using 3D superquadrics,
part templates are constructed a priori for different part
projections and different settings of the deformation para-
meters. A final selection step chooses from among a rich
set of detected part hypotheses. Sala and Dickinson (2008)
employed a similar approach for symmetric part detection.
They also represent 2-D parts as projections of the surfaces of
a small vocabulary of deformable, symmetric 3-D volumet-
ric parts. However, unlike Pentland (1990), who worked with
range images and thereby avoided the complexity of hetero-
geneous object appearance, Sala and Dickinson were able
to extract symmetric parts from real 2-D images. In recent
work (Sala and Dickinson 2010), they use a vocabulary of
symmetric parts models to both group image contours into a
set of abstract symmetric parts with no knowledge of scene
content.

In contrast to previous approaches, Sclaroff and Liu (2001)
define their shape model as a deformable polygon, and
while they use it for segmenting specific objects, the model
can be easily adapted for symmetric part extraction. They
pose the grouping problem as finding a subset of overseg-
mented image regions that satisfy their shape model. Similar
approaches were employed by Ren and Malik (2003) to group
superpixels for generic segmentation, and by Mori (2005) to
group superpixels into human body parts. (Sclaroff and Liu
2001), the authors show that despite pruning the search space
using various heuristics, a brute force approach still exhibits
a prohibitive grouping complexity, forcing an approximate
solution of the problem by using a greedy algorithm. Similar
to contour grouping techniques, model-based methods are
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faced with prohibitive algorithm complexity, this time aris-
ing from matching models to image data. Overcoming this
issue, while accurately detecting symmetric regions, is the
subject of ongoing research.

In summary, we reviewed three categories of symme-
try detection approaches that illustrate the tradeoff between
fast, less inaccurate methods that rely on low-level filter
responses, and high-complexity contour grouping or model-
based approaches that are much more data driven. All the
aforementioned techniques share an additional recurring
weakness. With few exceptions, symmetric parts are usu-
ally not grouped together. For example, in skeleton-based
approaches, a skeleton already corresponds to a whole object.
However, in order to use it for efficient object recognition,
it needs to be parsed into stable branches that correspond
to object parts—a challenging task as skeletons are sensi-
tive to small shape perturbations. Unlike the case of skele-
tons, bottom-up symmetry extraction techniques result in a
disconnected set of symmetric parts. While grouping them
is perhaps easier than grouping low-level features, such as
pixels, into whole objects, it is still the subject of ongoing
research and not commonly addressed. Whole object skele-
tons or collections of unrelated symmetric parts undoubtedly
simplify generic scene analysis. However, symmetry alone is
not enough. Objects parts need to be related and/or grouped
together, calling for the use of additional perceptual grouping
rules.

The approach we present below addresses some of the
limitations of the methods mentioned above. Compared to
filter-based approaches, our symmetric parts are more data-
driven since they are composed of superpixels, resulting in
more precise parts with fewer false positives. On the com-
plexity issue faced by contour- and model-based methods,
by adopting a region-based approach with an efficient clus-
tering methodology, our superpixels (medial point hypothe-
ses) effectively group together nearby contours that enclose a
region of homogeneous appearance. Drawing on the concept
of extracting blobs at multiple scales, symmetric parts will
map to “chains” of medial points sampled at their appropri-
ate scale. Our goal will be to group together the members of
such chains, ignoring those superpixels (the vast majority)
that don’t represent good medial point hypotheses. On issue
of the smoothness and precise correspondences that are often
required of contour grouping methods, we will learn from
noisy training data the probability that two adjacent super-
pixels represent medial point approximations that belong to
the same symmetric part; this probability forms the basis of
our affinity function used to cluster medial points into chains.
Finally, the affinity function that will form the basis of nonac-
cidental part attachment will be learnt from noisy training
data. Addressing these issues yields a novel technique that
aims to narrow the gap between work in the segmentation
and medial axis extraction.

3 Medial Part Detection

The first phase of our algorithm detects medial parts
by hypothesizing a sparse set of multiscale medial point
hypotheses and grouping those that are non-accidentally
related. In the following subsections, we detail the two com-
ponents.

3.1 Hypothesizing Medial Points

Medial point hypotheses are generated by compact superpix-
els which, on one hand, adapt to boundary structure, while
on the other hand, enforce a weak shape compactness con-
straint. In this way, superpixels whose scale is comparable
to the width of a part can be seen as deformable maximal
disks, “pushing out” toward part boundaries while maintain-
ing compactness. If the superpixels are sampled too finely
or too coarsely for a given part, they will not relate together
the opposing boundaries of a symmetric part, and represent
poor medial point hypotheses. Thus, we generate compact
superpixels at a number of resolutions corresponding to the
different scales at which we expect parts to occur; as can
be seen in Fig. 1b, we segment an image into 25, 50, 100
and 200 superpixels. To generate superpixels at each scale,
we employ a modified version (Mori et al. 2004) of the nor-
malized cuts algorithm (Shi and Malik 2000) since it yields
compact superpixels.

Each superpixel segmentation yields a superpixel graph,
where nodes represent superpixels and edges represent super-
pixel adjacencies. If a superpixel represents a good medial
point hypothesis, it will extend to (and follow) the opposing
boundaries of a symmetric part, effectively coupling the two
boundaries through two key forms of perceptual grouping:
(1) continuity, where the intervening region must be locally
homogeneous in appearance, and (2) symmetry, in that the
notion of maximal disk bitangency translates to two oppos-
ing sections of a superpixel’s boundary. Figure 2b illustrates

Fig. 2 Superpixels as medial point samples: a a region of interest
focusing on the athlete’s leg b superpixels undersample the scale of
the symmetric part, c superpixels oversample the scale of the symmet-
ric part, d superpixels appropriately sample the scale of the symmetric
part, non-accidentally relating, through continuity and symmetry, the
two opposing contours of the part, e the medial point hypotheses that
effectively capture the scale of the part represent a sparse approximation
to the locus of medial points that comprise the traditional skeleton
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a symmetry section (blow-up of the subimage in Fig. 2a con-
taining the athlete’s leg) whose medial point hypotheses are
too large (undersampled), while in Fig. 2c, the medial point
hypotheses are too small (oversampled). When they are cor-
rectly sampled, as in Fig. 2d, they can be viewed as a sparse
approximation to the locus of medial points making up a
skeletal branch, as seen in Fig. 2e.

3.2 Clustering Medial Points

If two adjacent superpixels represent two medial points
belonging to the same symmetric section, they can be com-
bined to extend the symmetry. This is the basis for defin-
ing the edge weights in the superpixel graph correspond-
ing to each resolution. Specifically, the affinity between two
adjacent superpixels represents the probability that their cor-
responding medial point hypotheses not only capture non-
accidental relations between the two boundaries, but that
they represent medial points that belong to the same skeletal
branch. Given these affinities, a standard graph-based clus-
tering algorithm applied independently to each scale yields
groups of medial points, each representing a medial branch
at that scale. In Sect. 4, we group nonaccidentally related
medial branches by object, yielding an approximation to an
object’s skeletal part structure.

The affinity As(i, j) between two adjacent superpixels
Ri and R j at a given scale has both shape (Ashape) and
appearance (Aappearance) components. We learn the para-
meters of each component and their weighting from training
data (Fig. 3). Note, that while we train our affinities on images
from the Weizmann Horse dataset (Borenstein and Ullman
2002), we are careful to encode only relative information
between superpixels and not absolute information such as
superpixel color. As a result, our affinities are generic and can
be used to detect symmetric parts in any domain, which we
show in Sect. 5. To generate training examples, we segment
an image into superpixels at multiple scales, and identify
adjacent superpixels that represent medial points that belong
to the same medial branch as positive evidence (e.g., super-
pixels corresponding to good medial points of the horse’s leg
are shown in Fig. 3); negative pairs are samples in which one
or both medial point hypotheses are incorrect or, if both are
valid medial points, belong to different but adjacent parts (e.g,
superpixels spanning figure/ground boundaries are shown in
Fig. 3). The boundary of the union of each superpixel pair
defines a hypothesized boundary in the image (which may or
may not have local gradient support).

To compute the shape-based affinity, we fit an ellipse to
the union of two adjacent superpixels (we find an ellipse with
the same second moments as the superpixel union region).
We assign an edge strength to each boundary pixel equal to
its Pb score (Martin et al. 2004) in the original image. Each
boundary pixel is mapped to a normalized coordinate system

Fig. 3 Learning superpixel affinities. Left column: The training image
(top), with ground truth figure/ground (middle) and ground truth parts
(bottom). Middle column: Examples of positive and negative train-
ing data for superpixel clustering. Adjacent superpixels that represent
medial points belonging to the same part serve as positive evidence
(superpixels belonging to the leg at the middle superpixel resolution).
Adjacent superpixels that span figure/ground boundaries (as shown for
the middle image), belong to different parts, or belong to the same
part but do not represent medial points (e.g., small superpixels on the
horse’s torso at the middle and fine scales) serve as negative evidence.
The evidence is used to learn the appearance and the shape superpixel
affinity components, which are combined into a single superpixel affin-
ity As(i, j)

by projecting its coordinates onto the major and minor axes
of the fitted ellipse, yielding a scale- and orientation-invariant
representation of the region boundary. We partition our nor-
malized coordinate system into rectangular bins of size
0.3a × 0.3b, where a and b are half the length of the major
and minor ellipse axes, respectively. Using these bins, we
compute a 2-D histogram on the normalized boundary coor-
dinates weighted by the edge strength of each boundary pixel.
Focusing on the superpixel pair union and its local neighbor-
hood, we only consider bins in the range [−1.5a, 1.5a] and
[−1.5b, 1.5b], resulting in a 10 × 10 histogram. This yields
a shape context-like feature that reflects the distribution of
edges along the presumed boundary of adjacent superpix-
els. Figure 4 illustrates the shape feature computed for the
superpixel pair from Fig. 1c, corresponding to the thigh of
the swimmer.

We train a classifier on this 100-dimensional feature using
our manually labeled superpixel pairs, marked as belong-
ing to the same part or not. The margin from the classifier
(an SVM with RBF kernel) is fed into a logistic regressor
in order to obtain the shape affinity Ashape(R1, R2) whose
range is [0, 1]. Table 1 compares various approaches for
computing the shape affinity. Training and testing for these
results employed our training dataset in a hold-one-out strat-
egy (train on all but one images and report average results
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Fig. 4 Superpixel shape feature: a boundary of two adjacent super-
pixels representing two medial point hypotheses, b a blow-up of the
two superpixels, in which the boundary of their union (green) defines
a section of a hypothesized symmetric part which may or may not
have underlying image edge support (red), c the normalized scale-
and orientation-invariant coordinate system (grid in white) based on
the ellipse (red) fitted to the superpixel union, d the shape-context-like
feature that projects image edgels, weighted by edge strength, into this
coordinate system

Table 1 Shape affinity comparison according to two measures:
Fmeasure and mean precision evaluated on test pairs of superpixels

SVM-R SVM-H CC HI

Fmeasure 0.75 0.75 0.42 0.44

Mean precision 0.79 0.79 0.29 0.31

We evaluate 4 methods: SVM with RBF kernel (SVM-R), SVM with
histogram intersection kernel (SVM-H), as well as cross correlation
(CC) and histogram intersection (HI) against a mean histogram of all
positive training pairs.

for the held out image). The SVM with RBF kernel and the
SVM with a histogram intersection kernel yield the high-
est performance. In the remainder of the paper, we used the
RBF kernel with a sigma of 1, trained with a slack constant
of C = 10.

For the appearance component of the affinity, we compute
the absolute difference in mean RGB color, absolute differ-
ence in mean HSV color, RGB and HSV color variances of
both regions, and histogram distance in HSV space, yielding
a 27-dimensional appearance feature. To improve classifica-
tion, we compute quadratic kernel features, resulting in a 406-
dimensional appearance feature. We train a logistic regressor
with L1-regularization to prevent overfitting on our relatively
small training dataset while emphasizing the weights of the
more important features. This yields an appearance affinity
measure between two regions

(Aappearance(R1, R2)). Training the appearance affinity is
easier than training the shape affinity. For positive examples,
we choose pairs of adjacent superpixels that are contained
inside a figure in the figure-ground segmentation, whereas for
negative examples, we choose pairs of adjacent superpixels
that span figure-ground boundaries.

We combine the shape and appearance affinities using a
logistic regressor to obtain the final pairwise region affin-
ity As(i, j)1. The resulting graph is used in conjunction

1 Both the shape and the appearance affinities, as well as final affinity
As , were trained with a regularization parameter of 0.5 on the L1-norm
of the logistic coefficients.

with an efficient agglomerative clustering algorithm based on
Felzenszwalb and Huttenlocher (2004) (complexity: O(|S|),
where S is a set of all superpixels) to obtain medial parts
(medial point clusters). As the algorithm relies on edge
weights that measure the dissimilarity between pairs of ele-
ments, we first convert the superpixel affinity to edge weights
as W (i, j) = 1

As (i, j) . The clustering algorithm initializes
all medial point hypotheses as singletons, and maintains a
global priority queue of edges by increasing edge weight
(decreasing affinity As). At each iteration, the edge with the
lowest weight (highest affinity) is removed from the queue,
and the two clusters that span the edge are hypothesized
as belonging to the same part. If each of the two clusters
is a singleton, they are merged if the affinity is sufficiently
high (the affinity captures the degree to which the union is
symmetric). If one or both clusters contain multiple medial
points (superpixels), the global symmetry As of the union
is verified (in the same manner as a pair is verified, i.e.,
based on the same shape feature built over the union and
the same logistic regressor) before the merge is accepted.
Thus, while local affinities define the order in which parts
are grown, more global information on part symmetry actu-
ally governs their growth. The result is a set of symmetric
parts from each scale, where each part defines a set of medial
points (superpixels). Combining the parts from all scales, we
obtain the set Part1, Part2, . . . , Partn . Figure 1d shows
the parts extracted at four scales. Our modified greedy clus-
tering method has several parameters: k in Eq. 5 in Felzen-
szwalb and Huttenlocher (2004), minimum group size, and
the minimum group affinity As during the merging of two
superpixel groups. We set these parameters based on empir-
ical observation to k = 5, minimum group size of 2 super-
pixels and minimum group affinity of 0.1.

4 Assembling the Medial Parts

Medial part detection yields a set of skeletal branches at dif-
ferent scales. The goal of grouping is to assemble the medial
branches that belong to the same object. Drawing on the non-
accidental relation of proximity, we define a single graph over
the union of elements computed at all scales, with nodes rep-
resenting medial parts and edges linking pairs in close prox-
imity. Assigned to each edge will be an affinity that reflects
the likelihood that the two nearby parts are not only part
of the same object, but attached. Two different graph-based
clustering techniques are then explored to detect part clus-
ters. However, since some parts may be redundant across
scales, a final selection step is applied to yield the final clus-
ter of medial branches, representing an approximation to the
object’s skeletal part structure. The following two subsec-
tions describe these steps.
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Fig. 5 Learning part affinities. Left column the training image (top),
with ground truth figure/ground (middle) and ground truth parts (bot-
tom). Middle column examples of positive (top) and negative (bottom)
training data for part clustering. Adjacent detected parts that map to two
attached ground truth parts serve as positive evidence (e.g., torso and
leg). Adjacent detected parts that do not map to two attached ground
truth parts (e.g., neck and a background part) serve as negative evidence.
Combining appearance and shape features, the evidence is used to learn
the part affinity Ap(i, j)

4.1 Medial Part Clustering

A minimal requirement for clustering two parts is their close
proximity. While the projections of two attached parts in 3-D
must be adjacent in 2-D (if both are visible), the converse
is not necessarily true, i.e., adjacency in 2-D does not nec-
essarily imply attachment in 3-D (e.g., occlusion). Still, the
space of possible part attachments can be first pruned to those
that may be attached in 3-D. Two parts are hypothesized as
attached if one overlaps a scale-invariant dilation of the other
(the part is dilated by the size of the minor axis of the ellipse
fitted to it, in our implementation).

The edges in the graph can be seen as weak local attach-
ment hypotheses. We seek edge affinities that better reflect
the probability of real attachments. We learn the affinity func-
tion from training data—in this case, a set of ground truth
parts and their attachments, labeled in an image training set
(bottom left of Fig. 5). For each training image, we detect
parts at multiple scales, hypothesize connections (i.e., form
the graph), and map detected parts into the image of ground
truth parts, retaining those parts that have good overlap with
ground truth (Fig. 5). Positive training example pairs con-
sist of two adjacent detected parts (joined by an edge in the
graph) that map to attached parts in the ground truth (e.g.,
the torso and the leg of the horse in Fig. 5 middle). Negative
training example pairs consist of two adjacent detected parts
that do not map to adjacent ground truth parts (the neck and
a background part in Fig. 5 middle).

As mentioned earlier, our multiscale part detection algo-
rithm may yield redundant parts, obtained at different scales,

but covering the same object entity. One solution would be
to assign low affinities between such parts. However, this
would mean that only one part in a redundant set could be
added to any given cluster, making the cluster more sensitive
to noisy part affinities. The decision as to which part in a
redundant set survives in a cluster is an important one that is
best made in the context of the entire cluster. Therefore, we
assign a high affinity between redundant parts, and deal with
the issue in a separate part selection step.

Formally, our part affinity is defined as:

Ap(i, j) = Pr (i, j) + (1 − Pr (i, j))Ap,¬r (i, j) (1)

where Pr (i, j) is the probability that parts i and j are redun-
dant, and Ap,¬r (i, j) is the affinity between the parts given
non-redundancy. Pr (i, j) is computed by training a quadratic
logistic classifier over a number of features: overlap (in area)
of the two parts (Oi j ), defined as the overlap area normal-
ized by the area of the smaller part, overlap of the two parts’
boundaries (Bi j ), and appearance similarity (Ai j ) of the two
parts. The features are defined as follows:

Oi j = |Parti ∩ Part j |
min

{|Parti |, |Part j |
}

Bi j = |∂(Parti ∩ Part j )|
min

{|∂ Parti |, |∂ Part j |
}

Ai j = Aappearance(Parti , Part j ) (2)

where | · | is the region area and |∂(·)| is the region perimeter.
Figure 6 gives examples of these four attachment types.
The affinity Ap,¬r (i, j) between non-redundant parts i

and j , like affinities between medial points, includes both
shape and appearance components. The components are best
analyzed based on how the two parts are attached. Given
an elliptical approximation to each part, we first compute the
intersection of their major axes. The location is normalized by
half of the length of the major axis, to yield a scale-invariant
attachment position r for each part. We define three qualita-
tive attachment “regions” to distinguish between four attach-
ment types: inside (|r | < 0.5) , endpoint (0.5 < |r | < 1.5),
or outside (|r | > 1.5). Our four apparent attachment cate-
gories can be specified as follows:

1. end-to-end (Ji j = 1)—The intersection lies in the end-
point region of both parts.

2. end-to-side (Ji j = 2)—The intersection lies in the inside
region of one part and in the endpoint region of the other
part.

3. crossing (Ji j = 3)—The intersection lies in the inside
region of both parts.

4. non-attached (Ji j = 4)—The intersection lies in the out-
side region of one or both parts.
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Fig. 6 Attachment categories. The four different attachment categories of parts (green and red): end-to-end (Ji j = 1), end-to-side (Ji j = 2), crossing
(Ji j = 3), and non-attached (Ji j = 4). The affinity between any two parts depends on their attachment category

The shape component of our affinity is based on the prin-
ciple that when one part attaches to (interpenetrates) another,
it introduces a pair of concave (discontinuities Hoffman et
al. (1984) principle of transversality), reflected as a pair of
opposing L-junctions (i.e., concave discontinuities) marking
the attachment. In contrast, when one part occludes another,
the L-junctions are replaced by T-junctions, reflecting an
occlusion boundary. This is a heuristic, for there could be
an appearance boundary between two attached parts, misin-
terpreted as an occlusion boundary.

Since extracting and classifying contour junctions is chal-
lenging in the presence of noise, we will instead focus on the
evidence of an occlusion boundary between two parts, based
on image edges (Ei j ) along the attachment boundary between
parts i and j . Once the attachment boundary is found, evi-
dence is accumulated as the average Pb (Martin et al. 2004)
of the boundary pixels. Finding the attachment boundary is
non trivial since the parts may be sufficiently close but not
touching, due to segmentation errors.

The attachment boundary is computed similarly for all
four attachment categories. For a pair of attached parts, we
first select the part P1 with the smaller |r | and find the inter-
section of its boundary with the major axis of the other part
P2. The attachment boundary is centered at the intersection
and extends along the boundary of P1 in both directions, to
an extent equal to the length of the minor axis (width) of P2.
For end-to-side attachments, this is illustrated in Fig. 7.

Given the attachment category Ji j , the attachment bound-
ary evidence Ei j , and the appearance similarity Ai j , we can
define the part affinity Ap,¬r (i, j). One logistic classifier is
trained for end-to-end junctions (A1(i, j)), whereas another
is trained for end-to-side junctions (A2(i, j)). For crossing
and non-attached junctions, we set the affinity to 0 because
we empirically found that none of the attached part pairs in
the training set exhibited such attachment categories. Note,

Fig. 7 Locating the attachment boundary between two parts in the
case of an end-to-side attachment. The attachment boundary (orange)
between the two parts P1 and P2 is centered at the intersection of
the major axis of P2 with the boundary of P1, and extends along the
boundary of P1 a total distance equal to the length of the minor axis of
P2. Left—illustration of the attachment boundary. Right—attachment
boundary between two parts in a real image

that the same features (see 3) are used for training A1(i, j))
and A2(i, j)). The difference is only in the training data that
is used (A1 is trained on end-to-end part pairs, while A2

is trained on end-to-side part pairs). Our affinity for non-
redundant parts becomes:

Ap,¬r (i, j) = [
Ji j = 1

] · A1(i, j)

+ [
Ji j = 2

] · A2(i, j) (3)

Having defined all the components of the affinity function
Ap(i, j) 2 (Eq. 1), we use these affinities to cluster parts that
are attached.

We explore two graph-based approaches for part cluster-
ing. Our first approach is the same algorithm (Felzenszwalb
and Huttenlocher 2004) used to cluster medial points into
parts. Since this technique is greedy in nature, it is susceptible
to undersegmentation given noisy part affinities. We there-

2 All the logistic regressors for part affinities were trained with a regu-
larization parameter of 0.1 on the L1-norm of the logistic coefficients.
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fore explore a second, globally optimal, technique that makes
use of parametric (Kolmogorov et al. 2007). Given the goal
of finding a well-separated part cluster, we formulate the part
clustering problem as finding an optimal unbalanced normal-
ized cut (UNC), which is a measure of cluster dissimilarity
to the rest of the graph relative to its internal similarity. For-
mally, given the part affinities Ap(i, j), Di = ∑

j Ap(i, j),
and a binary indicator vector X over parts,

U NC(X) = cut (X)

volume(X)

=
∑

i j Xi (1 − X j )Ap(i, j)
∑

i Xi Di
, (4)

where cut (X) is the sum of the affinities of all the edges
between selected and unselected parts, and volume(X), or
the affinity volume, is the sum of all the affinities originating
from the selected parts.

This cost can be globally minimized using parametric
maxflow (Kolmogorov et al. 2007), returning multiple solu-
tions with minimal cost under increasing affinity volume con-
straints. As it stands, however, the cost has a trivial minimizer
X = 1 that selects all the parts. To avoid this trivial solution,
we modify the cost and add a small fixed penalty αp for
adding parts to the numerator. Moreover, note that our affini-
ties Ap(i, j) measure part attachment and not similarity in a
clustering sense. Two parts in the graph are similar and should
be clustered together if they are attached to the same object,
meaning that there is a high attachment affinity path between
them. To that end, we first compute a shortest path distance
Dp(i, j) for all pairs of parts based on their attachment affini-

ties, and convert it into part similarity Wp(i, j) = e
− Dp (i, j)

σp .
Letting D′

i = ∑
j Wp(i, j), our final unbalanced Ncuts cost

becomes:

U NC(X) = cut (X) + penalty(X)

volume(X)

=
∑

i j Xi (1 − X j )Wp(i, j) + αp
∑

i Xi
∑

i Xi D′
i

. (5)

In the results section, we will compare the two part clus-
tering approaches, showing that the second method achieves
slightly better performance.

4.2 Medial Part Selection

Our affinity-based grouping yields a set of part clusters, each
presumed to correspond to a set of attached parts belonging
to a single object. However, any given cluster may contain
one or more redundant parts. While such parts clearly belong
to the same object, we prune redundancies to produce the
final approximation to an object’s skeletal part structure. Our
objective function selects a minimal number of parts from
each cluster that cover the largest amount of image, while

at the same time minimizing overlap between the parts. The
problem is formulated as minimizing a quadratic energy over
binary variables. Let Xi ∈ {0, 1} be an indicator variable
representing the presence of the i th part in a cluster. We seek
the subset of parts that minimizes the following energy:

E =
∑

i

Xi (K − |Parti |) +
∑

i, j

Xi X j Oi j (6)

where K controls the penalty of adding parts. In our exper-
iments, we found that K = 0.1 · median {|Parti |} is an
effective setting for this parameter. We find the optimal X by
solving a relaxed quadratic programming problem, in which
real values are rounded to 0 or 1 Pentland (1990).

5 Results

To evaluate the method, we train the various components
using a subset of the Weizmann Horse Database (Borenstein
and Ullman 2002), consisting of images of horses together
with figure-ground segmentations; in addition, we manually
mark the elongated parts of the horses, together with their
attachment relations. Our modified horse part dataset 3 con-
tains 81 images, split into 20 training images, which we use
to train all the components of our system, and 61 test images
used for the quantitative evaluation below. The left column
of both Figs. 3 and 5 illustrates an example training image
and its ground truth segmentations. Once trained, we first
qualitatively evaluate the system on images of objects with
well-defined symmetric parts drawn from different (i.e., non-
horse) image domains, reflecting our assumption that both
symmetry and part attachment are highly generic.

Figure 8 shows qualitative results of our algorithm applied
to a number of different image domains.4 For all the results in
this figure, the greedy technique Felzenszwalb and Hutten-
locher (2004) was used for part clustering. In the first three
cases (a–c), the figure shows the input image, the most promi-
nent groupings of medial branches, as well as the results of
intermediate stages in our system. For the remaining cases
(d–m) only the most prominent groupings of medial branches
are shown. For part cluster visualization, in order to avoid
clutter, the abstractions of the parts in each cluster are shown
as ellipses with their major axes (medial branch regulariza-
tions) depicted by dotted lines. All other parts are shown with
faint (gray) elliptical part abstractions (without axes, for clar-
ity), illustrating the ability of our algorithm to correctly group
medial branches.

3 The dataset can be downloaded from http://www.cs.toronto.edu/
~babalex/horse_parts_dataset.tgz.
4 Supplementary material (http://www.cs.toronto.edu/~babalex/
symmetry_supplementary.tgz) contains additional examples.
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Fig. 8 Detected medial parts
and their clusters. For the first
three test cases, we show the
original image in true color,
followed by the output of
different stages overlaid on
brightened images for better
contrast. The results (ordered
left-to-right and top-to-bottom)
illustrate the recovered parts
from each superpixel scale, part
clusters with axis color
indicating cluster membership,
and the most prominent part
clusters after the part selection
stage (yellow ellipses
correspond to selected parts,
while others correspond to
either unselected parts or parts
from other clusters). The bottom
half of the results shows the
extracted superpixels and their
affinities at our 4 scales. For the
remaining test cases we show
the most prominent part clusters
only, without showing the
output from intermediate stages

We organize the results in decreasing order of success,
with Fig. 8a–f corresponding to more successful applications
of our system and Fig. 8g–m illustrating some constraints
and failure modes. Examining the results, Fig. 8a presents
an ideal example of our system’s operation. All the tenta-
cles of the starfish were successfully recovered and grouped,
with the small exception of the center being a part of one
of the tentacles. This is a perhaps an easy example since
the tentacles are of the same scale, exhibit strong appear-
ance homogeneity and similarity, and are contrasted from
the background. Indeed, paying closer attention to the super-

pixels and the affinities, we see that the second scale not only
provides perfect medial disc approximations for all the parts,
but the affinities between the superpixels of each tentacle are
strong.

In Fig. 8b, we show that our system has successfully
extracted the major parts of the athlete, including the torso,
which exhibits heterogeneous appearance, and correctly
grouped them together. Figure 8c illustrates not only that
the parts of the windmill were successfully recovered and
clustered, but that the person was also recovered as a sepa-
rate single-part cluster. The smaller windmills undetected in
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Fig. 8 continued

the background contain parts whose scale was smaller than
our finest sampled scale. Figure 8d–f show other examples
of our system’s success, in which the major medial parts of

a plane, swan, and statue, respectively, were recovered and
grouped to yield an approximation to an object’s skeletal part
structure.
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Fig. 8 continued

Figure 8g–m illustrate some limitations of our approach.
Our framework relies on the assumption that good medial
disc approximations can be extracted bottom-up, and our

greatest failure mode occurs when this assumption is bro-
ken. While Fig. 8g shows that the bull is correctly detected
as a symmetric object, despite irregularities in its contour, the
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legs of the bull, as well as the arms and legs of the human, are
not detected due to insufficient superpixel resolution or low
contrast on part boundaries. These are the two main reasons
for failing to extract good medial disc approximations and
these failures recur in a number of test cases. For example,
in Fig. 8h, one of the swan’s wings is not properly detected.
Due to insufficient contrast between the wing and the back-
ground, the superpixel boundaries fail to capture the part at
any scale. Still, the remaining part structure of the swan may
provide a sufficiently discriminative shape index to select a
small set of candidate models, including the swan model,
which could be used top-down to overcome segmentation
problems. A similar effect can be seen in Fig. 8j, k, where
the top parts of the statues and the center of the cross do not
have sufficient contrast with their backgrounds. Figure 8d, l
illustrate the second failure mode, where the tail of an air-
plane and the tail of a lizard are not captured since they are
too thin to be well-represented by even our finest superpixel
scale. This may be resolved by working at finer superpixel
scales or by using different superpixel extraction strategies.

Additional issues in part detection arise when parts are
tapered or have a curved axis. Figure 8l shows that although
the main parts of the lizard are found, the tail is not com-
posed of a single part since our system assumes parts with
straight symmetry axes. Part tapering, and other deformations
from roughly parallel part boundaries, also hinder detection.
Figure 8e, f, i illustrate this effect. Tapering can result in wide
sections of a part being captured at a coarse superpixel scale,
and thinner sections being captured at a finer scale. Object
extremities, such as the hand of the Jesus statue (Fig. 8e), the
tail of the swan (Fig. 8f), and the tip of the tower (Fig. 8i),
are all better represented at a finer scale than the remainder
of these corresponding parts. Even if this effect is overcome
and there is a single superpixel scale at which the whole
part is well-captured, superpixel affinities are still negatively
affected since most symmetric parts in our training set have
parallel boundaries. This limitation may be overcome by a
more diverse set of parts and a larger training set.

The part grouping stage of our system also suffers from
some limitations. Starting the discussion from our part selec-
tion stage, we see that it is not perfect, occasionally resulting
in suboptimal part groups. Figure 8b, e show examples where
more precise arm parts were discarded over lower quality
arm representations. However, our greatest failure mode is
part clustering itself. While the affinities at the superpixel
level consist of strong appearance and shape components,
our part attachment affinities include weaker constraints and
are more vulnerable to low contrast between objects and their
background. In combination with our greedy part clustering
approach, this can often lead to bleeding. In Fig. 8k, part
undersegmentation occurs due to a lack of contrast at their
attachment boundaries (symmetric strip of horizon landscape
accidentally grouped with vertical mast). Like Fig. 8h, a
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Fig. 9 Precision versus recall of part detection. We compare our
method (blue) to Lindeberg and Bretzner (2003) (red) and Carreira
and Sminchisescu (2012) (green). Due to the low precision of Linde-
berg and Bretzner (2003), we prune small parts to increase precision:
(1) no pruning, (2) prune parts whose major axis is less than 10 pixels,
(3) prune parts whose major axis is less than 20 pixels. For CPMC,
we return a fraction of all the segmentation candidates. We vary this
fraction to get a PR curve

candidate model may be required to resolve such ambigu-
ous part attachments. Finally, while Fig. 8m shows that most
swimmers and/or their parts were successfully detected, the
vast number of resulting parts and their proximity overwhelm
our greedy part grouping approach.

To provide a quantitative evaluation of our part detection
strategy, we compare its precision and recall to the method
of Lindeberg et al. (2003), used to generate the symmetric
parts shown in Fig. 1g. We also compare to state-of-the-art
generic segmentation algorithm of Carreira and Sminchis-
escu (2012). All methods are evaluated on 61 test images
from the Weizmann Horse Dataset (Borenstein and Ullman
2002). A ground truth part is considered to be recovered if its
normalized overlap (in area) with one of the detected parts
is above a threshold (0.4). Our part detection offers a sig-
nificant improvement in both precision and recall (Fig. 9).
Compared to Lindeberg and Bretzner (2003) our method has
a much stronger data-driven component and thus is able to
recover parts much more accurately; and unlike Carreira and
Sminchisescu (2012), we have a strong model of part shape
to guide part recovery. Moreover, in Lindeberg and Bretzner
(2003), no effort is made to distinguish part occlusion from
part attachment; parts are simply grouped if they overlap.
Note that both methods achieve low precision. This is par-
tially due to the fact that there are other symmetric parts in
the images, in addition to the horse body parts, that were
not marked in the ground truth. Moreover, due to our mul-
tiscale part detection approach, the same ground truth part
may be recovered at multiple scales, hindering precision in
the absence of some redundancy removal step. Note that our
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Fig. 10 Part grouping performance. a Part grouping using the greedy
method in Felzenszwalb and Huttenlocher (2004), b Part grouping by
minimizing unbalanced Ncuts using parametric maxflow. We evaluate
both the segmentation accuracy by comparing to segmentation ground
truth (red) and the part selection accuracy by comparing to object parts

ground truth (blue). In both a, b, performance is measured as a function
of method parameters (k in Felzenszwalb and Huttenlocher (2004) and
σp in unbalanced NCuts). Dotted lines provide the baselines for the
corresponding evaluation tasks, measuring performance when all the
detected parts are selected

part selection stage does consider part redundancy and helps
improving part detection precision.

We also provide quantitative evaluation for part grouping.
Given a user-specified parameter setting (k in Eq. 5, Felzen-
szwalb and Huttenlocher 2004), our first, greedy method
groups the parts into multiple disjoint clusters. Our sec-
ond, unbalanced Ncuts-based approach based on parametric
maxflow, generates potentially overlapping clusters of parts
given parameters αp (which we fix at 1 for this experiment)
and σp (that was used to convert part attachment distance
into similarity). Not using for now the part selection step,
we compare the two part clustering approaches on the tasks
of figure/ground segmentation and part grouping. In the first
task, our goal was to select a set of parts that covers the
object as closely as possible. The second task is motivated by
generic object recognition, where correct part groups would
be needed to index into a dataset of objects. Here it is less
important to achieve a good pixel-wise covering of the object
rather than obtain largest possible groups of parts mapping
to parts on the object.

Given an image, both methods return multiple clusters of
parts corresponding to group hypotheses that would be used
for high-level tasks. What is important is that at least one
of these clusters corresponds to an object of interest. Thus,
for each image we first compute the F measure using the
ground truth for both the figure/ground segmentation (“GT-
Figure” in Fig. 10 to evaluate segmentation and ground truth
for object parts “GT-Parts” in Fig. 10) to evaluate part group-
ing. We chose the solution with the best F measure for each
image. We average the best per-image F measures across all
images, giving us a mean F measure for each parameter set-
ting for the two methods. Figure 10 shows the performance
of both methods as a function of their parameters. Notice
that the unbalanced Ncuts approach achieves slightly better

performance. Our main motivation is to establish how usable
are the selected parts for generic object recognition. Never-
theless, since we do get a figure/ground segmentation as a
by-product of part selection, we performed further compari-
son of our method to CPMC, a generic segmentation method
of Carreira and Sminchisescu (2012). For this comparison,
we selected the top 50 ranked segments in CPMC as on aver-
age our method returns less that 50 different part groups.
The average best per-image F-measure of CPMC is 0.8521,
while for both our grouping methods it is close to 0.8. As
expected, our method performs slightly worse in this task as
it was not designed for segmentation, yet it is not far off from
a state-of-the-art segmentation method that was particularly
designed for figure/ground segmentation.

6 Limitations and Future Work

A number of limitations of the current framework will be
addressed in future research. We have shown that successful
part recovery strongly depends on our ability to obtain good
medial disc approximations. To improve the quality of medial
point hypotheses, we are currently exploring a more powerful
superpixel extraction framework that allows greater control
over compactness, along with a multiscale Pb detector. In
addition, our current system is restricted to grouping super-
pixels independently at each scale. Removing this constraint
would increase grouping complexity and complicate affinity
computation, but will also make our part model more flexi-
ble and is therefore a subject of future work. We also intend
to relax our linear axis model to include curved shapes; for
example, the ellipse model could easily be replaced by a
deformable superellipse, and a more sophisticated training
set can be defined.
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The choice of clustering approach can also limit per-
formance. Both stages of our framework, part recovery
and part grouping, rely on only locally optimal cluster-
ing methods. This allows us to overcome computational
issues in extracting and grouping parts bottom-up, but can
result in over- or undersegmentation in both part recovery
and part clustering. The issue is of greater concern in the
second stage, where affinities provide only a crude guide-
line to true part attachments. Exploring global optimiza-
tion techniques may lead to a better solution of this group-
ing problem. The use of unbalanced Ncuts, instead of our
main greedy approach, has already been shown to be a
promising step in this direction. In future work, we plan to
further address this issue through better optimization and
the incorporation of more global constraints, such as clo-
sure.

Related to the above issue is the issue of learning super-
pixel and part affinities. Better affinities will directly improve
the overall performance of the system. In the current work,
we manually trained a multistage classifier for affinities, first
training appearance and shape affinities independently and
then combining them together using another classifier. In
future work, we will put more emphasis on either training
all the stages jointly or bootstrapping the different stages by
initially holding out some of the training data and adding it
gradually for the higher stages in the classification hierarchy
(see Munoz et al. 2010).

Finally, we will strive to improve our part detection and
grouping evaluation procedure. What is a good part? This
is a difficult question to answer. Ultimately, it is a task spe-
cific question. If parts are used for object detection, then
their quality is measured by the quality of the object detec-
tion results. It is a similar question to asking what is a good
segmentation? To evaluate such an algorithm independently
of the task it is used for, one either needs some manually
defined ground truth or some hard-coded objective func-
tion to measure the results. In this paper we opted for the
first approach, and manually delineated horse parts. How-
ever, the parts in our dataset were annotated by a single
user, unlike the BSDS, for example, where multiple users
were performing the annotation. Moreover, unlike the case of
object segmentation, in part segmentation not all part bound-
aries contain image information for delineating the parts. As
a result, some ground truth part boundaries are quite arbi-
trary (similar to superpixel boundaries inside an object). For
example, what is the correct boundary between the head
and the neck? There are no image edges to guide the deci-
sion. To account for this ambiguity, both in dataset collection
process and the observed image information, in this work we
relaxed the evaluation criteria for part detection by setting
the overlap threshold to 0.4. In the future, however, a more
diverse part dataset with multiple user annotations needs to
be acquired.

7 Conclusions

We have presented a constructive approach to detecting sym-
metric parts at different scales by grouping small compact
regions that can be interpreted as deformable versions of
maximal disks whose centers make up a skeletal branch. In
this way, symmetry is integrated into the region segmenta-
tion process through a compactness constraint, while region
merging is driven by symmetry-based affinities learned from
training data. Detected parts are assembled into objects by
exploiting the regularities of part attachments in supervised
training data. The resulting framework can, in principle,
recover a skeletal-like decomposition of an object from real
images without any prior knowledge of scene content and
without figure-ground segmentation.
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