
Published in IET Computer Vision
Received on 8th February 2012
Revised on 23rd July 2012
doi: 10.1049/iet-cvi.2012.0030

ISSN 1751-9632

Many-to-many feature matching in object recognition:
a review of three approaches
A. Shokoufandeh1 Y. Keselman2 M.F. Demirci3 D. Macrini4 S. Dickinson5

1Computer Science Department, Drexel University, 3200 Chestnut St., Philadelphia, PA 19104, USA
2The Walt Disney Company, 925 4th Avenue, Seattle, WA 98104-2343, USA
3TOBB University of Economics and Technology, Sogutozu, Ankara 06560, Turkey
4School of Electrical Engineering and Computer Science, University of Ottawa, 800 Avenue King Edward, Ottawa,
Ontario K1N 6N5, Canada
5Department of Computer Science, University of Toronto, 6 King’s College Rd., Toronto, Ontario M5S 3G4, Canada
E-mail: sven@cs.toronto.edu

Abstract: The mainstream object categorisation community relies heavily on object representations consisting of local image features,
due to their ease of recovery and their attractive invariance properties. Object categorisation is therefore formulated as finding, that is,
‘detecting’, a one-to-one correspondence between image and model features. This assumption breaks down for categories in which
two exemplars may not share a single local image feature. Even when objects are represented as more abstract image features, a
collection of features at one scale (in one image) may correspond to a single feature at a coarser scale (in the second image).
Effective object categorisation therefore requires the ability to match features many-to-many. In this paper, we review our progress
on three independent object categorisation problems, each formulated as a graph matching problem and each solving the many-to-
many graph matching problem in a different way. First, we explore the problem of learning a shape class prototype from a set of
class exemplars which may not share a single local image feature. Next, we explore the problem of matching two graphs in which
correspondence exists only at higher levels of abstraction, and describe a low-dimensional, spectral encoding of graph structure
that captures the abstract shape of a graph. Finally, we embed graphs into geometric spaces, reducing the many-to-many graph-
matching problem to a weighted point matching problem, for which efficient many-to-many matching algorithms exist.

1 Introduction

One of the fundamental obstacles to object categorisation is
the common assumption that saliency in the image implies
saliency in the model; in other words, for every salient
image feature, there is a corresponding salient model
feature [1]. In a community enamored with local image
features, this one-to-one feature correspondence assumption
constrains successful object categorisation to classes whose
exemplars share the same local image features in the same
configurations; popular examples include faces, cars,
motorcycles, etc. When image features are represented as
graphs, this one-to-one feature correspondence assumption
translates into a one-to-one node correspondence
assumption, allowing a variety of exact and inexact graph-
matching techniques to be applied.

Despite the appeal of this one-to-one correspondence
assumption, there exist a variety of conditions that may lead
to graphs that represent visually similar objects yet do not
contain a single one-to-one node correspondence. For
example, due to noise or segmentation errors, a single feature
(node) in one graph may map to a collection of broken
features (nodes) in another graph. Or, due to scale
differences, a single, coarse-grained feature in one graph may
map to a collection of fine-grained features in another graph.

Finally, although there may be classes in which two
exemplars belonging to the class may not share a single local
image feature, correspondence may exist at the level of
image feature subcollections, for example, three regions in
one image may map to five regions in another image with no
two regions in one-to-one correspondence. In general, we
seek not a one-to-one correspondence between image
features (nodes), but rather a many-to-many correspondence.

In this paper, we review three of our approaches to the
problem of many-to-many graph matching for object
recognition, expanding on an earlier review presented in
[2]. In the first approach, described in more detail in [3], we
explore the problem of abstracting a categorical model from
a set of images containing exemplars belonging to a known
category. Specifically, we present to the system a set of
region adjacency graphs, representing region segmentations
of the exemplar images. While a single region (node-to-
node) correspondence may not exist across the input graphs,
correspondences may exist at more abstract levels. For
example, the region formed by merging thee adjacent
regions (nodes) in one graph may correspond to the region
formed by merging five adjacent regions (nodes) in another
graph, etc. For each input graph, we first define a lattice of
all possible such graph abstractions, that is, graphs formed
by merging adjacent regions (region merges). We then

IET Comput. Vis., pp. 1–14 1
doi: 10.1049/iet-cvi.2012.0030 & The Institution of Engineering and Technology 2012

www.ietdl.org

formulate the problem as finding the most informative
common abstraction across the set of lattices, that is, the
largest graph common to each lattice. The key challenge we
face is managing the complexity of generating the lattices
and searching for a common abstraction.

In the second approach, described in more detail in [4, 5],
we explore the problem of matching hierarchical graphs that
represent the scale-space, coarse-to-fine, or part/whole
structure of an image. Specifically, we draw on spectral
graph theory to map the structure of a directed acyclic
graph (DAG) to a low-dimensional vector that characterises
the topological properties, or ‘shape’, of the DAG. This
allows the similarity of two DAGs (or sub-DAGs) to be
computed as the distance between their respective shape
vectors. Our matching algorithm uses these shape vectors in
a coarse-to-fine manner, using matches at coarser levels to
efficiently constrain the matching at finer levels. If feature
(node) correspondence exists at coarser, more abstract
levels, the algorithm will find such correspondences, each
implicitly defining a many-to-many matching of the
subgraphs rooted at these coarser nodes. If correspondences
also exist at finer scales, the algorithm continues in a top-
down manner, using the coarse-level correspondences to
constrain the search for fine-level correspondences.

Finally, in the third approach, described in more detail in
[6], we explore the problem of many-to-many graph
matching from a different perspective. Unlike the two above
approaches, which search for correspondences at higher
levels of abstraction, we explicitly match the nodes in two
graphs many-to-many. Using low-distortion graph-
embedding techniques, we first embed the nodes of a graph
into a geometric space, where nodes become points and
edge weights reflect the distances between the embedded
nodes. Given two graphs embedded into the same
geometric space, many-to-many graph matching is
reformulated as many-to-many point matching in the
geometric space, for which efficient, polynomial-time
algorithms exist. Specifically, we use the Earth Mover’s
Distance (EMD) algorithm to compute the many-to-many
correspondences between points which, in turn, defines the
many-to-many correspondences between the nodes in the
original graphs.

The ability to match features (or graphs) many-to-many is
essential for object categorisation, in which shape similarity
between two objects exists not at the level of low-level
features that appear explicitly in the image, but rather at the
level of feature (graph) abstractions. The three approaches
reviewed in this paper provide three different perspectives
on this important problem. Each addresses the critical
subproblem of image abstraction. In the first case, the
process of abstraction is guided by evidence from similar
objects. In the second case, a restricted set of abstractions is
computed directly without such supporting evidence.
Although meaningful abstractions are not explicitly
computed in the third case, the process of abstraction is
tightly linked to the matching process and is critical to
grouping features to yield many-to-many correspondences.
The abstraction of image data is an important problem that
has been largely ignored by the object recognition
community, and is arguably the single greatest challenge to
successful object categorisation [7].

2 Related work

Over the past three decades, graphs and their derivations have
played a pivotal role in shape representation and multi-scale

image analysis. Crowley and Parker [8] proposed one of the
earliest hierarchical frameworks for capturing peaks and
ridges at multiple scales, and used it to match images.
During the 1990s, Lindeberg [9] examined the behaviour of
image structures over scales, measured the saliency of
image structures from stability properties, and extracted
relations between structures at different scales. Lindeberg
[10] also described a method for edge and ridge detection
using such features as one-dimensional curves in the three-
dimensional scale-space representation of the image. This
work was later followed by Dufournaud et al. [11] who
proposed using the Harris operator for detecting salient
points. Although most of these frameworks capture
qualitative shape features in a hierarchical graph, they
formulated object recognition as finding the one-to-one
node correspondence between two graphs.

The multiscale blob feature introduced by Lindeberg, in fact,
forms the basis for the popular Scale-invariant feature
transform (SIFT) framework, proposed by Lowe [12].
Another blob detector, inspired by SIFT, is the SURF feature
developed by Kadir and Brady [13]. Bay et al. [14] also
proposed a multi-scale model for the selection of salient
regions of an image by detecting scale localised interest
points akin to blob-like features. Many existing approaches
for capturing scale space features, such as [15–17], have
demonstrated the power of explicitly encoding the relational
information among image features in the form a graph.
Although graphs over such features are common, matching
still assumes one-to-one feature correspondence. When
distinctive, appearance-based features are assigned to blobs,
as in SIFT, the one-to-one correspondence assumption holds
only for highly restricted categories whose members share
the same distinctive local features, for example, faces, cars,
humans and bicycles. For more general categories, two
exemplars may not share a single SIFT feature, motivating
the extraction of more shape-based categorical features that
cannot necessarily be matches one-to-one.

In recent years, the recognition community has moved
from sparse local features to more complete representations,
although most approaches are typically restricted to the
detection of specific categories, for example, the detection
of humans in cluttered scenes from a learned appearance
model [18], or using learned categorical models for the
detection of heads, leaves and cars [19]. There have also
been attempts at combining appearance and shape to model
and recognise isolated objects [20] and learning
probabilistic indices for capturing part structure [21].
Constructing abstract models for matching and recognition
is also related to generating a prototypical graph from a set
of exemplars. One such abstraction is the median graph,
defined as a graph, chosen among a set of sample graphs,
whose sum distance to all other graphs in the set is
minimised. Jiang et al. [22] developed a heuristic method
for computing the generalised median graphs of given
sample sets and explored their application to visual
recognition. Torsello and Hancock [23] also introduced an
abstraction model known as the union tree for a class of
samples, from which class members can be derived using a
minimal number of graph edit operations. In addition to
model abstraction for recognition, Todorovic and Ahuja
[24] used union trees for learning region-based hierarchical
object models from sample segmentations.

Most of the early work on many-to-many matching in
graphs is based on the edit-distance, formulated as finding
the minimal set of re-labellings, additions, deletions, merges
and splits of nodes and edges that transform one graph into

2 IET Comput. Vis., pp. 1–14

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cvi.2012.0030

www.ietdl.org

another [25–28]. These methods suffer from high
computational complexity, especially when dealing with
large occlusions and scene clutter. Many-to-many matching
has also been studied as a variation of inexact and partial
matching, most often in the context of point-set matching.
Gold and Rangarajan [29] proposed one of the earliest
partial matching algorithms for attributed sparse graphs.
They used an EM-like graduated assignment approach that
revises earlier mappings based on local constraints encoded
by the graphs. The final outcome of the algorithm is a one-
to-one matching, but it also maintains a stochastic matrix
that closely resembles a many-to-many assignment matrix.

Carcassoni and Hancock [30] also proposed a fractional
point matching algorithm that combines point clustering,
cluster matching and matching points from matching
clusters. These subproblems were jointly solved using a
combination of the eigenvector technique and the EM
approach for likelihood computation. The proposed
approach proved to be very robust to noise and occlusion.
Caelli [31] showed that inexact graph matching could be
solved using the re-normalisation of vector representations
of vertices into the eigenspaces of graphs combined with a
form of relative clustering. Their method also cannot
accommodate occlusion, directed graphs or node attributes,
and may yield high embedding distortion.

3 Generic model acquisition from examples

Assume that we are presented with a collection of images,
such that each image contains a single exemplar, all
exemplars belong to a single known class, and the
viewpoint with respect to the exemplar in each image is
similar. We assume that some standard feature extraction
process is applied to each image to yield a set of input
features, organised in a graph in which nodes represent
features and edges represent the relations between nearby
features. However, we do not assume one-to-one feature
correspondence at this input feature level. In fact, there may
not exist a single input feature in common between the
exemplars. Still, at some higher level of abstraction, the
exemplars look similar and commonality emerges. Fig. 1a
illustrates a simple example in which three different images,
each containing a block in a similar orientation, are
presented to the system. In each case, a standard region
segmentation algorithm yields a region adjacency graph.
Although there may not be a single node that is common to
each of the three graphs, the common structure between the
three exemplars arises once certain regions are grouped,
defining a many-to-many matching across the input graphs.

Our task is to find the common structure in these images,
under the assumption that structure that is common across
many exemplars of a known class must be definitive of that
class. Fig. 1b illustrates the class ‘abstraction’ that is
derived from the input examples. Each region in the
abstraction maps to a different group of regions in each
exemplar, defining a many-to-many matching of the regions
across the set of exemplars. In this example, the domain of
input examples is rich enough to ‘intersect out’ irrelevant
structure (or appearance) of the block. However, had many
or all the exemplars had vertical stripes, the approach would
be expected to include vertical stripes in that view of the
abstracted model. Hence, the approach assumes that
regularities across the exemplars are nonaccidental and
should be captured in the final model.

The output of the model abstraction process will yield a
region adjacency graph containing the ‘meta-regions’ that

define a particular view of the generic model. Other views
of the same exemplars would similarly yield other
categorical views of the generic model. The integration of
these categorical views into an optimal partitioning of the
viewing sphere, or the recovery of three-dimensional parts
from these views (e.g. see [32–34]), is beyond the scope
of this paper. For now, the result will be a collection
of categorical two-dimensional views that describe a
categorical three-dimensional object. The collection
of categorical object views for a set of object categories
would constitute a database to support object categorisation.

3.1 Problem formulation

Returning to Fig. 1, let us now formulate our problem more
concretely. As we stated, each input image is processed to
form a region adjacency graph; we employ the region
segmentation algorithm of Felzenzwalb and Huttenlocher
[35]. Let us now consider the region adjacency graph
corresponding to one input image. We will assume, for
now, that our region adjacency graph represents an
oversegmentation of the image; in [3], we discuss the
problem of undersegmentation, and how our approach can
accommodate it. The space of all possible region adjacency
graphs formed by any sequence of merges of adjacent
regions will form a lattice, as shown in Fig. 2. The lattice
size is exponential in the number of regions obtained after
initial oversegmentation. Indeed, considering the simple
case of a long rectangular strip subdivided into n + 1
adjacent rectangles, the first pair of adjacent regions able to
be merged can be selected in n ways, the second in n–1,
and so on, giving a lattice size of n!.

Each of the input images will yield its own lattice. The
bottom node in each lattice will be the original region
adjacency graph. In all likelihood, if the exemplars have
different shapes (within-class deformations) and/or surface
markings, the graphs forming the bottom of their
corresponding lattices may bear little or no resemblance to
each other. Clearly, similarity between the exemplars
cannot be ascertained at this level, for there does not exist a
one-to-one correspondence between the ‘salient’ features
(i.e. regions) in one graph and the salient features in
another. On the other hand, the top of each exemplar’s
lattice, representing a silhouette of the object (where all
regions have been merged into one region), carries little
information about the salient surfaces of the object.

We can now formulate our problem more precisely,
recalling that a lattice consists of a set of nodes, with each
node corresponding to an entire region adjacency graph.
Given N input image exemplars, E1, E2, . . . , EN, let L1, L2,
. . . , LN be their corresponding lattices, and for a given
lattice, Li, let Linj be its constituent nodes, each representing
a region adjacency graph, Gij. We define a ‘common
abstraction’ (CA), as a set of nodes (one per lattice)

Fig. 1 Illustrative example of generic model acquisition

a Input exemplars belonging to a single known class
b Generic model abstracted from examples

IET Comput. Vis., pp. 1–14 3
doi: 10.1049/iet-cvi.2012.0030 & The Institution of Engineering and Technology 2012

www.ietdl.org

L1nj1
, L2nj2

, . . . , LN njN
such that for any two nodes Lpnjp

and
Lqnjq

, their corresponding graphs Gpjp
and Gqjq

are
isomorphic. Thus, the root node (whose graph consists of
one node representing the silhouette region) of each lattice
is a common abstraction. We define the ‘lowest common
abstraction’ (LCA), as the common abstraction whose
underlying graph has maximal size (in terms of number of
nodes). Given these definitions, our problem can be simply
formulated as finding the LCA of N input image exemplars.

Intuitively, we are searching for a node (region
segmentation) that is common to every input exemplar’s
lattice and that retains the maximum amount of structure
common to all exemplars. In other words, if we intersect all
the lattices, the LCA would be the largest graph in the
‘intersection lattice’. Unfortunately, there are two main
problems with this formulation: (i) generating a single
lattice, let alone one for each input exemplar, is intractable;
and (ii) the presence of a single, heavily undersegmented
exemplar (a single-node silhouette in the extreme case) will
drive the LCA toward the trivial silhouette CA. We will
address the complexity problem in two ways. First, we
compute a weak approximation to the intersection lattice as
the set of pairwise LCA’s (weak in the sense that what is
common to two exemplars may not be common to all
exemplars). Second, we compute the LCA of two
exemplars without computing their lattices; rather, we
directly compute only that portion of the intersection of the
two lattices that contains the LCA. We address the
undersegmentation problem by relaxing our LCA definition
to make it less sensitive to outliers.

3.2 LCA of two examples

We begin by focusing our attention on finding the LCA
of two lattices, whereas in the next section, we will
accommodate any number of lattices. As the input lattices
are exponential in the number of regions, actually

computing the lattices is intractable. Clearly, we need a
means for focusing the search for the LCA that avoids
significant lattice generation. Our approach will be to
restrict the search for the LCA to the ‘intersection’ of the
lattices. Typically, the intersection of two lattices is much
smaller than either lattice (unless the images are very
similar), and leads to a tractable search space. But how do
we generate this new ‘intersection’ search space without
enumerating the lattices?

Fig. 2 Lowest common abstraction of a set of input exemplars

Fig. 3 Finding the lowest common abstraction between two
exemplars through a coordinated, recursive decomposition of their
silhouettes

4 IET Comput. Vis., pp. 1–14

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cvi.2012.0030

www.ietdl.org

Our solution, as illustrated in Fig. 3, is to work top-down,
beginning with a node known to be in the intersection
lattice – the root node, representing a single region
(silhouette). If the intersection lattice contains only this one
node, that is, one or both of the region segmented images
contain a single region, then the process stops and the LCA
is simply the root (silhouette). However, in most cases, the
root of each input lattice is derived from an input region
adjacency graph containing multiple regions. So, given two
silhouettes, each representing the apex of a separate, non-
trivial lattice, we have the opportunity to search for a lower
abstraction (than the root) common to both lattices. Our
approach will be to find a decomposition of each silhouette
region into two subregions, such that (i) the shapes of the
corresponding subregions are similar (for this, we employ
the shape matching method outlined in [4]); and (ii) the
relations among the corresponding subregions are similar.
Since there is an infinite number of possible decompositions
of a region into two component regions, we will restrict
our search to the space of decompositions along region
boundaries in the original region adjacency graphs. Note
that there may be multiple two-region decompositions that
are common to both lattices; each is a member of the
intersection set.

Assuming that we have some means for ranking the
matching decompositions (if more than one exist), we
pick the best one (the remainder constituting a set of
backtracking points), and recursively apply the process to
each pair of isomorphic component subregions. [Each
subregion corresponds to the union of a set of regions
corresponding to nodes belonging to a connected subgraph
of the original region adjacency graph.] The process
continues in this manner, ‘pushing’ its way down the
intersection lattice, until no further decompositions are
found. This lower ‘fringe’ of the search space represents the
LCA of the original two lattices.

The specific algorithm for choosing the optimal pair of
decompositions is illustrated in Fig. 4, described in [3], and
can be summarised as follows:

1. Map each region adjacency graph to its dual ‘boundary
segment graph’, in which boundary segments become nodes
and edges capture segment adjacency. Therefore, a cut in a
region adjacency graph maps to a path in its dual boundary
segment graph.

2. Form the association graph of the two boundary segment
graphs. Nodes and arcs in the association graph correspond
to pairs of nodes and arcs, respectively, in the boundary
segment graphs. Therefore a path in the association graph
corresponds to a pair of paths in the boundary segment
graphs which, in turn, correspond to a pair of
decompositions (cuts) of the region adjacency graphs.
3. With appropriate edge weights, the optimal pair of
corresponding decompositions corresponds to the shortest
path in the association graph. The edge weights, described
in detail in [3], reflect the shape ‘distance’ between pairs of
corresponding contours making up the cuts.
4. The optimal pair of decompositions is verified in terms of
satisfying the criteria of region shape similarity [4] and region
relation consistency [3], and the process is applied recursively
to the corresponding region adjacency subgraphs resulting
from the pair of cuts.

3.3 LCA of multiple examples

So far, we have addressed only the problem of finding
the LCA of two examples. How, then, can we extend
our approach to find the LCA of multiple examples?
Furthermore, when moving toward multiple examples, how
do we prevent a ‘noisy’ example, such as a single, heavily
undersegmented silhouette, from driving the solution
towards the trivial silhouette? To extend our two-exemplar
LCA solution to a robust, multi-exemplar solution, we
begin with two important observations. First, the LCA of
two exemplars lies in the intersection of their abstraction
lattices. Thus, both exemplar region adjacency graphs can
be transformed into their LCA by means of sequences of
region merges. Second, the total number of merges required
to transform the graphs into their LCA is minimal among
all elements of the intersection lattice, that is, the LCA lies
at the lower fringe of the lattice.

Our solution begins by constructing an approximation to
the intersection lattice of multiple examples. Consider the
closure of the set of the original region adjacency graphs
under the operation of taking pairwise LCAs. In other
words, starting with the initial region adjacency graphs, we
find their pairwise LCAs, then find pairwise LCAs of the
resulting abstraction graphs, and so on (note that duplicate
graphs are removed). We take all graphs, original and LCA,
to be nodes of a new ‘closure’ graph. The closure graph can

Fig. 4 LCA formulated as the shortest path in the association graph formed by the two region adjacency graphs: (left to right)

(i) Association graph is the product of the two boundary segment graphs, each the dual of a region adjacency graph; (ii) Given an appropriate assignment of edge
weights, the shortest path in the association graph corresponds to a pair of paths in the boundary segment graphs; (iii) The pair of boundary segment graphs, in turn,
represent a pair of cuts in the original region segmentation graphs; (iv) The cuts define two pairs of corresponding regions. Provided their shapes and relations are
similar, the shortest path is accepted, and the process is recursively applied to each pair of component regions

IET Comput. Vis., pp. 1–14 5
doi: 10.1049/iet-cvi.2012.0030 & The Institution of Engineering and Technology 2012

www.ietdl.org

be considered as a weak approximation to the true intersection
lattice, as the LCA of a pair of graphs may not be the LCA of
all graphs. If graph H was obtained as the LCA of graphs G1

and G2, then directed arcs go from nodes corresponding to
G1, G2 to the node corresponding to H in the closure graph.

Next, we will relax the first property above to accommodate
‘outlier’ exemplars, such as undersegmented, input
silhouettes. Specifically, we will not enforce that the LCA
of multiple exemplars lies in the intersection set of all
input exemplars. Rather, we will choose a node in our
approximate intersection lattice that represents a ‘low
abstraction’ for many (but not necessarily all) input
exemplars. More formally, we will define the LCA of a set
of exemplar region adjacency graphs to be that element in
the intersection of two or more abstraction lattices that
minimises the total number of edit operations (merges or
splits) required to obtain the element from all the given
exemplars. If a node in the intersection lattice lies along the
lower fringe with respect to a significant number of input
exemplars, then its sum distance to all exemplars is small.
Conversely, the sum distance between the silhouette outlier
(in fact, the true LCA) and the input exemplars will be
large, eliminating that node from contention. Our algorithm
for computing this ‘median’ of the closure graph, along
with an analysis of its complexity, is given in [3].

3.4 Demonstration

In Fig. 5, we illustrate the results of our pairwise LCA
approach applied to a set of three coffee cup images,
respectively. The lower row represents the original images,
the next row up represents the input region segmented
images (with black borders), while the LCA is shown with
an orange border. In this case, the pairwise LCA of each
pair of input images is the same. The solution captures our
intuitive notion of the cup’s surfaces, with a handle, a body,
a top, and the hole in the handle (the algorithm cannot
distinguish a surface from a hole).

A second example illustrates how restricting the
decomposition to the space of pairs of cuts in two region
adjacency graphs can fail to find the correct abstraction. In
Fig. 6, region undersegmentation near the junction of the
handle and body of the middle cup prevents appropriate
cuts that separate handle from body in the other two cups
from being chosen when a pairwise LCA is computed with
the middle cut (a similar undersegmentation problem

prevents the first and third cups from finding an appropriate
cut separating handle from body). The decomposition
process is therefore forced to terminate early, yielding a
LCA which is non-intuitive.

A final example, shown in Fig. 7, illustrates the weak
intersection lattice computed for three input exemplars. The
edges in the closure graph are shown, indicating which
abstractions are derived from which region adjacency
graphs; edge weight, representing edit distances, are not
shown. The LCA, indicated in orange, is that node in the
closure graph, whose sum distance to all exemplars is
minimum. In this case, the computed LCA represents the
correct common abstraction.Fig. 5 Computed correct LCA (topmost image) of three examples

Fig. 6 Computed problematic LCA (orange border) of three
examples (see text for explanation)

Fig. 7 Searching the intersection lattice for the LCA of three
examples

6 IET Comput. Vis., pp. 1–14

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cvi.2012.0030

www.ietdl.org

4 Graph matching using a spectral encoding
of graph structure

We now turn to the problem of inexact graph matching where,
due to noise and occlusion, two graphs representing very
similar objects may not be isomorphic. In a coarse-to-fine
feature hierarchy, we would like to find correspondences in
a coarse-to-fine fashion, requiring that we have some way
of compactly, robustly, and efficiently describing the
underlying structure rooted at a node. Given such a low-
dimensional encoding of DAG structure, we could compare
the ‘shapes’ of two graphs by comparing their encodings.
Although correspondence may be established between two
nodes in two graphs, according to the similarity of their
encodings, it is important to note that these encodings
describe the entire underlying structures rooted at these two
nodes. Since these structures may have different numbers of
nodes and may have slight variation in branching structure,
the resulting matching can be seen as many-to-many,
effectively matching two graph abstractions.

4.1 Eigen-decomposition of structure

To describe the topology of a DAG, we turn to the domain of
eigenspaces of graphs, first noting that any graph can be
represented as a 0, 1, 21 node-adjacency matrix (which we
will subsequently refer to as an adjacency matrix), with 1’s
(-1’s) indicating a forward (backward) edge between
adjacent nodes in the graph (and 0’s on the diagonal). The
eigenvalues of a graph’s adjacency matrix encode important
structural properties of the graph relating to node degree
distribution. Furthermore, the eigenvalues of the adjacency
matrix A are invariant to any orthonormal transformation of
the form PtAP. Since a permutation matrix is orthonormal,
the eigenvalues of a graph are invariant to any consistent
re-ordering of the graph’s branches. In [5], we established
the stability of a graph’s eigenvalues to minor perturbation
due to noise and occlusion. Specifically, we have shown
that such structural changes to a DAG can be modelled as
a two-step transformation of its adjacency matrix. The first
step transforms the adjacency matrix to a new matrix
having the same spectral properties as the original
matrix. The second step adds a noise matrix to this new
matrix, representing the structural changes. These changes
take the form of addition/deletion of nodes/arcs to/from the
original DAG. We draw on results that relate the distortion

of the spectral elements of the adjacency matrix resulting
from the first step to the magnitude of the noise added in
the second step. Since the spectrum of the original matrix is
the same as that of the transformed matrix, the noise-
dependent bounds therefore apply to the original matrix.
These results establish the stability of a DAG’s spectrum to
minor topological changes.

4.2 Formulating an index

We can now proceed to define an index based on the
eigenvalues. We could, for example, define a vector to be
the sorted eigenvalues of a DAG, with the resulting index
used to retrieve nearest neighbours in a model DAG
database having similar topology. However, for large
DAGs, the dimensionality of the index (and model DAG
database) would be prohibitively large. Our solution to this
problem will be based on eigenvalue sums rather than on
the eigenvalues themselves. Still, one more problem exists.
The eigenvalues are a global descriptor, and occlusion and/
or scene clutter may lead to heavy eigenvalue (index)
distortion. Therefore we need a mechanism for describing
the structure of graph ‘parts’ that survive occlusion/clutter.

Specifically, let T be a DAG whose maximum branching
factor is D(T), and let the subgraphs of its root be T1, T2,
. . ., TS, as shown in Fig. 8. For each subgraph, Ti, whose
root degree is d(Ti), we compute the eigenvalues of Ti’s
submatrix, sort them in decreasing order by absolute value
of their magnitude, and let Si be the sum of the d(Ti) 2 1
largest magnitudes. The sorted Sis become the components
of a D(T)-dimensional vector assigned to the DAG’s root.
If the number of Si’s is less than D(T), then the vector is
padded with zeroes. We can recursively repeat this
procedure, assigning a vector to each nonterminal node in
the DAG, computed over the subgraph rooted at that node.
The reasons for computing a description for each node,
rather than just the root, will become clear in the next section.

Although the eigenvalue sums are invariant to any
consistent re-ordering of the DAG’s branches, we have
given up some uniqueness (due to the summing operation)
in order to reduce dimensionality. We could have elevated
only the largest eigenvalue from each subgraph (non-unique
but less ambiguous), but this would be less representative
of the subgraph’s structure. We choose the d(Ti) 2 1 largest
eigenvalues for two reasons: (i) the largest eigenvalues are
more informative of subgraph structure, and (ii) by

Fig. 8 Forming a low-dimensional vector description of graph structure

IET Comput. Vis., pp. 1–14 7
doi: 10.1049/iet-cvi.2012.0030 & The Institution of Engineering and Technology 2012

www.ietdl.org

summing d(Ti) 2 1 elements, we effectively normalise the
sum according to the local complexity of the subgraph root.

We note that the proposed topological index satisfies a
series of criteria, making it efficient and robust for
structural characterisation of DAGs. The eigen-
decomposition yields a low-dimensional vector assigned to
each node in the DAG, which captures the local topology
of the DAG rooted at that node. Furthermore, a node’s
vector is invariant to any consistent reordering of the node’s
subgraph. The components of a node’s vector are based on
summing the largest eigenvalues of its subgraph’s
adjacency submatrix. Although our dimensionality-reducing
summing operation has cost us some uniqueness, as the
elements of each sum are positive values and are monotonic
with respect to structural complexity, the partial sums still
have relatively low ambiguity [36]. Also, as discussed in
Section 4.1, we have shown our index to be stable to minor
perturbations of the DAG’s topology. As shown in [4],
these sums can be computed even more efficiently than the
eigenvalues themselves.

4.3 Matching hierarchical structures

Each of the top-ranked candidates emerging from the
indexing process must be verified to determine which is
most similar to the query. If there were no clutter, occlusion
or noise, our problem could be formulated as a graph
isomorphism problem. If we allowed clutter and limited
occlusion, we would search for the largest isomorphic
subgraphs between query and model. Unfortunately, with
the presence of noise, in the form of the addition of
spurious graph structure and/or the deletion of salient graph
structure, large isomorphic subgraphs may simply not exist.
It is here that we call on our eigen-characterisation of graph
structure to help us overcome this problem.

Each node in our graph (query or model) is assigned
a topical signature vector (TSV), which reflects the
underlying structure in the subgraph rooted at that node. If
we simply discarded all the edges in our two graphs, we
would be faced with the problem of finding the best
correspondence between the nodes in the query and the
nodes in the model; two nodes could be said to be in close
correspondence if the distance between their TSVs (and the
distance between their domain-dependent node labels) was
small. In fact, such a formulation amounts to finding the
maximum cardinality, minimum weight matching in a
bipartite graph spanning the two sets of nodes. At first
glance, such a formulation might seem like a bad idea (by
throwing away all that important graph structure!) until one
recalls that the graph structure is really encoded in the node’s
TSV. Is it then possible to reformulate a noisy, largest
isomorphic subgraph problem as a simple bipartite matching
problem?

Unfortunately, in discarding all the graph structure,
we have also discarded the underlying hierarchical
structure. There is nothing in the bipartite graph-matching
formulation that ensures that hierarchical constraints among
corresponding nodes are obeyed, that is, that parent/child
nodes in one graph do not match child/parent nodes in
the other. This reformulation, although softening the overly
strict constraints imposed by the largest isomorphic
subgraph formulation, is perhaps too weak. We could try to
enforce the hierarchical constraints in our bipartite matching
formulation, but no polynomial-time solution is known to
exist for the resulting formulation. Clearly, we seek an
efficient approximation method that will find corresponding

nodes between two noisy, occluded DAGs, subject to
hierarchical constraints.

Our algorithm, a modification to Reyner’s algorithm [37],
combines the above bipartite matching formulation with a
greedy, best-first search in a recursive procedure to compute
the corresponding nodes in two rooted DAGs. As in
the above bipartite matching formulation, we compute the
maximum cardinality, minimum weight matching in the
bipartite graph spanning the two sets of nodes. Edge weight
will encode a function of both topological similarity as well
as domain-dependent node similarity. The result will be a
selection of edges yielding a mapping between query and
model nodes. As mentioned above, the computed mapping
may not obey hierarchical constraints. We therefore greedily
choose only the best edge (the two most similar nodes in
the two graphs, representing in some sense the two
most similar subgraphs), add it to the solution set, and
recursively apply the procedure to the subgraphs defined by
these two nodes. Unlike a traditional depth-first search
which backtracks to the next statically determined branch,
our algorithm effectively recomputes the branches at each
node, always choosing the next branch to descend in a best-
first manner. In this way, the search for corresponding
nodes is focused in corresponding subgraphs (rooted
DAGs) in a top-down manner, thereby ensuring that
hierarchical constraints are obeyed. The algorithm is
illustrated in Fig. 9.

4.4 Demonstration

To demonstrate our approach to matching, we turn to the
domain of two-dimensional object recognition [4, 39]. We
adopt a representation for two-dimensional shape that is
based on a colouring of the shocks (singularities) of a curve
evolution process acting on simple closed curves in the
plane [40]. Any given two-dimensional shape gives rise to
a rooted ‘shock tree’, in which nodes represent parts (whose
labels are drawn from four qualitatively defined classes) and
arcs represent relative time of formation (or relative size).
Fig. 10 illustrates a two-dimensional shape, its shock
structure, and its resulting shock graph, whereas Fig. 11
illustrates a matching example of two similar shapes,
showing part correspondences. Extensive examples and
performance evaluation can be found in [4, 41, 42].

The proposed matching algorithm has also been applied to
the categorical shape recognition problem. In this application,
first the coarse shape of an object will be captured using a
multi-scale blob and ridge decomposition that captures the
compact and elongated subparts of a given object at
relevant scales [43]. This part structure will, in turn, be
represented as a DAG, where nodes encode the coarse
shape components in terms of blobs and ridges and edges
capture both spatial and topological relationships among
nodes in scale-space [38]. An example of a blob graph for a
hand image, showing hierarchical edges, is shown in
Fig. 12a. In a generalisation [38] of the original DAG
matching algorithm [4], we devised a weighting scheme in
which the topological and geometric terms in the bipartite
graph edge weights need not be constant for all edges.
Since each edge spans an image node and a model node,
the model can be used to define an a priori weighting
scheme that is edge-dependent. As a result, if portions of
the model have additional geometric constraints (e.g.
articulation was prohibited), those model nodes could have
a higher weighting on their geometric similarity term. This
extension has proven to be very robust in dealing with

8 IET Comput. Vis., pp. 1–14

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cvi.2012.0030

www.ietdl.org

scale-space graphs, allowing the incorporation of local model
constraints into the matching algorithm. An example of the
blob correspondence computed over two hand exemplars is
shown in Fig. 12b.

5 Many-to-many graph matching using
graph embedding

The main objective of the many-to-many graph matching
problem is to establish a minimum cost mapping between
the vertices of two attributed, edge-weighted graphs. The
general formulation of the many-to-many graph matching
problem results in an intractable computational problem.
First, due to the exponential size of power-sets of
underlying graphs in terms of number of vertices in each
graph, the size of the search space for the many-to-many
matching problem is exponential. Even simplifying the
problem to one-to-one mappings, by replacing the power-
sets with actual vertex sets, will result in the
multidimensional matching problem that is known to be

NP-complete for arbitrary labelled graphs. Several existing
heuristic approaches to the problem of many-to-many graph
matching suffer from computational inefficiency and/or
from an inability to handle small perturbations in graph
structure. We seek a solution to this problem while
addressing drawbacks of existing approaches. Drawing on
recently developed techniques from the domain of low-
distortion graph embedding, we have explored an efficient
method for mapping a graph’s structure to a set of vectors
in a low-dimensional space. This mapping not only
simplifies the original graph representation, but it retains
important information about both local (neighbourhood) as
well as global graph structure. Moreover, the mapping is
stable with respect to noise in the graph.

Armed with a low-dimensional, robust vector
representation of an input graph’s structure, many-to-many
graph matching can now be reduced to the much simpler
problem of matching weighted distributions of points in a
normed vector space, using a ‘distribution-based’ similarity
measure. We consider one such similarity measure, known

Fig. 9 Hierarchical matching algorithm [38]

a Given a query graph and a model graph
b We form a bipartite graph in which the edge weights are the pair-wise node similarities of query and model graphs Then,
c Then we compute a maximum matching and add the best edge to the solution set
d Finally, split the graphs at the matched nodes
e Recursively descend

Fig. 10 Illustrative example of a shape and its corresponding shock graph

IET Comput. Vis., pp. 1–14 9
doi: 10.1049/iet-cvi.2012.0030 & The Institution of Engineering and Technology 2012

www.ietdl.org

as the EMD, and show that the many-to-many vector mapping
that realizes the minimum EMD corresponds to the desired
many-to-many matching between nodes of the original
graphs. The result is a more efficient and more stable
approach to many-to-many graph matching that, in fact,
includes the special case of one-to-one graph matching. The
overview of the approach is presented in Fig. 13. Fig. 14
illustrates an example domain in which we have
successfully applied the approach to many-to-many
matching between two hand images represented as
hierarchical blob and ridge decompositions; note that the
number of blobs used to model the fingers or palm differs
between the two decompositions. The algorithm computes
the many-to-many correspondences indicated by the similar
colouring.

5.1 Low-distortion embedding

Our interest in low-distortion embedding is motivated by its
ability to transform the problem of many-to-many matching
in finite graphs to geometrical problems in low-dimensional
vector spaces. Specifically, let G1 = (A1, E1, D1), G2 =
(A2, E2, D2) denote two graphs on vertex sets A1 and A2,
edge sets E1 and E2, under distance metrics D1 and D2,
respectively (Di represents the distances between all pairs
of nodes in Gi). Ideally, we seek a single embedding that
can map each graph to the same vector space, in which
the two embeddings can be directly compared. However,
in general, this is not possible without introducing
unacceptable distortion.

We will therefore tackle the problem in two steps. First, we
will seek low-distortion embeddings fi that map sets Ai to
normed spaces (Bi, ||.||k), i [1, 2. Next, we will align the

normed spaces, so that the embeddings can be directly
compared. Using these mappings, the problem of many-to-
many vertex matching between G1 and G2 is therefore
reduced to that of computing a mapping M between
subsets of B1 and B2.

In practice, the robustness and efficiency of mapping M
will depend on several parameters, such as the magnitudes
of distortion of the Di’s under the embeddings, the
computational complexity of applying the embeddings, the
efficiency of computing the actual correspondences
(including alignment) between subsets of B1 and B2, and
the quality of the computed correspondence. The latter issue
will be addressed in Section 5.2.

The problem of low-distortion embedding has a long
history for the case of planar graphs, in general, and trees,
in particular. More formally, the most desired embedding is
the subject of the following conjecture:

Conjecture 1 [44]: Let G = (A, E) be a planar graph, and let
M = (A, D) be the shortest-path metric for the graph G. Then
there is an embedding of M into ‖.‖p with O(1) distortion.

This conjecture has only been proven for the case in which
G is a tree. Although the existence of such a distortion-free
embedding under ‖.‖k-norms was established in [45], no

Fig. 11 Example part correspondences computed by the matching algorithm

Fig. 12 Example graph of blob and ridge representation of

a Hand image with the hierarchical edges of the scale-space DAG shown in
grey [38]
b Computed correspondence [38]

Fig. 13 Overview of many-to-many matching procedure

Pair of views are represented by undirected, rooted, weighted graphs
(transition 1). The graphs are mapped into a low-dimensional vector space
using a low-distortion graph embedding (transition 2). A many-to-many
point (graph node) correspondence is computed by the Earth Mover’s
Distance under transformation (shown at the bottom). The many-to-many
point correspondences define the many-to-many nodes correspondences in
the two original graphs

10 IET Comput. Vis., pp. 1–14

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cvi.2012.0030

www.ietdl.org

deterministic construction was provided. One such
deterministic construction was given by Matoušek [46],
suggesting that if we could somehow map our graphs into
trees, with small distortion, we could adopt Matoušek’s
framework.

5.1.1 Shortest path metric: Before we can proceed with
Matoušek’s embedding, we must choose a suitable metric
for our graphs, that is, we must define a distance between
any two vertices. Let G = (A, E) denote an edge-weighted
graph with real edge weights W(e), e [E. We will say that
D is a metric for G if, for any three vertices u, v,
w [A, D(u, v) = D(v, u) ≥ 0, D(u, u) = 0 and D(u, v) ≤
D(u, w) +D(w, v). In general, there are many ways to
define metric distances on a weighted graph. The best-
known metric is the shortest-path metric d(., .), that is,
D(u, v) = d(u, v), the shortest path distance between u and
v for all u, v [A. In fact, if the weighted graph G is a tree,
the shortest path between any two vertices is unique, and
the weights of the shortest paths between vertices will
define a metric D(., .).

In the event that G is not a tree, D(., .) can be defined
through a special representation of G, known as the
‘centroid metric tree’ T [47]. The path-length between any
two vertices u, v in T will mimic the metric d(u, v) in G. A
metric D(., .) on n objects {v1, . . . , vn} is a centroid metric
if there exist labels ℓ1, . . . , ℓn such that for all i = j,
D(vi, vj) = ℓi + ℓj. If G is not a tree, its centroid metric tree
T is a star on vertex-set A < {c} and weighted edge-set
{(c, vi)|W(c, vi) = ℓi, vi [A}. It is easy to see that the
path-lengths between vi and vj in T will correspond to
D(vi, vj) in G. For details on the construction of a metric
labelling ℓi of a metric distance D(., .) (see [47]).

5.1.2 Path partition of a graph: The construction of the
embedding depends on the notion of a path partition of a
graph. In this subsection, we introduce the path partition,
and then use it in the next subsection to construct the
embedding. Given a weighted graph G = (A, E) with
metric distance D(., .), let T = (A, E) denote a tree
representation of G, whose vertex distances are consistent
with D(., .). In the event that G is a tree, T = G; otherwise
T is the centroid metric tree of G. To construct the
embedding, we will assume that T is a rooted tree. It will
be clear from the construction that the choice of the root
does not affect the distortion of the embedding.

The dimensionality of the embedding of T depends on the
caterpillar dimension, denoted by c dim(T), and is recursively
defined as follows [46]. If T consists of a single vertex, we set

c dim(T) = 0. For a tree T with at least 2 vertices,
c dim(T) ≤ k + 1 if there exist paths P1, . . . , Pr beginning
at the root and otherwise pairwise disjoint, such that each
component Tj of T − E(P1) − E(P2) − · · · − E(Pr) satisfies
c dim(Tj) ≤ k. Here T − E(P1) − E(P2) − · · · − E(Pr)
denotes the tree Tvi with the edges of the Pi’s removed,
and the components Tj are rooted at the single vertex lying
on some Pi. The caterpillar dimension can be determined in
linear time for a rooted tree T, and it is known that
c dim(T) ≤ log(|A|) (see [46]).

The construction of vectors f (v), for v [A, depends on the
notion of a ‘path partition’ of T. The path partition P of T is
empty if P is a single vertex; otherwise P consists of some
paths P1, . . . , Pr as in the definition of c dim(T), plus
the union of path partitions of the components of
T − E(P1) −M(P2) − · · · − E(Pr). The paths P1, . . . , Pr

have level 1, and the paths of level k ≥ 2 are the paths of
level k 2 1 in the corresponding path partitions of the
components of T − E(P1) − E(P2) − · · · − E(Pr). Note that
the paths in a path partition are edge-disjoint, and their
union covers the edge-set of T.

To illustrate these concepts, consider the tree shown in
Fig. 15. The three darkened paths from the root represent
three level 1 paths. Following the removal of the level 1
paths, we are left with six connected components that, in
turn, induce seven level 2 paths, shown with lightened
edges. [Note that the third node from the root in the middle
level 1 branch is the root of a tree-component consisting of
five nodes that will generate two level 2 paths.] Following
the removal of the seven level 2 paths, we are left with an
empty graph. Hence, the caterpillar dimension (c dim(T)) is
two. It is easy to see that the path partition P can be
constructed using a modified depth-first search in O(|A|)
time.

5.1.3 Construction of the embedding: Given a path
partition P of T, we will use m to denote the number of
levels in P, and let P (v) represent the unique path between
the root and a vertex v [A. The first segment of P (v) of
weight l1 follows some path P1 of level 1 in P, the second
segment of weight l2 follows a path P2 of level 2, and
the last segment of weight la follows a path Pa of level
a ≤ m. The sequences kP1, . . . , Pal and kl1, . . . , lal will be
referred to as the ‘decomposition sequence and the weight
sequence’ of P (v), respectively.

To define the embedding f : A � B under ‖.‖2, we let the
relevant coordinates in B be indexed by the paths in P. The
vector f (v), v [A, has non-zero coordinates corresponding
to the paths in the decomposition sequence of P (v).

Fig. 14 Many-to-many graph matching applied to Blob graphs

Many-to-many feature correspondences have been coloured the same.
Corresponding groups of nodes (whose cardinalities may be different) are
coloured the same (courtesy of [6])

Fig. 15 Path partition of a tree

IET Comput. Vis., pp. 1–14 11
doi: 10.1049/iet-cvi.2012.0030 & The Institution of Engineering and Technology 2012

www.ietdl.org

Returning to Fig. 15, the vector f(v) will have ten components
(defined by three level 1 paths and seven level 2 paths).
Furthermore, every vector f(v) will have at most two non-
zero components. Consider, for example, the lowest leaf
node in the middle branch. Its path to the root will traverse
three level 2 edges corresponding to the fourth level 2 path,
as well as three level 1 edges corresponding to the second
level 1 path.

Such embedding functions have become fairly standard in
the metric space representation of weighted graphs [46, 48].
In fact, Matoušek [46] has proven that setting the i-th
coordinate of f (v), corresponding to path Pk, 1 ≤ k ≤ a, in
decomposition sequence kP1, . . . , Pal, to

f (v)i =

�����������������������������������
lk lk +

∑a
j=1

max(0, lj − lk/2m)

[]√√√√

will result in a small distortion of at most
�����������
log log|A|

√
. It

should be mentioned that although the choice of path
decomposition P is not unique, the resulting embeddings
are isomorphic up to a transformation. Computationally,
constructions of T, P and B are all linear in terms of |A|
and |E|.

The above embedding has preserved both graph structure
and edge weights, but has not accounted for node
information. To accommodate node information in our
embedding, we will associate a weight wv to each vector
f(v), for all v [A. These weights will be defined in terms
of vertex labels which, in turn, encode image feature
values. Note that nodes with multiple feature values give
rise to a vector of weights assigned to every point. We will
present an example of one such distribution in Section 5.3.

5.2 Distribution-based matching

By embedding vertex-labelled graphs into normed spaces, we
have reduced the problem of many-to-many matching
of graphs to that of many-to-many matching of weighted
distributions of points in normed spaces. However, before
we can match two point distributions, we must map them
into the same normed space. This involves reducing the
dimensionality of the higher-dimensional distribution and
aligning the two distributions. Given a pair of weighted
distributions in the same normed space, the EMD
framework [49] is then applied to find an optimal match
between the distributions. The EMD approach computes
the minimum amount of work (defined in terms of
displacements of the masses associated with points) it takes
to transform one distribution into another.

5.2.1 Embedding point distributions in the same
normed space: Embeddings produced by the graph
embedding algorithm can be of different dimensions and
are defined only up to a distance-preserving transformation
(a translated and rotated version of a graph embedding will
also be a graph embedding). Therefore in order to apply the
EMD framework, we perform a PCA-based ‘registration’
step, whose objective is to project the two distributions into
the same normed space. Intuitively, the projection of the
original vectors associated with each graph embedding onto
the subspace spanned by the first K right singular vectors of
the covariance matrix retains the maximum information
about the original vectors among all projections onto
subspaces of dimension K. Hence, if K is the minimum of

the two vector dimensions, projecting the two embeddings
onto the first K right singular vectors of their covariance
matrices will equalise their dimensions while losing
minimal information [50]. The resulting transformation is
expected to minimise the initial EMD between the
distributions.

5.2.2 Earth mover’s distance: The EMD [49, 51] is
designed to evaluate the dissimilarity between two multi-
dimensional distributions in some feature space. The EMD
approach assumes that a distance measure between single
features, called the ‘ground distance’, is given. The EMD
then ‘lifts’ this distance from individual features to full
distributions. Computing the EMD is based on a solution to
the well-known ‘transportation problem’ [52], whose
optimal value determines the minimum amount of ‘work’
required to transform one distribution into the other.
Moreover, if the weights of the distributions are the same,
and the ground distance is a metric, EMD induces a metric
distance [49].

Recall that a translated and rotated version of a
graph embedding will also be a graph embedding. To
accommodate pairs of distributions that are ‘not rigidly
embedded’, Cohen and Guibas [51] extended the definition
of EMD, originally applicable to pairs of fixed sets of
points, to allow one of the sets to undergo a transformation.
They also suggested an iterative process (which they
call FT, short for ‘an optimal flow and an optimal
transformation’) that achieves an infimum of the objective
function for EMD. The iterative process stops when the
improvement in the objective function value falls below
a threshold. For our application, the set of allowable
transformations consists of only those transformations that
preserve distances. Therefore we use a weighted version of
the least squares estimation algorithm [53] to compute an
optimal distance-preserving transformation given a flow
between the distributions. The main advantage of using
EMD lies in the fact that it subsumes many histogram
distances and permits partial and many-to-many matches
under transformation in a natural way. This important
property allows the similarity measure to deal with uneven
clusters and noisy datasets.

5.3 Demonstration

To demonstrate our approach to many-to-many matching, we
turn to the domain of view-based object recognition using
silhouettes. For a given view, an object’s silhouette is first
represented by an undirected, rooted, weighted graph, in
which nodes represent ‘shocks’ [4] (or, equivalently,
skeleton points) and edges connect adjacent shock points.
[Note that this representation is closely related to Siddiqi
et al.’s shock graph [4], except that our nodes (shock
points) are neither clustered nor are our edges directed.] We
will assume that each point p on the discrete skeleton is
labelled by a four-dimensional vector v(p) ¼ (x, y, r, a),
where (x, y) are the Euclidean coordinates of the point, r is
the radius of the maximal bi-tangent circle centred at the
point, and a is the angle between the normal to either
bitangent and the linear approximation to the skeleton curve
at the point. [Note that this four-tuple is slightly different
from Siddiqi et al.’s shock point four-tuple, where the
latter’s radius is assumed normal to the axis.] This four-
tuple can be thought of as encoding local shape information
of the silhouette.

12 IET Comput. Vis., pp. 1–14

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cvi.2012.0030

www.ietdl.org

To convert our shock graphs to shock trees, we compute
the minimum spanning tree of the weighted shock graph.
As the edges of the shock graph are weighted based on
Euclidean distances of corresponding nodes, the minimum
spanning tree will a generate suitable tree approximation
for shock graphs. The root of the tree is the node that
minimises the sum of distances to all other nodes. Finally,
each node is weighted proportionally to its average radius,
with the total tree weight being 1. An illustration of the
procedure is given in Fig. 16. The left portion shows the
initial silhouette and its shock points (skeleton). The right
portion depicts the constructed shock tree. Darker, heavier
nodes correspond to fragments whose average radii are
larger. Fig. 17 illustrates the many-to-many correspondences
that our matching algorithm yields for two adjacent views
(308 and 408) of the teapot. Corresponding clusters (many-
to-many mappings) have been shaded with the same colour.
Note that the extraneous branch in the left view was not
matched in the right view, reflecting the method’s ability to
deal with noise. Further details and additional experiments
can be found in [50].

6 Conclusions

Within-class shape and appearance variation, scale change,
articulation, noise and segmentation errors can all conspire
to violate the common assumption that there exists a one-
to-one correspondence between image and model features.
If categorisation is to move beyond those restrictive
categories where the same local features can be found on

each exemplar belonging to the category, features must be
matched many-to-many. We have reviewed three different
graph-theoretic approaches to the problem of many-to-
many feature matching. Establishing a many-to-many
correspondence requires either that features are grouped and
abstracted so that one-to-one correspondence exist between
the abstractions or that many-to-many correspondences are
explicitly found between groups of features.

Our first approach addresses the problem of learning a
category model from a set of exemplars by searching the
space of all possible abstractions of an image, and using
support from other objects drawn from the same category to
help constrain the search. Our second approach addresses
the problem of hierarchical graph matching, drawing on
spectral graph theory to generate and match structural
abstractions of DAGs. Our third approach explicitly
addresses the problem of many-to-many graph matching by
first embedding the graphs into a geometric domain, and
then employing efficient algorithms for many-to-many point
matching. Although each of these approaches addresses a
different problem, they all face the common challenge of
perceptual grouping and image abstraction. Matching
groups of features many-to-many requires that the features
be nonaccidentally grouped, and it is only when the
perceptual groups are abstracted can they be directly
compared. In the wake of the community’s formulation of
recognition as detection, these two critical problems have
unfortunately not received the attention they deserve [7].

7 Acknowledgments

The authors gratefully acknowledge the support of NSERC,
IRIS, NSF, ONR, DARPA, and PREA.

8 References

1 Lowe, D.: ‘Distinctive image features from scale-invariant keypoints’,
IJCV, 2004, 60, (2), pp. 91–110

2 Shokoufandeh, A., Keselman, Y., Demirci, F., Macrini, D., Dickinson,
S.J.: ‘Many-to-many feature matching in object recognition’, in
Christensen, H., Nagel, H.-H. (Eds.): ‘Cognitive vision systems:
sampling the spectrum of approaches’ (Springer-Verlag, Berlin, 2006),
pp. 107–125

3 Keselman, Y., Dickinson, S.J.: ‘Generic model abstraction from
examples’, IEEE PAMI, 2005, 27, (7), pp. 1141–1156

4 Siddiqi, K., Shokoufandeh, A., Dickinson, S., Zucker, S.: ‘Shock graphs
and shape matching’, Int. J. Comput. Vis., 1999, 30, pp. 1–24

5 Shokoufandeh, A., Macrini, D., Dickinson, S., Siddiqi, K., Zucker, S.:
‘Indexing hierarchical structures using graph spectra’, IEEE PAMI,
2005, 27, (7), pp. 1125–1140

6 Demirci, F., Shokoufandeh, A., Keselman, Y., Bretzner, L., Dickinson,
S.: ‘Object recognition as many-to-many feature matching’, IJCV, 2006,
69, (2), pp. 203–222

7 Dickinson, S.: ‘The evolution of object categorization and the challenge
of image abstraction’, in Dickinson, S., Leonardis, A., Schiele, B., Tarr,
M. (Eds.): ‘Object categorization: computer and human vision
perspectives’ (Cambridge University Press, New York, 2009), pp. 1–37

8 Crowley, J., Parker, A.: ‘A representation for shape based on peaks and
ridges in the difference of low-pass transform’, IEEE PAMI, 1984, 6, (2),
pp. 156–170

9 Lindeberg, T.: ‘Detecting salient blob-like image structures and their
scales with a scale-space primal sketch: a method for focus of
attention’, Int. J. Comput. Vis., 1993, 1, (3), pp. 283–318

10 Lindeberg, T.: ‘Edge detection and ridge detection with automatic scale
selection’, Int. J. Comput. Vis., 1998, 30, (2), pp. 117–156

11 Dufournaud, Y., Schmid, C., Horaud, R.: ‘Matching images with
different resolutions’. Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, Los Alamitos, 2000, pp. 612–618

12 Lowe, D.: ‘Object recognition from local scale-invariant features’. Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, Washington,
1999, pp. 1150–1157

Fig. 16 Left: the silhouette of a teapot and its medial axis; right:
the medial axis tree constructed from the medial axis

Darker nodes reflect larger radii

Fig. 17 Illustration of the many-to-many correspondences
computed for two adjacent views of the teapot

Matched point clusters are shaded with the same colour

IET Comput. Vis., pp. 1–14 13
doi: 10.1049/iet-cvi.2012.0030 & The Institution of Engineering and Technology 2012

www.ietdl.org

13 Kadir, T., Brady, M.: ‘Saliency, scale and image description’,
Int. J. Comput. Vis., 2001, 45, (2), pp. 83–105

14 Bay, H., Ess, A., Tuytelaars, T., van Gool, L.: ‘Speeded-up robust features
(surf)’, Comput. Vis. Image Underst., 2008, 110, (3), pp. 346–359

15 Shokoufandeh, A., Marsic, I., Dickinson, S.: ‘View-based object
recognition using saliency maps’, Image Vis. Comput., 1999, 17,
(5/6), pp. 445–460

16 Bretzner, L., Lindeberg, T.: ‘Qualitative multiscale feature hierarchies
for object tracking’, J. Vis. Commun. Image Represent., 2000, 11, (2),
pp. 115–129

17 Shokoufandeh, A., Bretzner, L., Macrini, D., Demirci, M.F., Jönsson,
C., Dickinson, S.: ‘The representation and matching of categorical
shape’, Comput. Vis. Image Understand, 2006, 103, (2), pp. 139–154

18 Mohan, A., Papageorgiou, C., Poggio, T.: ‘Example-based object detection
in images by components’, IEEE PAMI, 2001, 23, (4), pp. 349–361

19 Weber, M., Welling, M., Perona, P.: ‘Unsupervised learning of models
for recognition’. Proc. Sixth European Conf. Computer Vision, 2000,
pp. 18–32

20 Leibe, B., Schiele, B.: ‘Analyzing appearance and contour based
methods for object categorization’. Proc. Sixth European Conf.
Computer Vision, 2003, pp. 409–415

21 Winn, J., Jojic Locus, N.: ‘Learning object classes with unsupervised
segmentation’. Proc. of ICCV, 2005, pp. 756–763

22 Jiang, X., Munger, A., Bunke, H.: ‘On median graphs: properties,
algorithms, and applications’, IEEE PAMI, 2001, 23, (10),
pp. 1144–1151

23 Torsello, A., Hancock, E.R.: ‘Learning shape-classes using a mixture of
tree-unions’, IEEE PAMI, 2006, 28, (6), pp. 954–967

24 Todorovic, S., Ahuja, N.: ‘Unsupervised category modeling,
recognition, and segmentation in images’, IEEE PAMI, 2008, 30, (12),
pp. 2158–2174

25 Messmer, B., Bunke, H.: ‘Efficient error-tolerant subgraph isomorphism
detection’, in Dori, D., Bruckstein, A. (Eds.): ‘Shape, structure and
pattern recognition’ (World Scientific Publ. Co, 1995), pp. 231–240

26 Liu, T.L., Geiger, D.: ‘Approximate tree matching and shape similarity’.
Proc. Seventh Int. Conf. on Computer Vision, Kerkyra, Greece, 1997

27 Myers, R., Wilson, R., Hancock, E.: ‘Bayesian graph edit distance’,
IEEE PAMI, 2000, 22, (6), pp. 628–635

28 Sebastian, T., Klein, P., Kimia, B.: ‘Recognition of shapes by editing
shock graphs’. Proc. CVPR, 2001

29 Gold, S., Rangarajan, A.: ‘Agraduated assignment algorithm for graph
matching’, IEEE PAMI, 1996, 18, (4), pp. 377–388

30 Carcassoni, M., Hancock, E.R.: ‘Correspondence matching with modal
clusters’, IEEE PAMI, 2003, 25, (12), pp. 1609–1614

31 Caelli, T.: ‘Correspondence matching with modal clusters’, IEEE PAMI,
2004, 26, (4), pp. 515–519

32 Dickinson, S., Davis, L.: ‘A flexible tool for prototyping alv road
following algorithms’, IEEE J. Robot. Autom., 1990, 6, (2),
pp. 232–242

33 Dickinson, S., Pentland, A., Rosenfeld, A.: ‘3-D shape recovery using
distributed aspect matching’, IEEE PAMI, 1992, 14, (2), pp. 174–198

34 Dickinson, S., Pentland, A., Rosenfeld, A.: ‘From volumes to views: an
approach to 3-D object recognition’, CVGIP, Image Understanding,
1992, 55, (2), pp. 130–154

35 Felzenszwalb, P., Huttenlocher, D.: ‘Image segmentation using local
variation’. IEEE Conf. on Computer Vision and Pattern Recognition,
Santa Barbara, CA, 1998, pp. 98–104

36 Stewart, G., Sun, J.: ‘Matrix perturbation theory’ (Academic Press, San
Diego, CA, 1990)

37 Reyner, S.W.: ‘An analysis of a good algorithm for the subtree problem’,
SIAM J. Comput., 1977, 6, pp. 730–732

38 Shokoufandeh, A., Bretzner, L., Macrini, D., Demirci, M.F., Jonsson,
C., Dickinson, S.: ‘The representation and matching of categorical
shape’, CVIU, 2006, 103, (2), pp. 139–154

39 Shokoufandeh, A., Dickinson, S., Siddiqi, K., Zucker, S.: ‘Indexing using a
spectral encoding of topological structure’. IEEE Conf. on Computer Vision
and Pattern Recognition, Fort Collins, CO, June 1999, pp. 491–497

40 Kimia, B.B., Tannenbaum, A., Zucker, S.W.: ‘Shape, shocks, and
deformations I: the components of two-dimensional shape and the
reactiondiffusion space’, Int. J. Comput. Vis., 1995, 15, pp. 189–224

41 Macrini, D., Shokoufandeh, A., Dickinson, S., Siddiqi, K., Zucker, S.:
‘View-based 3-D object recognition using shock graphs’. Proc. Int.
Conf. on Pattern Recognition, Quebec, 2002, vol. 3, pp. 24–28

42 Macrini, D.: ‘Indexing and matching for view-based 3-D object
recognition using shock graphs’. Master’s thesis, Department of
Computer Science, University of Toronto, 2003

43 Shokoufandeh, A., Dickinson, S.J., Bretzner, J.L., Lindeberg, T.: ‘On
the representation and matching of qualitative shape at multiple
scales’. Proc. Seventh European Conf. on Computer Vision, 2002,
vol. 3, pp. 759–775

44 Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: ‘Cuts, trees and l1
embeddings’. Proc. Symp. on Foundations of Computer Science, 1999,
pp. 399–409

45 Linial, N., London, E., Rabinovich, Y.: ‘The geometry of graphs and
some of its algorithmic applications’. Proc. 35th Annual Symp. on
Foundations of Computer Science, 1994, pp. 557–591

46 Matoušek, J.: ‘On embedding trees into uniformly convex Banach
spaces’, Israel J. Math., 1999, 237, pp. 221–237

47 Agarwala, R., Bafna, V., Farach, M., Paterson, M., Thorup, M.: ‘On the
approximability of numerical taxonomy (fitting distances by tree
metrics)’, SIAM J. Comput., 1999, 28, (2), pp. 1073–1085

48 Linial, N., Magen, A., Saks, M.E.: ‘Trees and Euclidean metrics’. Proc. 30th
Annual ACM Symp. on Theory of Computing, 1998, pp. 169–175

49 Rubner, Y., Tomasi, C., Guibas, L.J.: ‘The earth mover’s distance as a
metric for image retrieval’, Int. J. Comput. Vis., 2000, 40, (2), pp. 99–121

50 Keselman, Y., Shokoufandeh, A., Demirci, M., Dickinson, S.: ‘Many-
tomany graph matching via metric embedding’. Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, Madison, WI, June 2003,
pp. 850–857

51 Cohen, S.D., Guibas, L.J.: ‘The earth mover’s distance under
transformation sets’. Proc. Seventh Int. Conf. on Computer Vision,
Kerkyra, Greece, 1999, pp. 1076–1083

52 Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: ‘Network flows: theory,
algorithms, and applications’ (Prentice Hall, Englewood Cliffs, New
Jersey, 1993), pp. 4–7

53 Umeyama, S.: ‘Least-squares estimation of transformation parameters
between two point patterns’, IEEE Trans. Pattern Analysis and
Machine Intelligence, 1991, 13, (4), pp. 376–380

14 IET Comput. Vis., pp. 1–14

& The Institution of Engineering and Technology 2012 doi: 10.1049/iet-cvi.2012.0030

www.ietdl.org

	1 Introduction
	2 Related work
	3 Generic model acquisition from examples
	4 Graph matching using a spectral encoding of graph structure
	5 Many-to-many graph matching using graph embedding
	6 Conclusions
	7 Acknowledgments
	8 References

