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Abstract

In recent years, region proposals have replaced sliding
windows in support of object recognition, offering more dis-
criminating shape and appearance information through im-
proved localization. One powerful approach for generat-
ing region proposals is based on minimizing parametric en-
ergy functions with parametric maxflow. In this paper, we
introduce Parametric Min-Loss (PML), a novel structured
learning framework for parametric energy functions. While
PML is generally applicable to different domains, we use
it in the context of region proposals to learn to combine a
set of mid-level grouping cues to yield a small set of object
region proposals with high recall. Our learning framework
accounts for multiple diverse outputs, and is complemented
by diversification seeds based on image location and color.
This approach casts perceptual grouping and cue combina-
tion in a novel structured learning framework which yields
baseline improvements on VOC 2012 and COCO 2014.

1. Introduction

For many years, the recognition community focused on
the problem of object detection, in which a strong object
prior was “tested” at all possible locations using the brute-
force approach of sliding windows. Bottom-up segmenta-
tion, e.g. [26, 9, 31], was clearly unnecessary in the pres-
ence of a strong object prior, and while the complexity of
this framework grew linearly with the number of detectors,
parallel processing allowed a significant number of classes
to be detected before a linear search became intractable. At
that point, the concept of an “objectness” detector was in-
troduced [2], resurrecting interest in bottom-up saliency and
attention. By testing which of the window locations con-
tained salient object information, the linear search of detec-
tors could be restricted to a small subset of windows. While
an objectness detector could arguably be considered a weak
form of perceptual grouping (with the grouping provided by
the sliding window), bottom-up segmentation still remained
in the shadows.
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Figure 1. Our approach takes an input image, partitions it into
superpixels, and groups superpixels into region proposals using a
novel structured learning framework for parametric energy func-
tions, called Parametric Min-Loss (PML). The parametric energy
function combines mid-level cues with weights that are trained to
generate multiple region proposals. Finally, we diversify the en-
ergy function to generate a diverse set of region proposals.

Only when the number of categories grew to thousands
or more did the community advance the need for more dis-
criminative features such as shape and appearance which,
in turn, require bottom-up region segmentation. The ex-
traction of such “region proposals”, e.g. [29, 5], meant that
brute-force sliding window searches, numbering in the tens
or hundreds of thousands, could be replaced by the extrac-
tion of hundreds or thousands of region proposals. Each
proposal offers (boundary) shape, appearance, and scale in-
formation which, for a correct proposal, can be exploited to
recognize an object (or part of an object) or select a small
number of object detectors that can be applied to the region.
As long as the region proposals exhibit good recall, there’s
a chance that the object(s) will be recognized.

The return to bottom-up region segmentation is an invi-
tation to integrate the many mid-level cues that ultimately
play a role in such perceptual grouping, including proxim-
ity, symmetry closure, similarity, and continuity, to name a
few. But even with computational models of such cues, how
should they be combined and what is their relative impor-
tance? As shown in Figure 1, we explore these issues within
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the framework of graphical models, which encode contex-
tual relationships such as grouping cues between adjacent
image regions. Computationally, graphical models can be
solved exactly in a tractable manner, e.g. by minimizing
a pairwise submodular energy function of binary variables
with a maxflow algorithm. They can be discriminatively
trained to predict structured outputs, offering a consistent
learning and inference framework for bottom-up segmenta-
tion [24, 27].

Until recently, discriminative graphical models for seg-
mentation have been restricted to single-output predictions,
and lacked a framework for learning to predict diverse mul-
tiple outputs, e.g. as introduced in Multiple Choice Learning
(MCL) [13]. Multiple-output models are especially impor-
tant for region proposals due to the principle of least com-
mitment needed for bottom-up grouping. One such tool that
has emerged in vision is parametric maxflow [17], which
is used to minimize an energy function Eλ(y) for multiple
values of parameter λ, generating multiple solutions at a
time. Parametric maxflow was applied to proposing object
regions in CPMC [5] and in subsequent variants [15, 23].

Despite frequent use in region proposal generation, how-
ever, parametric energy functions are, as a rule, not trained
to predict multiple outputs, but rather trained to predict a
single output. To the best of our knowledge, this paper is
the first to bridge the gap between learning and inference
for parametric maxflow. Our formulation is inspired by
MCL, which models multiple-output learning with a loss
function that evaluates multiple outputs against a correct
output. Our model, however, differs from MCL in 1) hav-
ing a single parametric energy function, and in 2) automat-
ically adapting the number of output solutions to the input
image. Despite these significant differences, we find that
MCL’s block-coordinate descent strategy applies to para-
metric maxflow and yields a solution that decomposes into
simple alternating steps.

In summary, we introduce Parametric Min-Loss (PML),
a novel model and algorithm for structured multiple-output
learning using parametric maxflow. We demonstrate its use
for learning to combine a set of mid-level grouping cues to
yield a set of region proposals with high recall. Besides hav-
ing applications to perceptual grouping, the model bridges
the disparity between learning and inference for parametric
energy functions and can be applied to any domain that uses
parametric maxflow. While learning accounts for diverse
multiple outputs, we include a complementary diversifica-
tion step that allows the proposals to adapt to different con-
ditions. With a large-scale experimental validation, we cast
mid-level cue combination in a structured learning environ-
ment, representing an exciting new direction for perceptual
grouping.

2. Related work
Perceptual grouping has often been formulated as an en-

ergy minimization problem, e.g. [12, 30, 32, 7, 34, 16, 26],
yielding a single region or (possibly) closed contour, or a
partition into regions. In the more recent context of gen-
erating region proposals, a parametric energy minimization
problem is often formulated (e.g. CPMC [5]) in which the
energy is parameterized by λ and minimized for multiple
values of λ using parametric maxflow, yielding multiple so-
lutions. Such an approach is an extension of energy mini-
mization from predicting a single output to predicting multi-
ple outputs in support of the principle of least commitment,
and has been refined by subsequent variants [15, 23]. How-
ever, the combination of cues is typically specified manually
in the energy or not trained jointly in the energy.

Moreover, a gap has emerged between learning and in-
ference for parametric maxflow because prediction has been
extended to multiple outputs while learning has not. This
disparity exists in general for multiple-output models, an
example of which is the M-Best MAP approach for gener-
ating multiple hypotheses [10]. Recently, Multiple Choice
Learning (MCL) [13] addressed this gap in a tractable way
using an M -tuple of independent structured predictors that
predicts M outputs. The model is efficient and minimizes
the loss of only the most accurate prediction in the set of
outputs. Subsequent improvements included an explicit cri-
terion to encourage diversity among the predictors [14],
however the model remains fundamentally different from
parametric maxflow, which solves a single parametric en-
ergy function that accounts for multiple outputs, and whose
number of outputs is adaptive and does not need to be pre-
specified. Our method for parametric maxflow, however, is
similar to MCL in using a block-coordinate descent strategy
in a large-margin formulation to close the train-test gap.

Approaches for region proposals typically consist of a
generation stage for hypothesizing proposals, followed by a
ranking stage that attempts to order them by “objectness”.
A diversity of approaches exist in which many generate
proposals in the form of bounding boxes, e.g. Objectness
[2] and Edge Boxes [35]. In such methods, a sliding win-
dow suffices as no explicit grouping is required, and they
are suitable for box-based detectors even though propos-
als do not explicitly capture the underlying shape of the
objects. Selective Search [29] efficiently generates region-
based proposals based on greedily merging superpixels and
was subsequently improved with trained affinity functions
[33]. The approach is similar to ours in using region-based
similarity cues, however the agglomerative grouping proce-
dure is brute force.

In approaches for region-based proposals, such as GOP
[18], RIGOR [15], MCG [4], the principle of least com-
mitment is typically not built into learning. Only very re-
cently was such a method proposed [19] that minimized the



loss of the most accurate region proposal, with efficient run-
time at test time and achieving competitive results. In our
work, we minimize the same loss function, however one of
our key aims is to develop a graphical model that is uni-
fied across learning and inference. Another recent work [6]
also uses learning to combine several cues for generating
object proposals in 3D, but it does not use parametric en-
ergies. Earlier methods gave a significant role to learning
in the ranking stage, e.g. [4, 8, 23]. CPMC [5] uses para-
metric maxflow to generate proposals and is most similar to
ours in spirit, however we perform grouping at superpixel-
level rather than pixel-level. This allows access to region-
based mid-level cues during the generation stage. In con-
trast to the above methods, our approach emphasizes the
generation stage over the ranking stage, and emphasizes the
role of learning to group using mid-level cues. The clos-
est methods to our approach are Superpixel Closure [22],
which uses mid-level closure, but does not combine other
cues, and Multicue [21], which combines mid-level cues in
a parametric energy function, but only trains the energy to
generate a single proposal.

3. Perceptual grouping cues

Our method begins by segmenting the input image x into
a single layer of superpixels that forms the basis of fea-
ture extraction, labeling, and grouping. Superpixels reduce
search complexity while providing access to local region
and contour scope. At the same time, we are restricting re-
gions to superpixel boundaries, so it is important to preserve
boundary recall. The resulting strategy is to oversegment
the image into superpixels which remain to be grouped.

Formally, we partition the image x into a set S of super-
pixels, from which we seek a subset R ⊂ S that represents
an object. Equivalently, we represent R as a binary labeling
y ∈ {0, 1}|S|, where yp = 1 exactly when superpixel p is in
R, for p = 1, . . . , |S|, hence R = {p : yp = 1}. The space
of possible regions lies in Y = {0, 1}|S|.

Given an image x, we seek a minimum energy region
y ∈ Y with respect to the energy Eλ(x) : Y → R which
is defined for the image and a parameter λ. Specifically, we
minimize the energy function:

Eλ(x,y) = λ
∑
p

φ0(x, yp) + wT
1

∑
p

φ1(x, yp)

+ wT
2

∑
p,q

φ2(x,yp,q), (1)

whose terms here are grouped by weighted features
φ0, φ1, φ2. This energy can be minimized for multiple val-
ues of λ by parametric maxflow under further constraints
(see [17]), however the goal of this section is to model mid-
level grouping cues in the energy. To do so, we regroup the

energy (1) into subenergies that model their respective cues:

Eλ(x,y) = Eapp(x,y) + Eclo(x,y)

+ Esym(x,y) + Eλscale(x,y). (2)

The following sections will define the subenergies above.

3.1. Proximity

The grouping cue of proximity is a basic image relation
that is preserved through image projection. Since pairwise
potentials encode grouping relations, proximity is reflected
in placing a potential on every pair of adjacent superpixels,
thereby defining the edge set A(S) ⊂ S2.

3.2. Appearance similarity

Appearance similarity is a non-accidental regularity of
objects—the more similar a group of elements are to each
other, the more likely they belong to the same object. We
extract a color histogram hcol

p of dcol dimensions for every
superpixel p, and define a similarity for every pair (p, q) ∈
A(S) using the histogram intersection kernel [29]:

simp,q(h) =

d∑
i=1

min(hp(i),hq(i)) (3)

We similarly define similarity for a texture histogram
htext
p of dtext dimensions. Appearance similarity is encoded

into our energy as a 2-dimensional feature consisting of
color and texture:

φapp(x,yp,q) = 1[yp 6=yq ](simp,q(h
col), simp,q(h

text)) (4)

We note that φapp contributes a cost only when neigh-
boring superpixels with strong similarity are labeled dif-
ferently. The potentials are weighted by wapp which is
trained and shared across all superpixel pairs, and overall
contributes to the following energy:

Eapp(x,y) = wT
app

∑
p,q

φapp(x,yp,q). (5)

3.3. Contour closure

Contour closure is a non-accidental regularity of objects,
in which object coherence in 3D projects to a closed bound-
ary in 2D. The more contour evidence there is along the
boundary of a given region y, the more likely it is to en-
close an object. We use a cost function that sums contour
gap G(x,y) =

∑
b∈∂(y) g(x, b) along the region boundary

∂(y), where g(x, b) is the gap (lack of contour) evaluated at
pixel b of image x.

To express the cost G(x,y) in the form of unary and
pairwise features [22], we first define a unary feature:

φclo(x, yp) =
∑
b∈∂(p)

1[yp=1]g(x, b) (6)
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Figure 2. Given a region defined by y ∈ {0, 1}|S|, the closure cue
sums gap along its boundary ∂(y). Summation is regrouped into
unary superpixel boundaries ∂(p) and pairwise superpixel bound-
aries ∂̄(p, q) for superpixels inside the region (see text for details).

that sums gap along selected superpixel boundaries. For a
region consisting of a single superpixel, the unary feature
sums the correct gap cost. However, as shown in Figure 2,
for a region consisting of multiple superpixels, simply sum-
ming the unary features will double count the gaps along
the internal boundaries shared by adjacent superpixels. We
thus define pairwise features to cancel them out:

φclo(x,yp,q) =
∑

b∈∂̄(p,q)

1[yp=yq=1]g(x, b) (7)

The gap G(x,y) of region y is thus the sum of the unary
features, minus twice the pairwise features. In summary,
the closure cue contributes the weighted energy:

Eclo(x,y) = wT
clo

(∑
p

φclo(x, yp)− 2
∑
p,q

φclo(x,yp,q)

)
(8)

3.4. Symmetry

Symmetry is a powerful regularity in objects. While
symmetry captures interactions among all parts of an ob-
ject, this must be balanced with the need for a low-order
energy. Coarse superpixels help by expanding the spatial
scope of each unit, however superpixel size must also be
limited in order to preserve boundary recall. Overall, it is a
computational challenge to capture grouping by symmetry.

We follow the approach of [21] of “outsourcing” sym-
metry to a region-based symmetry detector [20], and bi-
asing our energy to detected symmetric parts. Formally,
given a set T of region-scoped, scored symmetric parts, we
define pairwise potentials that prefer to merge superpixels
when they fall in the same symmetric part. For every pair
(p, q) ∈ A(S) we define:

φsym(x,yp,q) = 1[yp 6=yq ] max
s∈S(p,q)

score(s), (9)

where the max considers symmetric parts T (p, q) ⊆ T that
overlap p and q by at least τ = 0.75, and selects the best-
scoring one. A value of zero is assigned when T (p, q) is

empty. Non-maximum suppression is applied over all su-
perpixel pairs so that at most one symmetric part contributes
to each pair. Overall, symmetry contributes the weighted
energy:

Esym(x,y) = wT
sym

∑
p,q

φsym(x,yp,q). (10)

3.5. Object scale

The grouping energies above accumulate higher costs for
regions with more superpixels, and thus the energy is arti-
ficially biased toward smaller regions and needs to be nor-
malized by the region’s size. To do so, we subtract unary
features φarea scaled by a factor |λ| from the energy, with
the effect of accommodating larger regions as |λ| increases.
Practically, a non-zero λ is necessary to remove trivial so-
lutions. We define φarea(x, yp) = 1[yp=1]area(p), which
contributes the negative quantity:

Eλscale(x,y) = λ
∑
p

φarea(x, yp). (11)

A diverse set of solutions can be obtained with different
values of λ. Note that the cost of selecting an individual
superpixel is influenced by the magnitude of λ against other
potentials: a very large |λ| will more than offset the other
potentials and cause all superpixels to be selected. Since po-
tentials are empirically below 1, we can obtain all solutions
by varying λ within [−1, 0].

4. Parametric energy minimization
The domain Y over which the energy (1) is minimized is

too large for exhaustive search, but when written as a sum of
unary and pairwise potentials, the energy is seen to have the
required structure for an efficient solution. When submod-
ular pairwise potentials are guaranteed by requiring w ≥ 0,
and λ is held at a fixed non-positive value, the problem

ŷ = arg min
y
Eλ(x,y,w) (12)

can be solved exactly by a maxflow algorithm. Solving (12)
for all values λ ∈ [λmin, λmax] simultaneously is known
as a parametric problem, and can be done via parametric
maxflow. Furthermore, since the linear term φ0 measures
area, the monotonicity property is satisfied that guarantees
a solution size of size linear in |S| [17]. See Figure 3 for a
visualization of the solution set in an input image.

We rewrite (1) in a linear form that is amenable to large-
margin learning [28] by stacking the features and weights
of individual cues together. Specifically, we define a weight
vector w = (w0,w1,w2) where w0 = 1, and a feature
vector φλ = (−λΦ0,−Φ1,−Φ2). We can then rewrite
Eλ(x,y,w) = −wTφλ(x,y) and thus rewrite (12) as:

ŷ(x,w) = arg max
y

wTφλ(x,y). (13)



Figure 3. Given the input image and superpixel segmentation
shown in the first row, our approach defines a parametric problem
whose solution set is shown in the second row. Optimal labelings
are listed in order of increasing λ ∈ [−1, 0].

Finally, the structured prediction function (13) is general-
ized to a set of solutions over a range of λ:

Ŷ (x,w) = {ŷλ(x,w) : λ ∈ [−1, 0]}. (14)

5. Parametric Min-Loss learning
When a ground truth region g annotates an object in input

image x, the quality of the set Ŷ (x,w) of predicted regions
can be evaluated against g. In the evaluation of region pro-
posals, for example, Jaccard similarity is considered by the
Average Best Overlap (ABO) metric [29]. In S-SVM learn-
ing [28], a task loss `(ŷ,y) measures the mismatch of a
structured prediction ŷ against y. To measure the mismatch
of a set Ŷ of structured predictions, however, we generalize
the task loss to a set in the following way:

L(Ŷ ,y) = min
ŷ∈Ŷ

`(ŷ,y), (15)

where (15) says that the quality of the entire set Ŷ of pre-
dictions is the quality of the best prediction. As in standard
S-SVM, the task loss ` is defined to be amenable to loss-
augmented inference [28] and decomposes into a sum of
unary losses. Each unary loss uses vp, as defined below, to
measure the mismatch of superpixel p against the ground
truth region g as follows:

`(ŷ,y(g)) =
1

|g|
∑
p

|p|

{
vp ŷp = 0

1− vp ŷp = 1,
(16)

where vp is the fraction of p’s pixels that lie in g.
The weights of (1) are ideally learned by minimizing

L(Ŷ , y) in w, but in order to circumvent difficulties aris-
ing from non-convexity and discontinuities, we develop a
related loss function H(w) that is easier to minimize. Our
derivation of H(w) follows a strategy based on the (struc-
tured) hinge loss: as the hinge loss is an upper bound of

Algorithm 1 Parametric Min-Loss
Require: {φλ(x, ·),y, `}Nn=1
Ensure: w∗ ≥ 0

1: τ ← 0
2: repeat
3: τ ← τ + 1
4: w(τ) ← SSVM({φλ

(τ)

(x, ·),y, `}Nn=1)
5: for n← 1 . . . N do
6: {(λi,yi)} ← PMF(−`(yn)−wTφ(xn), [−1, 0])
7: hi ← `(yn,yi)+wT[φλi(xn,yi)−φλi(xn,yn)], ∀i
8: λ

(τ)
n ← λargminhi

9: end for
10: until converged or maxed out
11: return w∗ ← w(τ)
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sent later iterations.

the task loss, we derive a min hinge loss that is an upper
bound of the min task loss [13]. We first write the hinge
loss for parametric maxflow as follows, with dependence
on the training example (x,y) omitted for brevity:

h(w, λ) = max
ŷ

`(ŷ,y) + wTφλ(x, ŷ)−wTφλ(x,y).

(17)

The min-hinge H(w) then takes the minimum of
h(w, λ) over a range of λ:

H(w) = min
λ∈[−1,0]

h(w, λ). (18)

Unlike in standard S-SVM, the loss function H(w) is not
guaranteed to be convex, however it is shown that H is an
upper bound for h [13].

Accounting for all ground truth regions, we obtain the
regularized min-hinge minimization problem:

min
w

1

2
||w||2 +

C

N

N∑
n=1

min
λn∈[−1,0]

hn(w, λn). (19)

Although solving (19) is an NP-hard problem, we can
derive an efficient solution by rewriting the problem as:

min
w

min
{λn}

1

2
||w||2 +

C

N

N∑
n=1

hn(w, λn) (20)



and decomposing into two simpler problems that we iden-
tify as λ-update and standard S-SVM. Our algorithm, sum-
marized in Algorithm 1, alternates between holding w fixed
and optimizing the λ’s, and holding the λ’s fixed and solv-
ing S-SVM.

Fixing w, we obtainN independent problems that can be
solved in parallel. Each problem amounts to solving para-
metric minimization of the hinge-loss:

arg min
λ∈[−1,0]

h(w, λ) (21)

Since the function h(w, λ) is the maximum of 2|S| linear
functions, it is convex and piecewise-linear. It follows that
h(w, λ) reaches its minimum value at one of the λ break-
points, and so we need only to search for the breakpoint
that evaluates to a minimum. The set of breakpoints {λi}
and their solutions {yi} are found by solving the parametric
maxflow problem:

∀λ ∈ [−1, 0],min
ŷ
−`(ŷ,y)−wTφλ(x, ŷ) (22)

To solve (21), we exhaustively evaluate h(w, λ) for each λi
using yi. We note that λ has monotonic coefficients and
thus there are at most O(|S|) breakpoints [17] containing
the solution. See Figure 4 for an illustration.

With {λn} fixed, problem (19) reduces to a single, stan-
dard S-SVM problem:

w = arg min
w

1

2
||w||2 +

C

N

N∑
n=1

hn(w, λn) (23)

We solve (23) with the constraint w ≥ 0 using the cutting-
plane implementation of [25].

Although the learning algorithm alternates between min-
imizing w and λ, the learning goal for region proposals is
to optimize the weights. Minimization in λ reflects the se-
lection of the best region by a ground truth oracle, and pre-
diction has no access to such an oracle. Moreover, in the
absence of a specified object category, bottom-up grouping
cues are the only means of predicting region proposals.

6. Diversification
Diversification is an important step toward achieving re-

call without a specified object category. In a given image,
we sample seeds that make assumptions about object prop-
erties such as image location and color distribution. An en-
ergy function that is biased with a particular seed will then
yield proposals that are customized toward a particular lo-
cation or color distribution. Pooling together proposals as-
sociated with different seeds allows us to cover a wide range
of conditions with greater precision.

Location. We use individual superpixels to seed image
locations, with a total of |S| seeds. As shown in Figure 5,

Figure 5. A location-based seed is sampled on the motorcyclist’s
back, which induces the unary potentials as shown. Warmer colors
represent higher costs.

Figure 6. A color-based seed is sampled on the pair of foreground-
background color distributions, which induces the unary potentials
as shown.

each seed p defines unary features that discourage select-
ing yq = 1 depending on q’s “distance” from p. This is
encoded for any superpixel q with a cost based on the max-
imum distance of q from p. For non-compact superpixels,
this promotes compactness by encouraging smaller, nearby
regions to be “annexed” first (regardless of their color).

Color similarity. Here, we seed image colors (without
considering proximity) using a Gaussian mixture model ap-
plied to the color space. Specifically, we seed foreground-
background pairs of color distributions. For any given seed,
each superpixel q has a likelihood under the foreground dis-
tribution and a likelihood under the background distribu-
tion. The higher the likelihood ratio, the lower the cost of
assigning yq = 1. An example is provided in Figure 6.

In our application, diversification is complementary to
PML. While learning accounts for diversity over scale in λ,
here the energy is further diversified in location and color.
Moreover, learning and diversification balance each other
out, as the grouping cues combined in the energy have a
tempering effect on diversification seeds, e.g. by helping a
seed centered on a location to adapt to irregular shapes.

7. Postprocessing
All solutions pooled over diversification seeds enter a

pipeline of postprocessing steps. First, we process each so-
lution y ∈ Y to ensure that contiguous regions are consid-
ered for recall. We find connected components efficiently
in superpixel space, and include the top M = 2 connected
components as region proposals.

We then remove artefactual regions in the form of empty
labelings and labelings that are within a very high percent-
age of the image’s total area. We filter out redundant regions
in the form of duplicate labelings and clusters of labelings
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Figure 7. Comparison with perceptual grouping methods Multicue [21] and Superpixel Closure [22] (far left), and CPMC [5] and Selective
Search [29] (left) on VOC’12. Comparison with MCG [4] and perceptual grouping methods on COCO’14 (middle). See text for com-
parisons with more recent methods like GOP [18] and RIGOR [15]. Parametric Min-Loss learning improves segment overlap as weights
evolve (right). Improvement from smoothing the diversification seeds with trained mid-level cues (far right).

that are similar in overlap. Similarly to [5], we perform
agglomerative clustering of labelings by intersection-over-
union overlap, and consider clusters of labelings that exceed
a very high overlap threshold. For each cluster, we keep the
labeling with the best closure and discard the rest. Closure
is efficiently computed using the gap cost G(x,y).

Finally, we rank the proposals to allow a small number
of proposals to be selected. We cast this as a problem of
assigning a classification score to each region that indicates
how object-like it is. Unlike the perceptual grouping prob-
lem above, this is a verification step in which higher-order
relations are more easily captured over the full region scope.
We turn to convolutional neural networks as they yield good
categorization results. The final network layers are fully
connected, and can be thought of as learned, mid-level fea-
tures that encode category-independent information that is
relevant for categorization. Specifically, to extract a fea-
ture vector for a given region proposal R, we place a crop-
ping box tightly around R, and warp the cropped image
to normalized dimensions. After normalizing pixel val-
ues, we evaluate OxfordNet and retain layer 20 as a 4096-
dimensional feature vector. Like R-CNN [11], we then
trained a SVM classifier on the feature to assign ‘object’
or ‘non-object’ to each R, and trained a logistic regressor to
map the output margin to a score between 0 and 1.

We obtained features for positive and negative training
examples by sampling from the training images of the VOC
2012 SEGMENTATION subset. For each image, we use the
ground truth boxes as positive examples, and a matching
number of random boxes as negative examples.

8. Results
For quantitative evaluation, the SEGMENTATION subset

of VOC 2012 provides a set of images containing different
objects annotated with at least one ground truth region per
image. We apply Parametric Min-Loss on the TRAIN subset
and evaluate our trained method on the VAL subset. We use
P to denote the set of proposed regions to be evaluated, and
G to denote the corresponding set of ground truth regions.
For all pairs (p ∈ P, g ∈ G) contained by the same image,
we consider the Jaccard similarity J (p, g) = |p∩g|

|p∪g| to score

the quality of a potential match. The Average Best Overlap
(ABO) metric [29] is defined over all images as follows:

ABO(k) =
1

|G|
∑
g∈G

max
p∈P(k)

J (p, g),

where P(k) represents the top k regions proposed for g’s
image. Plots sample ABO on increasing values of k to show
the trade-off between recall and the number of proposals.

Our method requires a single superpixel layer as pre-
processing. We found that non-compact superpixels, e.g.
Felzenszwalb & Huttenlocher [9], yielded better results
than compact superpixels, e.g. SLIC [1]. Results in this pa-
per were generated using UCM [3], thresholded at k = 0.1.

Overall results. We first compare our method with two
recent perceptual grouping methods most similar to ours, in
Figure 7 (far left). Superpixel Closure [22] used paramet-
ric maxflow to group superpixels into regions of minimum
closure cost, while Multicue [21] used S-SVM to train a
parametric energy function that combines appearance, clo-
sure, and symmetry cues. We improve on these methods via
a holistic learning framework and effective diversification.
While both methods were quantitatively evaluated only on
the Weizmann Horse Database, we evaluate on VOC 2012
VAL segmentations and COCO 2014 VAL segmentations.

Our results are comparable with leading region proposal
methods such as Selective Search [29] and CPMC [5] on
VOC 2012 VAL, as shown in Figure 7 (left). At 1585
proposals, GOP [18], RIGOR [15], MCG [4], and CMPC
achieve 75.1, 74.4, 69.8, and 64.9 ABO, respectively, while
ours achieves 65.2 ABO, so we are outperformed by the
most recent methods. Ours takes a similar approach to Se-
lective Search in using regional features to group superpix-
els, however we train a combination of cues and find min-
imum energy regions, allowing “better focused” proposals.
Our level of recall, however, is more comparable to that
of CPMC’s for higher numbers of proposals. While we
achieve higher recall with learning and effective diversifi-
cation, our simple ranking procedure with a SVM classifier
does less for precision than the sophisticated overlap regres-
sors of CPMC.

In Figure 8, we show some example region proposals.



Figure 8. Example region proposals found for images from VOC 2012. Red masks denote ground truth, green masks denote the corre-
sponding top proposals (from left to right).

For the images of the airplane, bird, and cat, our approach
does well in separating figure from ground. For images of
more complex scenes such as the dinner table, over- and un-
dersegmentation occurred due to low contrast or in objects
of highly heterogeneous appearance.

Learning. The second part of our results focuses on
learning. We note that S-SVM is a natural baseline for
Parametric Min-Loss due to the structure of the iterative al-
gorithm. Specifically, we track the energy functions cor-
responding to weights as they evolve over iterations (in-
dexed by τ ), where the first iteration corresponds to S-SVM
with initial λ values. We initialize λ’s to −0.01, as done
in Multicue [21]. As shown in Figure 7 (right), successive
energy functions yield better recall, iteratively improving
on the S-SVM baseline. Additionally, since recall is mea-
sured by segment overlap, the result also shows that Para-
metric Min-Loss and its surrogate are effective approximat-
ing training objectives. Finally, in Figure 7 (far right), we
demonstrate the effectiveness of structured learning within
our own method. In particular, we test for an increase in
recall achieved by combining mid-level grouping cues with
diversification seeds. As we expected, recall is significantly
boosted with mid-level cues.

9. Conclusion

We introduced Parametric Min-Loss (PML), a novel
structured learning framework for parametric energy func-
tions, and demonstrated it in the context of region proposal
generation. Our perceptual grouping method learns how to
combine multiple cues to generate a set of figure-ground re-
gion proposals. By applying the MCL optimization strategy
to parametric maxflow, we bridge the gap between learning
and inference for parametric energy functions. Moreover,
our framework supports efficient superpixel-based diversifi-
cation that yields a diverse set of region proposals that com-
petes favorably with recent state of the art on VOC 2012.
In future work, we plan to use our general framework to
learn how we can integrate other classical grouping cues to
improve region proposal generation.
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de Lausssanne (EPFL), Tech. Rep, 2:3, 2010. 7

[2] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the object-
ness of image windows. PAMI, Jan 2012. 1, 2
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