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Shock Graph
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Related Concepts9

�Grassfire Flow; �Graph Matching; �Medial10

Axis/Skeleton; �Many-to-Many Graph Matching;11

�Object Categorization12

Definition13

The shock graph is obtained from the 2D Blum medial14

axis by incorporating properties of the radius func-15

tion along the skeleton. The direction in which the16

radius function increases, or equivalently, the direc-17

tion of the grassfire flow, is used to order groups of18

skeletal points and to derive parent-child relationships.19

This results in a directed acyclic graph whose nodes20

represent skeletal points and whose edges represent21

adjacency relationships. A variant of this construction22

associates skeletal points with edges, with the nodes23

representing the adjacencies.24

Background 25

When Blum conceived of the medial axis or skele- 26

ton, his goal was to use it as a means to categorize 27

objects from their projected (2D) outlines [4]. Specifi- 28

cally, by associating the direction of increasing radius 29

value along a skeletal branch, or equivalently the direc- 30

tion of propagation of singularies of the grassfire flow, 31

he proposed the concept of an axis-morphology or a- 32

morph by which to achieve object categorization. His 33

basic insight was that this could lead to a decomposi- 34

tion that reflected the qualitative part structure of the 35

object. As an example, ignoring their detailed bound- 36

ary geometry, outlines of hands would have similar 37

a-morphs and these would be quite distinct from those 38

of outlines of humans, fish or other object classes. In 39

fact, he drew upon these later examples towards the 40

end of his classic paper [4], where he also sketched 41

possible extensions to 3D. 42

Whereas much has been written about medial or 43

skeletal representations over the years (see [23] and 44

also the medial axis/skeleton entry in this encyclope- 45

dia) the idea that an a-morph was essentially a directed 46

graph which could be used for object recognition 47

caught on only in the early 1990s. One likely reason 48

is that it took the image analysis and computer vision 49

communities many years to develop robust algorithms 50

for skeleton computation. Since this time, however, a 51

variety of successful approaches to view-based recog- 52

nition using shock-graphs have been proposed and 53

have been validated on large databases. Several of 54

these are described in the present entry. There also 55

exist more recent variants of the shock graph, such 56

as Macrini et al.’s bone graph [14], which attempt to 57

K. Ikeuchi (ed.), Encyclopedia of Computer Vision, DOI 10.1007/978-0-387-31439-6,
© Springer Science+Business Media, LLC 2013
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S 2 Shock Graph

mitigate the representational instability of the Blum58

medial axis. In fact, the mapping of the Blum skele-59

ton to a graph-based representation, of which the shock60

graph is the most widely researched example, remains61

an active area of investigation.62

Theory63

The Blum medial axis or skeleton of a 2D outline64

is homotopic to it and is comprised of three types65

of skeletal points: endpoints of skeletal curves, inte-66

rior points and branch points. The branch points are67

generically of degree 3, i.e., three skeletal curves are68

connected at a branch point. A formal classification69

is presented in [11]. The shock graph takes the 2D70

skeleton of a simple closed curve as input (one with-71

out holes) and labels each skeletal point according to72

whether the radius function at it is increasing mono-73

tonically (a 1-shock), is a local minimum (a 2-shock),74

is constant (a 3-shock) or is a local maximum (a75

4-shock). Groups of adjacent 1-shocks are considered76

together, as are groups of 3-shocks. Given this interpre-77

tation, a directed acyclic graph is obtained by consider-78

ing the skeletal points with the largest radii, which are79

the last to form in the grassfire flow, as the children of a80

dummy root node. The children are then placed, recur-81

sively, in order of decreasing radius value. This process82

of reversing the grassfire flow and adding 1-shock83

groups or 3-shock groups as children, is governed by84

the rules of a grammar, as shown in [24].85

Rather than provide all the details of the grammar86

in this entry, the reader is referred to the examples87

in Fig. 1, which show the construction of the shock88

graphs of two brush shapes. The medial axis of each89

object is shown in the bottom row, with distinct groups90

of shocks being given a unique color (3-shocks are91

shown in yellow). In the labeling, the shock type92

appears first, followed by a unique identifier. The asso-93

ciated shock graphs are shown in the top row. It is94

clear that each shape is abstracted by a single root95

node (the 3-shock group describing the elongated por-96

tion of the brush), with its children being additional97

protrusions (1-shock groups). One of these protrusions98

has a 3-shock group as a child, which describes the99

handle of each brush. From this example it is evident100

that the shock graph is a formalization of Blum’s a-101

morph, with the advantage that it lends itself to the use102

of graph-based methods for object categorization, as 103

detailed below. 104

It is also important to point out that there is a variant 105

of the shock graph where the representation places the 106

skeletal points at edges of the graph, with the nodes 107

representing connections. This variant is described in 108

detail in [18, 19]. This representation has lead to dif- 109

ferent but equally successful methods for object recog- 110

nition, based on a notion of the edit-distance between 111

two graphs. The results of using this approach are also 112

briefly described below. 113

Shock Graph-Based Object Categorization 114

An object categorization system based on shock graphs 115

consists of two components: (1) an indexing compo- 116

nent, which takes an input shock graph and returns, 117

from a large database of model shock graphs, a small 118

number of candidate shock graphs that might account 119

for the input; and (2) a matching component, which 120

takes one of the candidates and the input, and com- 121

putes a similarity (or distance), along with a set of node 122

correspondences. Under ideal conditions, the input 123

shock graph would contain no artifacts due to noise, 124

occlusion, or clutter, and would be isomorphic to one 125

of the model shock graphs (provided that the input 126

object represents one of the model objects). However, 127

such conditions are highly unlikely, for in addition to 128

noise, occlusion, and scene clutter, ligature-induced 129

instabilities [1] often lead to spurious nodes/edges as 130

well as medial branch oversegmentation. Formulating 131

the problem as graph isomorphism, subgraph isomor- 132

phism, or even largest isomorphic subgraph will not 133

lead to a meaningful solution, for large, or even signif- 134

icant isomorphisms may simply not exist between two 135

shock graphs that represent instances of the same cat- 136

egory. The shock graph indexing and matching prob- 137

lems are therefore inexact graph indexing/matching 138

problems. 139

Indexing Shock Graphs 140

Given an input shock graph, the goal of the index- 141

ing module is to quickly (sublinearly) retrieve a small 142

number of candidate model database shock graphs 143

among which the input is likely included. As men- 144

tioned above, the input shock graph may be corrupted 145

in a number of ways, precluding a simple global (based 146
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Shock Graph 3 S
on the entire input) indexing framework. For example:147

(1) occlusion may remove part of the input shock graph148

and replace the missing part with a shock graph (or149

subgraph) belonging to a different object; (2) shadows150

or poor ilumination may simply delete some portion of151

the input shock graph; (3) scene clutter may embed the152

object shock graph (or portion thereof) in a much larger153

“scene” shock graph; and (4) ligature-based instabil-154

ity may introduce spurious nodes or may overpartition155

other nodes in the input shock graph. These factors156

require a part-based indexing framework that can oper-157

ate in the presence of noise, occlusion, clutter, and158

ligature-based instability.159

One such indexing framework that is applicable160

to not only shock graphs but any hierarchical, graph-161

based representation (specifically, any directed acyclic162

graph-based representation) was introduced by Shoko-163

ufandeh et al. [22], originally for the purpose of shock164

graph indexing. The key concept behind the approach165

is to capture the abstract shape of a graph (or subgraph)166

with a low-dimensional vector, yielding an efficient167

indexing mechanism. Capturing the abstract shape of a168

graph is important so that the index is invariant to noise169

and minor within-class shape deformation. Indexing at170

the part level is important in the presence of occlusion171

and scene clutter. Mapping a discrete graph structure172

to a low-dimensional point facilitates a simple nearest-173

neighbor search in a geometric space for similar model174

parts which, in turn, can vote for those model objects175

that contain those parts. Those model objects receiv-176

ing the largest votes represent those candidate objects177

passed to the shock graph matching module for a more178

detailed analysis.179

The graph-based shape abstraction is computed180

at every non-leaf node, and captures the abstract181

“shape” of the underlying subgraph rooted at that182

node. Therefore, each non-leaf node (with only four183

shock graph node types, leaf nodes are far too184

uninformative/ambiguous) “votes” for those objects185

that share its substructure; the root of the graph would186

therefore vote at the object level, and would be meain-187

ingful only if the object were unoccluded and not188

embedded in a larger scene. Mapping the structure of a189

rooted subgraph to a vector assigned to the subgraph’s190

root is based on a spectral analysis of the graph’s struc-191

ture. The eigenvalues of a graph’s adjacency matrix192

(whose values are 0,1,�1) capture important proper-193

ties of the degree distribution of the graph’s nodes.194

The eigenvalues can be combined to yield a low- 195

dimensional abstraction of the graph’s shape in terms 196

of how and where the edges are distributed throughout 197

the graph. Moreover, such a spectral “signature,” called 198

the topological signature vector, is proven to be sta- 199

ble under minor perturbations of graph structure due to 200

noise. Details of the approach are found in [22], while 201

an application of the same indexing framework to a 202

different hierarchical graph, specifically a 3-D medial 203

surface graph, can be found in [25]. 204

Matching Shock Graphs 205

Given two shock graphs, e.g., one representing the 206

input and one representing a model candidate, the 207

matching component needs to return not only a similar- 208

ity or distance measure that can be used to rank order 209

the candidates, but also an explicit correspondence that 210

defines which model nodes correspond to which input 211

nodes. Such correspondence is necessary, for in the 212

case of a cluttered scene, those nodes found to match a 213

given model would be removed, and another candidate 214

model matched to the remaining nodes. Moreover, the 215

correspondence need not be one-to-one, for in the case 216

of ligature-induced medial branch oversegmentation, 217

node correspondence many be many-to-many. 218

Siddiqi et al. [24] developed a matching algorithm 219

for shock graphs which, like the indexing framework 220

of Shokoufandeh et al. [22] discussed above, can be 221

applied to the matching of any directed acyclic graph 222

structure, provided that a domain-dependent node sim- 223

ilarity function is given. The algorithm is based on the 224

same spectral graph theoretic abstraction that forms 225

the heart of the indexing component described above. 226

The algorithm fomulates the matching of two graphs 227

as finding a maximal matching in a bipartite graph 228

over the two nodes sets (input and model). The edge 229

weights (each spanning one input shock graph node 230

and one model shock graph node) in the graph have 231

two components: (1) the distance between the two 232

nodes’ respective topoligical similarity vectors, defin- 233

ing the similarity of their underlying graph structures 234

(rooted at the two nodes); and (2) a node similar- 235

ity function (the only domain-dependent component 236

of the algorithm) that defines the similarity of the 237

node attributes (for shock graphs, this encodes the geo- 238

metric similarity between the two skeletal branches 239

corresponding to the two nodes). 240
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At first glance, the matching algorithm would seem241

to throw out all the important hierarchical structure in242

the two graphs (absent in the bipartite graph); nodes in243

one graph are matched to nodes in the other graph, but244

the edges in the two original graphs appear to play no245

role. However, the key contribution of the algorithm is246

that the hierarchical edge structure is brought back via247

the topological signature vector similarity term. For the248

bipartite matching algorithm to match two nodes (i.e.,249

select that edge in the matching), both their geomet-250

ric similarity and their topological similarity must be251

high. In other words, the contents of the two nodes252

must be similar and the subgraphs rooted at the two253

nodes must be similar. The algorithm iterates by com-254

puting a matching, selecting the best edge from the255

matching (having maximum similarity), adding it to256

the solution set, and recursively continuing the pro-257

cess on the remaining graphs (after removing the pair258

of matching nodes defined by the best edge). Details259

of the approach are found in [24], while its applica-260

tion to other shape matching problems is described in261

[21] (multiscale blob and ridge graphs), [25] (medial262

surface graphs), and [8, 26] (curve skeleton graphs).263

The above algorithm eventually yields a one-to-264

one node correspondence between the two graphs.265

However, because the algorithm generates the node266

correspondence in a coarse-to-fine manner, stopping267

the algorithm at the level of a coarse node-to-node cor-268

respondence defines an explicit many-to-many corre-269

spondence between the nodes in the subgraphs rooted270

at the coarse nodes. Moreover, since the topological271

signature vectors are stable under small amounts of272

additive graph noise, similarity can remain high even273

though the two subgraphs may have different numbers274

of nodes. As the cardinalities of the two graphs’ node275

sets begin to differ more dramatically, for example276

due to heavy under- or over-segmentation, the method277

breaks down and more powerful many-to-many graph278

matching must be employed.279

One such method for many-to-many graph match-280

ing of medial axis-based graphs was proposed by281

Demirci et al. [ 9, 10]. Their algorithm transforms the282

graphs into a finite dimension metric space in which283

an approximate solution to the many-to-many match-284

ing problem becomes tractable. The embedding step285

will result in a set of points, each representing a vertex286

of the original graph. Their proposed embedding has287

the additional property that pairwise distances between288

points in the target metric space closely resemble289

the shortest-path distances between the corresponding 290

nodes in the graphs. Matching two graphs can then 291

be formulated as the problem of matching their two 292

embeddings. The many-to-many matching of the two 293

embeddings then can be computed by solving a trans- 294

portation problem using the Earth Mover’s Distance 295

algorithm [7]. The solution of this latter problem com- 296

putes the mass which flows from one weighted point 297

set to another that minimize the total transportation 298

cost. The computed flows, in turn, define the many- 299

to-many node correspondences between the original 300

graphs. 301

The problem of matching shock graphs has also 302

been studied in the context of edit-distance meth- 303

ods [18, 29]. These algorithms estimate the cost of 304

matching as a function of edit operations, including 305

node relabelings, additions and deletions, and edge 306

contraction that transform one graph into another. 307

A fundamental issue in devising algorithms based on 308

edit-distance is the choice of cost of each operation. 309

Torsello and Hancock [29] use the heuristic proposed 310

by Bunke [5] for the cost associated with their edit 311

operations. For example, the cost of relabeling ele- 312

ments is less than the cost of performing a deletion 313

followed by inserting a new node with a new label. 314

In contrast, Sebastian et al. [18] propose a multi- 315

step heuristic to derive their edit costs. Their overall 316

heuristic is centered around the notion of a shape cell, 317

i.e., a collection of shapes which have identical shock 318

graph topology. They define the cost of the deforma- 319

tion operation as a function of the discrepancy between 320

matching shock attributes of shapes within a given 321

cell. The cost associated with other edit operations is 322

derived as the limit of the deformation cost when a 323

shape moves to the boundary a shape cell. 324

Caelli and Kosinov [6] show how inexact matching 325

can be utilized for measuring shape similarity between 326

shock graphs. Their method establishes correspon- 327

dence between sets (clusters) of vertices of two given 328

graphs and as such can be viewed as a many-to-many 329

matching approach. Their algorithm can be viewed as 330

a generalization of the approach of Scott and Longuet- 331

Higgins [17]. The actual matching is established using 332

the renormalization of projections of vertices into the 333

eigenspaces of graphs combined with a form of rela- 334

tional clustering. Similar to other inexact matching 335

algorithms, their eigenspace renormalization projec- 336

tion clustering method is able to match graphs with 337

different numbers of vertices. 338
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Experimental Results339

This section presents some examples of shock graphs340

and their matchings using the approaches described341

above. Figure 1(top) illustrates two shock graphs,342

describing different views of a brush, computed by343

the algorithm of Siddiqi et al. [24]. The underlying344

shocks, along with the computed matchings between345

segments (nodes), are shown in Fig. 1(bottom). Fig-346

ure 2 represents the ability of the algorithm to compare347

objects based on their prototipical or coarse shape.348

Here, columns 2 through 10 denote the prototype views349

for each of nine object classes. The similarity between350

the prototypes and some of the objects in the database351

is reflected in the rows of this table. For each row, a352

box has been placed around the most similar shape.353

Demirci et al. [9] also evaluated the effectiveness of354

their matching algorithm for shape retrieval based on355

shock graphs from the Rutgers Tool Database [24].356

Figure 3 shows some examples of the many-to-many357

feature matching results obtained from the algorithm358

for some of the objects in the Rutgers Tools Database.359

Finally, Fig. 4 shows the results obtained from apply-360

ing the edit-distance algorithm of Sebastian et al. [18]361

to the matching of shock segments. Note that their362

edit distance algorithm will also produce a sequence363

of intermediate shock graphs that identify the steps of364

the transformation of one input shock graph to another.365

Challenges366

Symmetry is a powerful shape regularity that has367

formed the basis of many shape representations,368

including generalized cylinders [3], superquadrics369

[16], and geons [2]. Just as geons provide a quali-370

tative and discrete shape abstraction of a generalized371

cylinder, shock graphs provide a discrete and qualita-372

tive shape abstraction of a medial axis. The resulting373

graph is ideally suited to shape categorization, for it374

is part-based, is stable under within-class deforma-375

tion, and is stable under part articulation. However,376

the shock graph also faces some important challenges.377

First of all, it assumes that a closed contour has been378

recovered from an image, separating figure from back-379

ground. While figure-ground segmentation remains an380

open research problem, it is important to note that in381

a categorization system, a perfect figure-ground sep- 382

aration may not be necessary. If a significant portion 383

of the figure’s boundary is correctly segmented, a 384

significant portion of the resulting shock graph may 385

be correct – enough to yield the correct candidate 386

(among the list of returned candidates) during index- 387

ing. Still, while a shock graph does preserve locality of 388

representation, significant figure-ground segmentation 389

errors can propagate through the representation, dis- 390

rupting it to a degree that prevents effective indexing. 391

A recent attempt to recover a symmetric part decom- 392

position from a cluttered scene has been reported by 393

Levinshtein et al. [13], in which symmetric parts are 394

detected locally (bottom-up) and then grouped to form 395

an approximation to a medial axis. 396

The second challenge facing the shock graph is the 397

ligature-based instability discussed earlier [1]. A num- 398

ber of approaches exist to try and regularize the medial 399

axis through boundary smoothing, e.g., [12, 20, 27]; 400

however, these methods do not effectively address 401

the ligature structure. Other methods have sought to 402

abstract the medial axis by regularizing out small 403

internal branches, e.g., [28, 30]; however these meth- 404

ods don’t explicitly target ligature structure. A recent 405

promising approach to abstracting out ligature struc- 406

ture is proposed by Macrini et al. [14, 15], yielding 407

a representation, called the bone graph, whose parts 408

are the non-ligature medial branches that represent the 409

salient parts and whose edges represent the “glue” 410

(defined by the ligature branches) that binds the parts. 411
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Shock Graph, Fig. 1 The shock graphs derived for two differ-
ent views of a brush using the algorithm of Siddiqi et al. [24]
are represented in the top row. The bottom row depicts the

correspondences between nodes in the shock graphs computed
by the matching algorithm
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Shock Graph, Fig. 2 Similarity between database and class prototypes computed using the algorithm of Siddiqi et al. [24]. In each
row, a box is drawn around the most similar shape
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Shock Graph, Fig. 3 The results of matching skeleton graphs
for some pairs of shapes in the Rutgers Tools Database using
the algorithm of Demirci et al. [9] . Corresponding segments are

shown using the same color. Observe that correspondences are
intuitive in all cases
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Shock Graph, Fig. 4 The matching results for a few shock
graphs produced by the edit-distance algorithm of Sebastian
et al. [18]. Matching shock branches are shown using the same

color, while the gray colored edges in the shock graphs indicate
that they are spliced or contracted
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