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Many-to-Many Graph Matching

Fatih Demirci1, Ali Shokoufandeh2 and1

Sven J. Dickinson32
1Department of Computer Engineering, TOBB3

University of Economics and Technology, Sogutozu,4

Ankara, Turkey5
2Department of Computer Science, Drexel University,6

Philadelphia, PA, USA7
3Department of Computer Science, University of8

Toronto, Toronto, Ontario, Canada9

Synonyms10

Error-correcting graph matching; Error-tolerant graph11

matching; Inexact matching; Transportation problem12

Related Concepts13

�Graph Matching; �Many-to-Many Feature Corre-14

spondence; �Object Categorization15

Definition16

When objects exhibit large within-class variation17

and/or when image features are under- or over-18

segmented, the image features extracted from two19

exemplars belonging to the same category may no20

longer be in one-to-one correspondence but, in gen-21

eral, many-to-many correspondence. If the features are22

structured, i.e., captured in a graph, then computing23

the correct correspondence can be formulated as a24

many-to-many graph matching problem.25

Background 26

The matching of image features to object models is 27

typically formulated as a one-to-one assignment prob- 28

lem, based on the assumption that for every salient 29

image feature belonging to the object to be matched, 30

e.g., SIFT feature, image patch, contour fragment, 31

there exists a single corresponding feature on the 32

model (and vice versa). While the one-to-one corre- 33

spondence assumption has been prevalent in the object 34

recognition community throughout its entire evolution, 35

including the paradigms of graph matching [9], align- 36

ment [13], geometric invariants [11], local appearance 37

[14], and a recent return to local contour-based fea- 38

tures [8], one-to-one feature correspondence is a highly 39

restrictive assumption that breaks down as within-class 40

variation increases and as the segmentation and extrac- 41

tion of more abstract image features suffer from over- 42

or under-segmentation [7]. In the more general case, 43

feature correspondence is not one-to-one, but rather 44

many-to-many. If a feature set is described by a graph, 45

with nodes representing features and edges captur- 46

ing pairwise relations between features, computing the 47

correct many-to-many feature correspondence can be 48

formulated as many-to-many graph matching. 49

Consider two simple examples, shown in Fig. 1. 50

In Fig. 1a, a set of multiscale blobs and ridges have 51

been extracted from two exemplars (humans) belong- 52

ing to the same category. In the top image, the straight 53

arm yields a single elongated ridge, while in the 54

bottom image, the bent arm yields two smaller and 55

coterminating elongated ridges. In this case, simple 56

object articulation (a form of within-class variation) 57

has led to a violation of the one-to-one correspondence 58

assumption. Instead, the correspondence is clearly 59

K. Ikeuchi (ed.), Encyclopedia of Computer Vision, DOI 10.1007/978-0-387-31439-6,
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M 2 Many-to-Many Graph Matching

two-to-one; enforcing one-to-one correspondence will60

lead to an incorrect matching of the entire arm to61

either the upper or lower arm, e.g., the red high-62

lighted features. In Fig. 1b, two region segmentations63

of two exemplars belonging to the same class yield a64

set of region correspondences that are rarely one-to-65

one, but more typically many-to-many. Once again,66

enforcing a one-to-one feature correspondence will67

ensure an incorrect matching, and will miss the correct68

correspondence.69

The problem of computing a one-to-one correspon-70

dence between a model feature graph and a cluttered71

image graph can be formulated as a largest isomor-72

phic subgraph problem, whose complexity is NP-hard.73

The complexity of the many-to-many matching prob-74

lem is even more prohibitive, for the space of possi-75

ble correspondences is greater (any subset of features76

in the image may match any subset of features on77

the model). The intractable complexity of the many-78

to-many matching problem can only be reduced by79

exploiting the types of regularities suggested by the80

perceptual grouping community, such as proximity,81

continuity, conservation of mass, etc. In what follows,82

a formal statement of the problem is introduced, and a83

number of approaches to its solution is reviewed.84

Theory85

The main objective of the many-to-many graph match-86

ing problem is to establish a minimum cost mapping87

between the vertices of two attributed, edge-weighted88

graphs. In an attribute-weighted graph G D .V; E/,89

let L.v/ denote the set of attributes associated with90

v 2 V . Given a subset U � V , let L.U / D [u2U L.u/.91

For a set U � V , let GjU denote the subgraph of G92

induced on the vertices in U , and let w.u; v/ denote the93

weight of an edge .u; v/ 2 E . Finally, let P.G/ denote94

the power-set 2V for the vertex set of G. A many-to-95

many mapping between two graphs G1 D .V1; E1/ and96

G2 D .V2; E2/ is a mapping among power-sets P.G1/97

and P.G2/ and can be characterized as a function:98

M W .P.G1/ � P.G2// ! f0; 1g: (1)99

For two sets, U 2 P.G1/ and V 2 P.G2/, there will100

be a cost C.L.U /; L.V // associated with mapping the101

labels in set L.U / to those in L.V /. An example of a102

common cost function is the edit-distance between the103

labels in sets L.U / and L.v/. LetS.G1jU ; G2jV / denote 104

the structural distance between induced subgraphs G1jU 105

and G2jV . Observe that every mappingM has a natural 106

representation as a matrix, with MU;V D 1 if the sets 107

U 2 P.G1/ and V 2 P.G2/ are mapped to each other 108

under M, and MU;V D 0 otherwise. Combining these 109

two cost functions will result in the cost function C.M/ 110

associated with the mappingM: 111

C.M / D
X

U 2P.G1/;V 2P.G2/

MU;V (2) 112

� C.L.U /; L.V // � S.G1jU ; G2jV /: 113

In defining an optimal many-to-many matching 114

between two attributed graphs, G1 and G2, a many-to- 115

many mapping M� of minimum cost C.M�/ subject 116

to specific requirements on the structure or cardinal- 117

ity of M� will be obtained. For example, to prevent 118

a trivial solution that sets MU;V D 0, for all U 119

and V , one can require a matching such that its car- 120

dinality, i.e.,
P

U;V MU;V , exceeds a threshold while 121

minimizing C.M/. Other functions, such as maxi- 122

mizing the number of vertices from V1 and V2 that 123

participate in M, can be used to evaluate the quality of 124

the mapping. Note that cost functions C.L.U /; L.V // 125

and S.G1jU ; G2jV / may be used to enforce constraints 126

such as consistency of mapped labels, limits of feasi- 127

ble label mappings, or allowed structural mapping of 128

induced graphs G1jU and G2jV by imposing arbitrary 129

large values or by being ill-defined. 130

The above description of the many-to-many match- 131

ing results in an intractable computational problem. 132

First, due to the exponential size of power-sets P.V1/ 133

and P.V2/ in terms of number of vertices in G1 and 134

G2, the size of the search space for the many-to-many 135

matching problem is exponential. Even simplifying 136

the problem to one-to-one mappings, by replacing 137

the power-sets P.V1/ and P.V2/ with sets V1 and V2, 138

respectively, will result in the multidimensional match- 139

ing problem that is known to be NP-complete for 140

arbitrary labeled graphs. 141

Related Work 142

Many-to-many graph matching has been studied exten- 143

sively in a variety of contexts, including graph edit 144

distance [2, 16], spectral methods [4, 18], optimization 145
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Many-to-Many Graph Matching 3 M
problems [20], metric embedding [6], abstract models146

[10], and grammars [1, 21]. The classical formulation147

of graph edit distance introduces a set of graph edit148

operations, such as insertion, deletion, merging, split-149

ting, and substitution of nodes and edges. Given a set of150

graph edit operations and a cost function, the objective151

is to find the lowest cost sequence of graph edit opera-152

tions that transform one graph into the other. The edit153

distance between two graphs critically depends on the154

costs of the underlying edit operations; typically, lower155

costs are assigned to the most frequent edit operations.156

A number of approaches have addressed the problem157

of defining an appropriate cost, e.g., [3].158

Many-to-many graph matching has also been stud-159

ied in the context of spectral methods by examining160

the spectral properties of graph adjacency matrices.161

In [4], the authors present an approach based on162

renormalization projections of vertices into a common163

eigensubspace of two graphs. Instead of finding the164

overall similarity of two graphs from the positions165

of vertex projections, this approach uses an agglom-166

erative hierarchical clustering technique to produce167

many-to-many vertex correspondences.168

Another spectral method is due to [18, 19], which169

constructs a low-dimensional “signature” of a directed170

graph’s “shape” from the magnitudes of the eigenval-171

ues of the graph’s adjacency matrix. The eigenvalues172

are invariant to the reordering of a graph’s branches173

and are shown to be robust under minor structural per-174

turbation of the graph. This vector can be used for175

both structural indexing and for matching in the pres-176

ence of noise and occlusion. If two signatures (vectors)177

are close, their corresponding (sub)graphs, possibly178

having different cardinalities, are in many-to-many179

correspondence.180

Recently, the approach presented in [20] formu-181

lates the many-to-many graph matching problem as182

a discrete optimization problem. The algorithm starts183

by extending the optimization problem for one-to-184

one matching to the case of many-to-one match-185

ing. The algorithm then obtains many-to-many vertex186

correspondences through two many-to-one mappings.187

Since this formulation of the many-to-many matching188

requires the solution of a hard optimization prob-189

lem, the authors propose an approximate algorithm190

based on a continuous relaxation of the combinatorial191

problem.192

The concept of a low-distortion graph embed-193

ding has been used to obtain many-to-many vertex194

correspondences [6]. Specifically, low-distortion graph 195

embedding is employed to transform the problem of 196

many-to-many graph matching to a many-to-many 197

point matching problem in a geometric space. This 198

transformation maps nodes to points and edge weights 199

to interpoint distances, not only simplifying the orig- 200

inal graph representation (by removing the edges), 201

but also retaining important local and global graph 202

structure; moreover, the transformation is robust under 203

perturbation. Representing two graphs as sets of points 204

reduces the many-to-many graph matching problem to 205

that of many-to-many point matching in the geometric 206

space, for which a number of efficient distribution- 207

based similarity measures are available. The authors 208

use the Earth Mover’s Distance [15] algorithm to 209

find such correspondences and show that the result- 210

ing many-to-many point matching realizes the desired 211

many-to-many matching between the vertices of the 212

input graphs. 213

A number of researchers, e.g., [10, 12] and [5], have 214

explored many-to-many graph matching in the context 215

of model-based abstraction from images. The work 216

presented in [10] starts by forming a region adjacency 217

graph from each image. The approach then searches 218

the space of pairwise region groupings in each graph, 219

forming a lattice. Each input image yields a lattice 220

such that its bottom node represents the original region 221

adjacency graph and its top node represents the silhou- 222

ette of the object. The framework defines a common 223

abstraction as a set of nodes, one per lattice, such that 224

for a pair of nodes, their corresponding graphs are iso- 225

morphic. The lowest common abstraction (LCA) is 226

defined as the common abstraction whose underlying 227

graph has the maximum number of nodes. Thus, the 228

resulting LCA carries the most informative abstraction 229

common to each image. Although effective, this tech- 230

nique does not find a match between two graphs whose 231

common abstraction does not exist. 232

The two algorithms presented in [12] and [5] use 233

the many-to-many graph matching technique of [6] 234

for automatically constructing an abstract model from 235

examples. The work in [12] computes the multi- 236

scale ridge/blob decomposition (AND-OR) graph for 237

each input image and obtains the many-to-many node 238

correspondences between each pair of graphs, yield- 239

ing a matching matrix. By exploring this matrix, the 240

algorithm first finds features that match one-to-one 241

across many pairs of input images. The many-to-many 242

matchings between these features are then analyzed 243
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M 4 Many-to-Many Graph Matching

to obtain the decompositional relations among them.244

The extracted features and their relations are used to245

construct the final abstract model.246

After obtaining many-to-many node correspon-247

dences based on [6], the algorithm in [5] computes248

the abstracted medial axis graph by first computing249

the averages of the corresponding pairs of subgraphs250

to yield the nodes in the abstracted graph, and then251

defining the overall topology of the resulting abstract252

parts to yield the relations. Each matching pair of sub-253

graphs corresponds to a single node in the abstracted254

graph, and two abstracted nodes are connected by an255

edge if the corresponding subgraphs are adjacent in the256

original graphs. This procedure forms the basis of an257

iterative framework in which pairs of similar medial258

axis graphs are clustered and abstracted, yielding a set259

of abstract medial axis graph class prototypes.260

In the domain of grammars, objects are represented261

as variable hierarchical structures. Each part in this262

representation can be defined in terms of other parts,263

allowing an object to be modeled by its coarse-to-fine264

appearance. Overall, grammar-based models includ-265

ing AND-OR graphs support structural variability. To266

represent intra-category variation and to account for267

many-to-many correspondence, the grammar creates a268

large number of configurations from a small vocabu-269

lary set. To scale to a large number of object categories,270

the AND-OR graph, learning, and inference algorithms271

are defined recursively. Some examples of this type of272

approach include [1, 21].273

Experimental Results274

In this section, some example results from some of the275

many-to-many matching approaches described in the276

Related Work section are illustrated. After representing277

silhouettes as skeleton graphs in Fig. 2, the algorithm278

proposed in [6] obtains many-to-many node correspon-279

dences through metric embedding, as discussed earlier.280

Based on the many-to-many correspondences of this281

algorithm, Fig. 3 demonstrates an example for the282

abstract shape created by the approach presented in [5].283

The left part presents input silhouettes, their skeleton284

graphs, and many-to-many correspondences. The right285

part presents the abstract skeleton graph and its shape286

reconstructed from this graph.287

Graph edit distance is another important class of288

many-to-many graph matching algorithms. Figure 4289

shows the result of matching the skeleton graphs for 290

two input shapes using the graph edit distance algo- 291

rithm described in [16]. Same colors indicate the 292

matching skeleton parts while gray colors show spliced 293

or contracted edges. Observe that the many-to-many 294

correspondences are intuitive in these figures. 295
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M 6 Many-to-Many Graph Matching

a b

Many-to-Many Graph Matching, Fig. 1 Two graph matching
problems in computer vision for which assuming a one-to-one
feature correspondence will lead to incorrect correspondences,
and which can only be solved if formulated as a many-to-many
graph-matching problem. In (a), a multiscale blob and ridges
decomposition [17] of the two humans yields a single ridge
for the extended arm (top) and two coterminating ridges for
the bent arm (bottom). In this example, articulation has vio-
lated the one-to-one feature correspondence assumption; if a

one-to-one correspondence is enforced for the arm, e.g., the
red highlighted features, it will be incorrect. In this case, the
correspondence should be two-to-one (or more generally, many-
to-many). In (b), two different cup exemplars (bottom row) have
been region segmented (top row), yielding regions that are rarely
in one-to-one correspondence (due to within-class variation or
region over- and/or under-segmentation). Once again, the correct
correspondence is not one-to-one, but rather many-to-many

Many-to-Many Graph Matching, Fig. 2 Example many-to-
many correspondences computed by [6]. After representing two
silhouettes as skeleton graphs, the graphs are embedded into
geometric spaces of the same dimensionality. The embedded

points are then matched using the Earth Mover’s Distance algo-
rithm. The right part illustrates the many-to-many correspon-
dences between the vertices of the input graphs. Each dashed
ellipsoid represents a set of vertices from the original graph
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Many-to-Many Graph Matching 7 M
Many-to-Many Graph
Matching, Fig. 3 A shape
abstraction example of [5]
based on many-to-many
correspondences obtained
by [6]. The left image shows
input silhouettes and their
skeleton graphs in which the
same color is used to show
the corresponding parts.
Using these correspondences,
the abstract skeleton graph
and its silhouette are created
as shown on the right

Many-to-Many Graph Matching, Fig. 4 Graph edit distance
algorithms compute many-to-many correspondences of a pair of
graphs by finding the lowest cost sequence of graph edit opera-
tions needed to transform one graph into another. In the example,

same colors indicate the matching skeleton parts, while gray col-
ors show spliced or contracted edges (The example is taken from
Ref. [16])
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