
�

“Main_drv” — 2011/11/14 — 18:05 — page 1 — #1

�

� �

Corre
cte

d
Pro

of

Metadata of the chapter that will be visualized online

Book Title Encyclopedia of Computer Vision

Book Copyright - Year 2013

Copyright Holder Springer Science+Business Media B.V.

Title Geons

Author Degree Prof.

Given Name Sven J.

Particle

Family Name Dickinson

Suffix

Phone

Fax

Email sven@cs.toronto.edu

Affiliation Division Department of Computer Science

Organization University of Toronto

Street 6 King’s College Rd.

Postcode M5S 3G4

City Toronto

State Ontario

Country Canada

Author Degree Prof.

Given Name Irving

Particle

Family Name Biederman

Suffix

Phone

Fax

Email bieder@usc.edu

Affiliation Division Departments of Psychology, Computer Science, and the
Neuroscience Program

Organization University of Southern California

Street 3641 Watt Way, Hedco Neurosciences Bldg.

Postcode 90089-2520

City Los Angeles

State CA

Country USA



�

“Main_drv” — 2011/11/14 — 18:05 — page 1 — #2

�

� �

Corre
cte

d
Pro

of

G

Geons
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2Departments of Psychology, Computer Science, and4
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Synonyms7

Recognition-by-components (RBC) theory8

Related Concepts9

�3-D Object Recognition from 2-D Images;10

�Generalized Cylinder; �Human Shape Perception;11

�Object Categorization; �Qualitative Shape Modeling12

13

Definition14

Geons are a set of less than 50 qualitative 2-D or15

3-D part classes derived from permuting a set of16

four dichotomous and trichotomous properties of a17

generalized cylinder (GC). The values of these prop-18

erties are nonaccidental in that they can be resolved19

from a general viewpoint, e.g., whether the axis of20

a cylinder is straight or curved. Geons were origi-21

nally introduced by Biederman [9, 10] as the founda-22

tion for his recognition-by-components (RBC) theory23

for human shape perception, whereby object-centered24

models are represented as concatenations of geons, 25

and object recognition from a 2-D image proceeds 26

by matching recovered parts, typically segmented at 27

regions of matched concavity, and their relations to 28

object models. 29

Background 30

The concept of modeling an object as a composition of 31

generalized cylinders dates back to Binford [18], who 32

spawned a generation of object-recognition systems 33

based on generalized cylinders, e.g., [20, 44, 45, 51, 34

54]. Generalized cylinders suffered from unbounded 35

complexity, for arbitrarily complex functions could be 36

used to define the axis, cross section, and sweep func- 37

tions. As a result, it became popular to restrict the com- 38

plexity of these functions, e.g., straight axis, constant 39

or linear sweep, rotationally symmetric cross section, 40

in order to facilitate their overconstrained recovery 41

from sparse image data. 42

In the mid-1980s, two alternative restrictions on 43

generalized cylinders emerged from the computer 44

vision and human vision communities, respectively. 45

Pentland [46] introduced the superquadric ellipsoid to 46

the computer vision community – a 3-D, symmetry- 47

based part representation that afforded a large degree 48

of descriptive power with a small number of parame- 49

ters. Around the same time, Biederman [9, 10] intro- 50

duced geons to the human vision community as part 51

of his recognition-by-components (RBC) theory. Like 52

superquadric ellipsoids, geons exploited symmetry 53

to reduce the complexity of a generalized cylinder. 54

However, while the superquadric ellipsoid was a 55

K. Ikeuchi (ed.), Encyclopedia of Computer Vision, DOI 10.1007/978-0-387-31439-6,
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metric shape representation, the geon was a qualitative56

shape categorization. Thus, when a superquadric ellip-57

soid was recovered from an image, the recovered58

parameters defined a specific shape (a generative59

model), whereas when a geon was recovered from an60

image, it defined a symbolic part class (non-generative61

category) with only coarse (rather than exact) metric62

specification.63

The appeal of the geon was twofold: (1) its proper-64

ties were based on the sorts of judgments that humans65

are very good at, e.g., judging whether a line was66

straight or curved rather than estimating its exact67

curvature; and (2) each geon class afforded a high68

degree of within-class shape deformation, offering69

great potential for shape categorization and invariance70

over orientation in depth. While extensive experiments71

with humans and primates that lent strong support72

of his RBC theory, the computer vision community73

quickly set out to develop computational models for74

geon recovery from 2-D images.75

Theory76

Geons define a partitioning of a subspace of the gener-77

alized cylinders. Like generalized cylinders, each geon78

is defined by its axis function, its cross-section func-79

tion, and its sweep function. Biederman noted that80

humans are (1) much better at distinguishing between81

straight and curved lines than they are at estimating82

curvature; (2) much better at distinguishing parallelism83

from nonparallel symmetry than they are at estimating84

the angle between two causally related lines; and (3)85

good at distinguishing between various types of ver-86

tices produced by a cotermination of contours, such87

as a fork from an arrow from a L-junction. Drawing88

on these properties of the human visual system, Bie-89

derman mapped the spaces of the three generalized90

cylinder parameters to dichotomous and trichotomous91

values (Fig. 1):92

• Axis shape: the axis takes on two possible values:93

straight or curved.94

• Cross-section shape: the cross-section shape takes95

on two possible values: straight-edged or curved-96

edged.97

• Sweep function: the cross-section sweep function98

takes on four possible values: constant, mono-99

tonically increasing (or decreasing), monotonically100

increasing and then decreasing, or monotonically 101

decreasing and then increasing. 102

• Termination: given a nonconstant sweep function, 103

the termination of a geon could be truncated, end 104

in a point (projects into an L-vertex), or end as a 105

curved surface. 106

Originally, Biederman [10] posited cross-section 107

symmetry as another attribute (with three possible 108

values: rotationally symmetric, possessing an axis of 109

reflective symmetry, or asymmetry) but that attribute 110

was dropped as experiments showed that people 111

assume symmetrical cross-sections, even when the 112

cross-section is asymmetrical (as with an airplane 113

wing). 114

Permuting the possible values of these four func- 115

tions defines a space of 2 � 2 � 4 � 3 D 48 3-D 116

geons, as illustrated in Fig. 1. Adding 2D geons, e.g., 117

circle, quadrilateral, and triangle, and subtracting the 118

eight instances of constant sweep (2 axis shape � 2 119

cross-section shape � 2 point and curved terminations) 120

when the sweep function is constant brings the total to 121

about 50. 122

Related Work 123

Hummel et al. [37, 38] first proposed a connection- 124

ist model for recovering geons from line drawings 125

that achieved invariance to viewpoint. In the com- 126

puter vision community, Bergevin and Levine were 127

the first to propose a computational model for geon 128

recovery and geon-based recognition [4–8]. Dickinson 129

et al. [27–29] introduced a hybrid object representa- 130

tion combining 3-D object-centered volumetric parts 131

and 2-D viewer-centered aspects modeling the parts. 132

While the framework was applicable to any vocab- 133

ulary of volumetric parts, it was demonstrated on a 134

qualitative shape vocabulary very similar to geons. 135

Many geon-based frameworks followed, including 136

probabilistic approaches [39], logic-based approaches 137

[32], parametric geon recovery from range data [26, 138

48, 53], deformable contour-based approaches [47], 139

deformable volume-based approaches [25], and active 140

vision approaches [24, 31]. See [23] for a panel dis- 141

cussion on the strengths and weakness of geons and 142

the challenges that lie ahead. 143
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Open Problems144

Geons have tremendous potential as a part represen-145

tation in support of object categorization. They are146

qualitative and can support a high degree of within-147

class deformation, they (like generalized cylinders)148

map to the natural part structure of objects (when such149

elongated part structure exists), they are viewpoint-150

invariant 3-D parts that support object-centered 3-D151

models (which, in turn, better support scaling to large152

databases), and there is psychophysical support for153

them (the human is still, by far, the best example of154

an object categorization system). Despite these advan-155

tages, geons declined as a subject of study in the156

computer vision community in the late 1990s, in part157

due to the advent of appearance-based recognition and158

a general movement away from shape features.159

The main reason for their decline was not neces-160

sarily a shortcoming of the representation, i.e., geons,161

but rather the community’s inability to extract quali-162

tative shape from real images of real objects. Except163

for those approaches operating on range images, the164

work reviewed above operated on either line drawings165

or uncluttered scenes containing simple, textureless166

objects. The key assumption made by these systems167

was that a salient contour in the image maps one-to-168

one to a salient surface discontinuity (or occluding169

contour) on a geon. Unfortunately, in a real scene,170

objects contain texture, shadows, reflectance contours,171

and structural “noise” (surface discontinuities that are172

not salient with respect to the geon class), all of173

which introduce unwanted contours. Moreover, images174

of contours (both good and bad) may be broken or175

noisy, requiring complex perceptual grouping and mul-176

tiscale analysis to restore and capture the salient shape177

of the contours. Yet despite these conditions, humans178

and primates have absolutely no trouble distinguishing179

(or abstracting) those contours that mark orientation180

and depth discontinuities – the critical contours for181

geon extraction – from contours reflecting variations182

in surface texture, color, lighting, shadows, etc.183

As discussed in Dickinson [22], the recognition184

community’s gradual movement from shape toward185

appearance, coupled with the community’s interest in186

engineering practical systems, drew attention away187

from basic research on shape modeling in support of188

object categorization. However, the community is once189

again realizing that over the set of exemplars belonging190

to an object category, shape is far more invariant than 191

appearance. As a result, shape-based object categoriza- 192

tion systems (mainly using contours) are beginning to 193

reemerge, e.g., [33]. But a return to local contour-based 194

features is not sufficient, as local shape features are 195

still too exemplar-specific. Rather, such features must 196

be perceptually grouped and abstracted to form more 197

generic shape structures that offer the within-class 198

deformation invariance required for effective catego- 199

rization. Geons offer a powerful shape abstraction with 200

great categorization potential, but only when more 201

progress has been made on the mid-level challenges 202

of perceptual grouping and intermediate-level shape 203

abstraction. Some early work along these lines has 204

started to appear [50]. 205

Experimental Results: Computer Vision 206

Figure 2 illustrates three examples of geon recovery 207

systems in the computer vision community. In Fig. 2a, 208

the system of Bergevin and Levine [7] recovers geons 209

from line drawings. In Fig. 2b, the system of Dickinson 210

et al. [24] recovers geon-like volumetric parts from real 211

images of simple objects, as does the system of Pilu 212

and Fisher [47], as shown in Fig. 2c. 213

Experimental Results: Human Vision 214

There is now substantial neural and behavioral evi- 215

dence for the representation of objects as an arrange- 216

ment of geons, as specified by the recognition-by- 217

components theory. This evidence can be summarized 218

in terms of six independent assumptions. Any one 219

(or several) of these assumptions can be made inde- 220

pendent of RBC but, to date, RBC is the only theory 221

from which all six derive. 222

The representation of an object is largely edge-based – 223
specifically, those edges specifying orientation and depth 224
discontinuities – rather than surface-based (i.e., color, 225
texture). 226

Reaction times (RTs) and error rates for naming 227

briefly presented images of objects are as fast for line 228

drawings as they are for full, color photography [16]. 229

This is also true of verification in which the observer 230

verifies whether a name (“chair”), provided prior to an 231



�

“Main_drv” — 2011/11/14 — 18:05 — page 4 — #5

�

� �

Corre
cte

d
Pro

of

G 4 Geons

image of an object, matches the object. The equiva-232

lence in performance for identifying line drawings and233

photography is evident even when the objects have a234

diagnostic color/texture, such as a fish, fork, or banana,235

as opposed to objects with nondiagnostic surface prop-236

erties, e.g., a chair or a lamp, which can be any color237

or texture.238

The equivalence of photography and line drawings239

is also witnessed in fMRI activity where the adaptation240

(i.e., the reduction) of the BOLD signal that is evident241

with a repetition of a stimulus, fMRI-a, is the same242

when the images have the same format, i.e., identical243

photographs or line drawings, as when they have dif-244

ferent formats, one a photograph and the other a line245

drawing [34]. This invariance to surface properties is246

also seen in the response of many single neurons in247

object-sensitive areas in the macaque [41]. In fMRI,248

the processing of surface properties, color and texture,249

activates different cortical areas than those activated250

when processing shape [21].251

There are few transformations to appearance as dra-252

matic as rendering a line drawing from a photograph253

yet the readily achieved invariance to this transfor-254

mation poses a major challenge to appearance-based255

theories of object recognition.256

Objects are represented by parts rather than local features,257
templates, or concepts.258

Object priming is the facilitation that ensues as a259

consequence of a prior perception of an object. It can260

be readily evidenced by a reduction in RTs and error261

rates in the naming of brief, masked presentations of262

objects and has been documented over a 14-month263

period from the first to second presentation of the264

images. (The reduction in the magnitude of the BOLD265

response to a repeated stimulus, termed fMRI adap-266

tation, is generally attributed to more efficient coding267

and is interpreted as a neural correlate of priming.)268

Almost all of this priming is visual (i.e., perceptual)269

rather than lexical (easier access to the name itself)270

in that an object with the same name but a substan-271

tially different shape, e.g., a grand piano followed by272

an upright piano, evidences almost no facilitation.273

Studies with complementary, contour-deleted line274

drawings document that all the priming can be275

attributed to the repetition of the parts (in their appro-276

priate relations) as opposed to local features, i.e., the277

specific lines and vertices in the image [14]. Thus, if278

every other vertex and line from each geon is deleted279

from one image of an object and the deleted contour 280

composes the other member of a complementary pair, 281

as in the two images of a flashlight on the left side of 282

Fig. 3a (so if the two were superimposed they would 283

comprise an intact image with no overlap of contour), 284

the degree of priming between members of a comple- 285

mentary pair – which depict the same parts though 286

with different local contours – is equal to the prim- 287

ing between identical images. This implies that none 288

of the priming can be attributable to the local contours 289

(i.e., the local lines and vertices). Presumably, the local 290

contours are required to activate a representation of the 291

part, but once that part (in its appropriate relations) is 292

activated there is no contribution of the initial local 293

image features. 294

Instead of deletion of local features, if the dele- 295

tion is of half the parts of a complex object, as shown 296

in Fig. 3b, then there is no visual priming between 297

members of a complementary pair. Thus the priming is 298

completely dependent on the overlap in the parts in the 299

two images. These effects on behavioral priming have 300

their exact counterpart in fMRI-a. Here, local feature 301

complements show the same reduction in the BOLD 302

response as when the identical images are repeated, 303

suggesting equivalent representations, but repetition of 304

part complements show a complete loss of adaptation 305

thus indicating that there is no overlap in visual repre- 306

sentations when the images are composed of different 307

parts, even though they are of the same subordinate 308

concept, e.g., both grand pianos [35]. 309

Evidence against a template representation derives 310

from studies of the priming of depth-rotated stimuli. 311

As long as the same parts can be readily extracted in 312

two different images of the same object, recognition or 313

matching of a rotated object will be achieved with vir- 314

tually no cost. However, if because of self-occlusion 315

some parts disappear and other parts emerge, then 316

priming is reduced or object matching is impaired [15]. 317

Single cell recordings in the inferior temporal lobe 318

(IT) of the macaque, the area generally accepted to 319

mediate object recognition, generally fire as strongly 320

to one or two of the parts of an object as they do to the 321

complete object [40]. 322

Parts are distinguished by nonaccidental properties 323
(NAPs) and only coarsely by metric properties (MPs). 324

Values of various dimensions of geons can be 325

regarded as singular or nonsingular. A singular value, 326

such as 0 curvature (i.e., a straight contour), retains 327
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that value as the object is rotated in depth. A nonsingu-328

lar value, such as a nonzero value of curvature (i.e., a329

curved contour), can vary with the orientation in depth330

of that contour. In addition to curvature, parallelism of331

two contours can have a singular value of zero con-332

vergence (or divergence) or a nonzero value. Two or333

three contours that coterminate can be regarded as a334

singular value of zero separation between their termi-335

nations, forming vertices, such as Ls, arrows, or forks.336

This framework can define NAP differences as the337

difference between singular and nonsingular values as,338

e.g., a difference between a curved and a straight con-339

tour produced by the parallel sides of the cylinder on340

the left in the third row of Fig. 3c and the middle bar-341

rel. Metric differences are differences in non-singular342

values, such as two contours with unequal nonzero cur-343

vatures, as with the slightly curved and more curved344

barrels in the third row.345

The aforementioned invariance to rotation in depth346

holds only if the objects that are to be discrimi-347

nated differ in NAPs [13, 15]. Objects differing only348

in metric properties incur high costs when they are349

encountered at a different orientation in depth. At equal350

orientations, the discrimination of two shapes as being351

same or different is markedly easier if the shapes dif-352

fer in NAPs than MPs [17]. Cells in the IT region353

of the macaque modulate (i.e., vary their firing rate)354

much more to a change in a NAP compared to an MP355

[41, 52]. Even pigeons show greater sensitivity to dif-356

ferences in NAPs than MPs [1]. In these comparisons357

of the sensitivity of NAPs and MPs, the physical dif-358

ferences are equated according to a model of V1 [42],359

the first stage of cortical shape coding.360

Dimensions of generalized cylinders (GCs) are inde-361
pendently coded and have psychophysical and neural362
reality.363

The set of geons is generated by combinations of the364

values of the independent dimensions shown in Fig. 1.365

(In addition, as noted previously, there can be coarse366

variation in the metric of these geons, such as their367

aspect ratio or degree of axis curvature.) Are simple368

object parts actually coded by independent combina-369

tions of these dimensions (vs. just being nondimen-370

sionalized variations in shape templates)? One mea-371

sure of independent coding of perceptual dimensions372

is whether human observers can selectively attend to373

one dimension without any cost from variations in374

another, to-be-ignored, dimension. For example, the375

speed and accuracy of discriminating different shapes 376

is unaffected by whether the colors of those shapes 377

are held constant or varied. It might seem plausible 378

that shape could be attended while ignoring a surface 379

feature such as color. Would efficient selective atten- 380

tion be manifested when observers are attending to 381

one shape dimension, say axis curvature, while ignor- 382

ing variations in another shape dimension, say aspect 383

ratio. The answer is clearly yes [43]. Moreover, a mul- 384

tidimensional analysis of the firing of a population of 385

IT cells to a set of stimuli similar to that depicted in 386

Fig. 3c shows that 95% of the variance of the spike 387

rates can be modeled in terms of independent coding 388

of the GC dimensions [40]. 389

Low sensitivity for discriminating complex, irregular 390
shapes (= texture?) compared to simple shapes but high 391
sensitivity for distinguishing regular from irregular. 392

Geons are simple and regular. What about complex, 393

highly irregular objects, such as a bush or a crumpled 394

sweater? It would be highly unlikely that people are 395

employing geons for the precise representation of such 396

objects. Interestingly, the evidence is that people do not 397

represent such variation in any detail beyond the fact 398

that the shapes are irregular and some simple nonac- 399

cidental characterizations, e.g., whether the surfaces 400

are round or pointed. This is also true of IT cells [2]. 401

Essentially, objects with irregular parts are treated as 402

texture, rather than shape. 403

There is a more general point to be made here. GCs 404

(and geons) were criticized for their unwieldiness for 405

modeling objects such as bushes. But this is confus- 406

ing a graphics system, in which the goal is to achieve 407

an exact replica of the image, with a biological recog- 408

nition system designed to do basic- and subordinate- 409

level classification in which irrelevant variation is best 410

ignored. 411

Objects are represented by a structural description that 412
specifies simple parts and relations. 413

Geons are the representation of the parts of an 414

object, but objects are typically composed of more than 415

one part. In the same manner that people are sensi- 416

tive to the order of phonemes, so “rough” and “fur” 417

have the same phonemes but in different order, peo- 418

ple are sensitive to the arrangement of parts of an 419

object, so they can say, e.g., that a vertical cylinder 420

is attached end-to-middle and perpendicular to the top 421

of a larger horizontal brick. That geons and their rela- 422

tions may be coded independently is documented by a 423
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remarkable patient with a left inferior temporal lesion424

who had no problem distinguishing objects differing425

in their geons but could not distinguish objects that426

differed in the relations among the same geons [3].427

Recent neuroimaging studies show that such relations428

are specified explicitly at the same cortical locus, the429

lateral occipital complex, that object shape is specified430

[36].431
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The set of geons is generated by variations in the production function for generalized
cylinders that produce viewpoint-invariant (= nonaccidental) shape differences

1. Cross Section: Straight vs. Curved

2. Axis: Straight vs. Curved

3. Size of Cross Section:
Constant (parallel sides) vs. Expand vs. Expand & Contract vs Contract & Expand

4. Termination of Geon when Nonparallel: Truncated vs. Pointed vs. Rounded

© Irving Biederman

Geons, Fig. 1 The space of
approximately 50 geons is
defined by permuting the
dichotomous and
trichotomous properties of a
restricted space of
generalized cylinders

a b c
1 2

4 5

3

Geons, Fig. 2 Three examples of geon recovery in the com-
puter vision community: (a) decomposing a line drawing of
a lamp into its constituent geon parts (Bergevin and Levine
[7]); (b) from a region segmentation (upper right) of the image
of an occluded cup (upper left), the two recovered constituent

qualitative volumetric parts (with matched contours highlighted
in black) are shown in lower left (body cylinder) and lower
right (handle bent cylinder) (Dickinson et al. [24]); and (c)
decomposing a phone into its constituent geons parts (Pilu and
Fisher [47])
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Every other vertex and line is
deleted from each part and
placed in the other member of
a complementary pair.

If the two members of a
pair of complementary
images are
superimposed they will

produce the original
image with no ovelap in
contour.

Intact objecta b Complementary Image 1 Complementary Image 2 Same Name,
Different Exemplar

c

Nonaccidental

Nonaccidental vs. Metric Comparisons
Metric

Amount of
expansion
of the cross-section

Amount of
negative curvature
of the sides

Amount of
positive curvature
of the sides

Degree of
curvature
of the main axis

Expansion versus
no expansion
of the cross-section

Negative curvature
of the sides versus
straight sides

Positive curvature
of the sides versus
straight sides

Curved main axis
versus
straight main axis

Geons, Fig. 3 Psychophysical evidence in support of Geons:
(a) members of a local contour-deleted complementary pair,
which have the same parts but different local features, prime
each other as much as they do themselves; priming is not
attributable to local contours; (b) there is no visual priming
between members of a complementary pair when they have no
parts in common, as between the images of the second and

third columns [14]; and (c) equal image differences between
nonaccidental (between center and left columns) and metric
properties (between center and right columns). Geons are dis-
tinguished by nonaccidental properties. Discrimination is much
faster and more accurate for differences in nonaccidental than
metric properties
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