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Synonyms

Clipping

Related Concepts

�Radiometric Response Function

Definition

In imaging, saturation is a type of distortion where the
recorded image is limited to some maximum value,
interfering with the measurement of bright regions of
the scene.

Background

The role of a sensor element is to measure incident
irradiance and record that quantity as an image inten-
sity value. However, physical constraints limit the
maximum irradiance that can be measured for a given
camera setting. In the absence of noise, the mapping
from irradiance to image intensity is fully described
by the radiometric response function, a monotonically

increasing function whose range is restricted by the
maximum irradiance. Pixels whose intensity corre-
sponds to this maximum are known as saturated.

Saturated pixels contain less information about the
scene than other pixels. While non-saturated pixels
can be related to the incident irradiance by applying
the inverse of the radiometric response function, satu-
rated pixels provide only a lower bound on irradiance.
Therefore, estimating the irradiance of saturated pixels
is similar to other image “hallucination” tasks such as
inpainting [2].

Since many computer vision algorithms assume a
linear relationship between sensor irradiance and the
measured image intensity, it is important to identify
saturated pixels and handle them appropriately. In
practice, saturated pixels are often treated as missing
values or otherwise ignored.

Theory

In the idealized noise-free case, the image intensity
M of a pixel can be described as mapping the inci-
dent irradiance I according to the radiometric response
function f .�/, limited by the maximum irradiance Imax,

M D f .min.I; Imax// : (1)

For an irradiance of Imax or higher, the image inten-
sity will saturate at its maximum value of Mmax D
f .Imax/. Since saturated pixels do not have unique cor-
responding irradiance values, they provide no direct
information about incident irradiance beyond imposing
a lower bound of Imax.
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Identifying saturated pixels is straightforward in
practice, since many saturated pixels have the nomi-
nal maximum pixel value of Mmax. Sensor noise and
other on-camera processing introduce the minor com-
plication that saturated pixels may have values slightly
less than this maximum. This effect is easily addressed,
however, by using a lower, more conservative threshold
to detect saturation [6, 8].

Saturation is caused by underlying physical charac-
teristics of the sensor which limit the highest irradiance
that can be measured for the given settings of the cam-
era. In a digital sensor, where incident photoelectrons
are recorded as electric charge, each sensor element
can store a maximum amount of charge known as the
full well capacity. Together with the exposure time
and amplifier gain, the full well capacity imposes a
limit on the maximum irradiance that can be mea-
sured before saturation. Film-based sensors are subject
to saturation as well, but the mechanism limiting their
photosensitivity is chemical [9].

While modern digital sensors are designed to dis-
sipate excess charge above the full well capacity,
for very bright parts of the scene, excess charge
from a saturated pixel can spill over to adjacent
regions. This artifact, known as blooming, can lead
to saturation in pixels that would not otherwise be
saturated.

Application

Saturation can pose problems for computer vision
algorithms that assume linearity unless saturated pixels
are identified and handled appropriately. For exam-
ple, methods operating in the Fourier domain require
special attention to saturation [1, 18], because the
global nature of the transform means that even iso-
lated saturated pixels can corrupt the whole image. The
two main approaches to dealing with saturated pix-
els are explicitly treating them as missing values and
interpolating them from surrounding pixels.

The effect of saturation should also be taken into
account when estimating the parameters of sensor
noise from an image [5, 11]. Pixels near saturation
will demonstrate reduced variance in general, since the
maximum value imposed by saturation will make their
samples closer on average.

From the standpoint of photography, camera
settings should be chosen to avoid saturation in

regions of interest, otherwise important detail or color
information may be lost. Photographers describe satu-
rated images as being overexposed or as having clipped
or blown highlights. Although ill-posed, a problem
of great practical interest to photographers is recover-
ing detail in saturated regions of the scene or at least
hallucinating plausible detail.

Under mild overexposure, only partial color infor-
mation may be lost due to saturation. Partial saturation
results from the different spectral sensitivities of each
color channel, leading one channel to saturate before
the others. In this setting, the main approach for restor-
ing detail is to represent the correlation between color
channels, using either global [19] or spatially varying
[7, 12] color distribution models, then using this cor-
relation to transfer information from the non-saturated
color channels.

With greater overexposure, pixels become saturated
in all color channels. The most common approach for
restoring detail in this setting is to blindly extrapo-
late smooth peaks within saturated regions [7, 15, 17].
In fact, saturated regions can sometimes provide quan-
titative evidence about the underlying irradiance. Pro-
vided that overexposure is moderate and the scene
is sufficiently smooth, the band-limitation of irradi-
ance [1] or the resulting noise distribution [4] can be
exploited to recover detail in fully saturated regions.
For more severe overexposure or larger saturated
regions, none of these methods are generally suffi-
cient. In such cases, user guidance may be enlisted
to help transfer plausible high-frequency detail from
other sources [17].

In general, choosing the exposure setting for a
photo requires balancing competing goals. While over-
exposure causes loss of detail in the highlights due
to saturation, underexposure leads to higher relative
noise. The relationship between noise and saturation
defines the dynamic range of the sensor and determines
the range of irradiances that can be captured accept-
ably in a single shot. When restricted to a single shot,
one should generally choose the exposure setting so
that the brightest region of interest falls just below the
saturation point [14].

For scenes with large dynamic range, such consid-
erations have motivated high dynamic range imaging
methods based on capturing multiple photos with dif-
ferent exposure times [3], each of which saturates at
a different irradiance. There is also an ongoing effort
to develop new kinds of high dynamic range sensors
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offering higher effective saturation levels [10]. A broad
range of new designs have been proposed, including
sensors that record the precise length of exposure
time needed to reach saturation and sensors with a
logarithm-like response. Each of these designs presents
unique tradeoffs, including different noise character-
istics over their operating range [10]. An orthogonal
imaging approach is to use spatial multiplexing to
incorporate multiple types of sensor elements, each
having different sensitivities [13, 18] or sizes [16].
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Synonyms

Automatic scale selection; Scale-invariant image fea-
tures and image descriptors

Related Concepts

�Corner Detection; �Edge Detection

Definition

The notion of scale selection refers to methods for
estimating characteristic scales in image data and for
automatically determining locally appropriate scales in
a scale-space representation, so as to adapt subsequent
processing to the local image structure and compute
scale-invariant image features and image descriptors.

An essential aspect of the approach is that it allows
for a bottom-up determination of inherent scales of
features and objects without first recognizing them or
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delimiting, alternatively segmenting, them from their
surroundings.

Scale selection methods have also been developed
from other viewpoints of performing noise suppression
and exploring top-down information.

Background

The concept of scale is essential when computing
features and descriptors from image data. Real-world
objects may contain different types of structures at
different scales and may therefore appear in different
ways depending on the scale of observation. When
observing objects by a camera or an eye, there is an
additional scale problem due to perspective effects,
implying that distant objects will appear smaller than
nearby objects. A vision system intended to operate
autonomously on image data acquired from a complex
environment must therefore be able to handle and be
robust to such scale variations.

For a vision system that observes an unknown
scene, there is usually no way to a priori know what
scales are appropriate for extracting the relevant infor-
mation. Hence, a multi-scale representation of the
image data is essential, whereby the original signal
is embedded into a one-parameter family of signals
using scale as the parameter. Given an N -dimensional
signal f WRN ! R and with the notation x D
.x1; : : : ; xN / 2 RN , the scale-space representation
[8, 10, 26] of f is defined by the convolution operation

L.xI t/ D
Z
�2RN

f .x � �/ g.�I t/ d�; (1)

where gWRN �RC ! R denotes the Gaussian kernel

g.xI t/ D 1

.2�t/N=2
e�jxj2=2t (2)

and the variance t D �2 of this kernel is referred
to as the scale parameter. Based on this representa-
tion, Gaussian derivatives, or scale-space derivatives,
at any scale t can then be computed by differentiat-
ing the scale-space representation or equivalently by
convolving the original image with Gaussian derivative
kernels:

Lx˛ .�I t/ D @x˛L.�I t/ D .@x˛g.�I t// � f .�/ (3)

(with multi-index notation ˛ D .˛1; : : : ; ˛N / for
@x˛ D @x˛11

: : : @x˛NN
). Such Gaussian derivatives can

be used as a basis for expressing a large number
of visual modules including feature detection, feature
classification, image matching, motion, shape cues,
and image-based recognition [14].

Theory

The notion of scale selection complements traditional
scale-space theory by providing explicit mechanisms
for generating hypotheses about interesting scales.

Scale Selection from � -Normalized Derivatives
A particularly useful methodology for computing esti-
mates of characteristic scales is by detecting local
extrema over scales of differential expressions in terms
of � -normalized derivatives [11, 12] defined by

@� D t�=2 @x: (4)

A general and very useful property of this construction
is that if two signals f and f 0 are related by a scaling
transformation

f 0.x0/ D f .x/ with x0 D s x; (5)

and if there is a local extremum over scales at
.x0I t0/ in a differential expression D��normL defined
as a homogeneous polynomial of Gaussian deriva-
tives computed from the scale-space representation L

of the original signal f , then there will be a corre-
sponding local extremum over scales at .x00I t 00/ D
.s x0I s2t0/ in the corresponding differential expres-
sion D��normL0 computed from the scale-space repre-
sentation L0 of the rescaled signal f 0 [11, Sect. 4.1].

This scaling result holds for all homogeneous poly-
nomial differential expressions, including rotation-
ally invariant differential invariants, and implies that
local extrema over scales of � -normalized derivatives
are preserved under scaling transformations. Thereby,
such local extrema over scales provide a theoretically
well-founded way to automatically adapt the scale
levels to local scale variations.

Specifically, scale-normalized scale-space deriva-
tives of order j˛j D ˛1 C � � � C ˛N at corresponding
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points will then be related according to

L0�0˛ .x
0I t 0/ D sj˛j.��1/L�˛ .xI t/; (6)

which means that � D 1 implies perfect scale invari-
ance in the sense that the � -normalized derivatives
at corresponding points will be equal. If � ¤ 1,
the difference in magnitude can on the other hand
be easily compensated for using the scale values of
corresponding scale-adaptive image features.

These results imply that detection of image features
and computation of image descriptors at scale levels
equal to or proportional to the scales at which there
are local extrema over scales constitutes a very gen-
eral methodology for obtaining scale-invariant image
features and scale-invariant image descriptors.

Indeed, it can also be axiomatically shown that the
notion of � -normalized derivatives arises by neces-
sity, given the condition that local extrema over scales
of scale-normalized derivatives should be preserved
under scaling transformations [11, Appendix A.1].

Relation to Frequency Estimation
There is a conceptual similarity between this princi-
ple and local frequency estimation from peaks in the
Fourier transform. For a one-dimensional sine wave

f .x/ D sin.!x/; (7)

it can be shown [11, Sect. 3] that there will be a
peak in the magnitude of the mth order � -normalized
derivative at a scale

�max D
p
�m

2�
� (8)

proportional to the wavelength � D 2�=j!j of the sig-
nal. Two conceptual differences compared to Fourier-
based frequency estimation, however, are that (i) no
window size is needed for computing the Fourier trans-
form and (ii) this approach applies also to nonlinear
differential expressions.

Relations to Image Statistics
It can be shown [11, Sect. 9.1] that the notion of
� -normalized derivatives corresponds to normalizing
the mth order N -dimensional Gaussian derivatives to

constant Lp-norms over scale with

p D 1

1C m
N
.1 � �/;

(9)

where the perfectly scale-invariant case � D 1 corre-
sponds to L1-normalization for all orders m.

It can also be shown [11, Sect. 9.2] that the � -
normalized derivatives are neutral with respect to
self-similar power spectra of the form

Sf .!/ D j!j�N�2m.1��/: (10)

Natural images often show a qualitative behavior sim-
ilar to this [5].

Scale-Space Signatures
Figure 1 illustrates the basic idea, by showing the
so-called scale-space signatures accumulated in the
two-dimensional case (In the specific 2-D case, the
simplifying notation .x; y/ 2 R2 is used instead of
x D .x1; x2/ 2 R2, implying that Lx1x1 D Lxx ,
Lx1x2 D Lxy , Lx2x2 D Lyy , etc.) for two gener-
ally applicable differential entities for scale selection:
the scale-normalized Laplacian [10, Sect. 13.3] [11,
Sect. 5] (with � D 1)

r2Lnorm D t .Lxx C Lyy/ (11)

and the scale-normalized determinant of the Hessian
[10, 11] (also with � D 1)

detHnormL D t2 .LxxLyy �L2
xy/: (12)

In the scene in Fig. 1, there are strong perspective
scaling effects due to differences in depth between sim-
ilar objects in the world. These scale variations are
reflected in the scale-space signatures in the respect
that the local extrema over scales are assumed at finer
scales for distant objects and at coarser scales for
nearby objects. If one computes the ratio between
the scale values in terms of a scale parameter � Dp
t of dimension Œlength�, then the ratio between the

scale values is in very good agreement with the ratio
between the sizes of the objects in the image domain
as measured by a ruler. This property illustrates one
of the scale-invariant properties of the scale selection
mechanism.
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Scale Selection, Fig. 1 Scale-space signatures accumulated
for image structures of different size in the image domain. The
upper part of the illustration shows windows around two details
from the image at the bottom, with corresponding scale-space
signatures of the scale-normalized Laplacian r2

normL and the
scale-normalized determinant of the Hessian detHnormL accu-
mulated at the central point in each window. As can be seen from
the graphs, the local extrema over scales are assumed at coarser

scales for the larger size object than for the smaller size object.
Specifically, the ratio between the scale values at which the local
extrema are assumed provides an estimate of the relative amount
of scaling, when measured in dimension Œlength� (In the graphs,
the horizontal axis represents effective scale [10, pp 180–182]
approximated by � � log2.1 C t /) (Reprinted from [27] with
permission)
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General Framework for Defining Scale-Invariant
Image Descriptors
By computing an image descriptor at a scale propor-
tional to the detection scale Ot of a scale-invariant image
feature or by normalizing an image patch by a corre-
sponding scaling factor O� D

pOt provides two very
general scale normalization mechanisms that can be
used for defining much wider classes of scale-invariant
image descriptors [11, 15] (see the “Applications”
section below for two specific examples regarding
image-based recognition). The scale-invariant proper-
ties of these descriptors originate from the general
scale-invariant property of local extrema over scales
of differential expressions in terms of � -normalized
derivatives.

Figure 2 illustrates how scale normalization can be
performed in this way by rescaling the local image
patches around the two details in Fig. 1 using the scale
values O� D

pOt at which the Laplacian r2
normL and

the determinant of the Hessian, respectively, assumed
their strongest local extrema over scales. In this sense,
scale normalization from the detection scales Ot consti-
tutes a general mechanism for establishing a common
scale-invariant reference frame with regard to scaling
transformations.

It should be noted, however, that multiple extrema
over scales may in general be found in the scale-space
signature, as can be seen in Figs. 1 and 2, where
two significant local extrema over scales are obtained
in each scale-space signature, with the coarser-scale
response corresponding to the lamp as a whole and
the finer-scale response corresponding to the light bulb
inside. Because of this inherent multi-scale nature of
real-world objects, a vision system intended to inter-
pret images from a natural environment must in gen-
eral be able to handle multiple scale hypotheses over
scales.

Scale-Space Extrema
The notion of scale selection from scale-normalized
derivatives can be complemented by spatial selection
by detecting points in scale space that assume local
extrema with respect to both space x and scale t . Such
points are referred to as scale-space extrema. Specif-
ically, detection of scale-space extrema of rotation-
ally invariant differential invariants provides a general,
effective, and robust methodology for detecting inter-
est points with built-in scale selection [10, 11, 15].

Thus, given a scale-normalized differential expres-
sion D��normL, one simultaneously obtains spatial
positions Ox and scale estimates Ot according to

. OxI Ot / D argmaxminlocal
.xI t /

.D��normL/.xI t/: (13)

Figure 3 shows the result of detecting the 50 strongest
scale-space extrema of the scale-normalized Laplacian
r2
normL and the scale-normalized determinant of the

Hessian detHnormL from an image that contains two
objects of different sizes. Each scale-space extremum
has been illustrated by a circle with the radius pro-
portional to the detection scale O� D

pOt . In Fig. 4,
each feature has been visualized by a sphere in the 3-D
scale-space volume of the 2-D image, with the radius
of the sphere increasing with the detection scale. As
can be seen from this illustration, the notion of scale-
space extrema can effectively reveal interest points and
characteristic scales of those (see the “Applications”
section below for more details about scale-invariant
interest point detectors). Specifically, the differences
in the radii of the circles in the 2-D illustration and
in the heights over the image plane in the 3-D graph-
ics reveal the scale differences between corresponding
image features from the two objects.

The differential operators r2
normL and detHnormL

in general both produce strong responses at the centers
of blob-like structures that are either brighter or darker
than their surrounding, provided that the these differ-
ential entities are computed at scale levels that roughly
match the size of the corresponding image structures.
For this reason, they constitute very useful differential
entities for blob detection.

Discrete Implementation
Detection of scale-space extrema from an N -
dimensional discrete image can be performed
by nearest-neighbor comparisons in the N C 1-
dimensional scale-space volume. For a 2-D image,
this implies that nearest-neighbor comparisons are
performed by local comparisons with the 26 neighbors
in a 3 � 3 � 3 neighborhood over space and scale [10]
[11, footnote 16] [20]. Scale estimates and position
estimates of higher accuracy can then be obtained by
fitting a parabola to the data around any scale-space
extremum [17, 20].

Discrete analogues of � -normalized derivatives can
be obtained either by (i) variance-based normalization
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Scale Selection, Fig. 2 In
this illustration, local
windows around two of the
lamps in Fig. 1 (shown in the
left column) have been
rescaled by scaling factors

O� DpOt obtained from the
dominant response over scales
of the Laplacian r2

normL and
the determinant of the Hessian
detHnormL (shown in the
middle column) to compute a
scale-normalized window
(shown in the right column)
around each detail. In this
way, scale selection can be
used for defining a
scale-normalized reference
frame for subsequent
computation of
scale-invariant image
descriptors (Reprinted from
[27] with permission)
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which implies that the discrete derivative approxima-
tions ıx˛L are multiplied by an appropriate power of
the scale parameter

L�˛ .�I t/ D L�
˛1
1 :::�

˛N
N

.�I t/ D .t�=2/j˛j .ıx˛L/.�I t/
(14)

or by using the notion of (ii) lp-normalization
[11, Appendix A.4.2]:

L�˛ .�I t/ D L�
˛1
1 :::�

˛N
N

.�I t/ D C˛ .ıx˛L/.�I t/; (15)

where the discrete normalization constants C˛ are
determined such that the lp-norms of the scale-
normalized discrete derivative approximation kernels
ıx˛T [10, Chap. 5] are to be equal to the Lp-norms
of the corresponding � -normalized Gaussian derivative
kernels @x˛g

C˛

 X
n2RN

j.ıx˛T /.nI t/jp
!1=p

D .t�=2/j˛j

�Z
x2RN

j.@x˛g/.xI t/jp dx
�1=p

: (16)

Experiments in [17] show that the notion of lp-
normalization gives more accurate scale estimates
in situations where discretization effects become
important.

A particularly convenient way of implementing
scale-space smoothing in this context is by convolu-
tion with the discrete analogue of the Gaussian kernel
[10, pp 84–87]:

T .nI t/ D e�t In.t/; (17)
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Original image Laplacian ∇2
normL detHessian detHnormL

Scale Selection, Fig. 3 2-D illustration of the 50 strongest
scale-space extrema of the Laplacian r2

normL and the determi-
nant of the Hessian detHnormL computed from an image with
two similar objects of different physical sizes. Each feature is

illustrated by a circle centered at the position . Ox; Oy/ of the scale-
space extremum and with the radius proportional to the detection

scale O� DpOt . Red circles represent scale-space maxima, while
blue circles represent scale-space minima

which implies that semigroup property of the Gaussian
scale space holds exactly also for the discrete scale-
space kernels T .�I t1/ � T .�I t2/ D T .�I t1 C t2/ and
the cascade smoothing property

L.�I t2/ D T .�I t2 � t1/ � L.�I t1/; (18)

for t2 � t1 � 0 implies that one can perform a set of
incremental convolutions with kernels of smaller sup-
port instead of computing each scale level from the
original signal f independently.

The notion of scale selection from scale-normalized
derivatives can also be transferred to a pyramid rep-
resentation to allow for real-time implementation on
standard processors [3, 17, 20].

Alternative Approaches to Scale Selection
A number of other mechanisms for scale selection have
also been developed based on ideas of
– Detecting peaks over scales in weighted entropy

measures [7] or Lyapunov functionals [25]
– Minimizing normalized error measures over scales

in order to compute more accurate localization
estimates for coarser-scale corner features [11,
Sect. 7.2] or for coarse-to-fine matching of highly
noisy image data [13]

– Determining minimum reliable scales for feature
detection according to an a priori determined noise
suppression model [4]

– Determining optimal stopping times in nonlinear
diffusion-based image restoration methods using

similarity measurements relative to the original
data [22]

– Performing image segmentation from the scales at
which a supervised classifier delivers class labels
with the highest posterior [18, 19]

Relations Between the Different Approaches
to Scale Selection
The different approaches to scale selection may have
quite different properties, depending on the types
of data they are applied to. For noise-free data, an
adaptive noise suppression scheme optimized for sup-
pressing high-frequency noise can be expected to not
smooth the data at all, thus implying the selection of
a zero scale, whereas scale selection based on local
extrema over scales will always select a scale level
reflecting a characteristic length in the image data.

Provided that the characteristic lengths of the rele-
vant image features are greater than the typical char-
acteristic lengths in the noise, scale selection based
on scale-normalized derivatives will therefore lead to
scale-invariant image features. Smoothing approaches
that are optimized for suppressing superimposed high-
frequency noise will on the other hand lead to an
amount of smoothing that is primarily determined
by the noise level and therefore not necessarily cor-
responding to scale-invariant image descriptors. In
this respect, these two types of scale determination
approaches can lead to fundamentally different results.

If the task is to detect fine-scale details with ampli-
tude and/or characteristic scales comparable to the
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Scale Selection, Fig. 4 3-D
illustration of the 50 strongest
scale-space extrema of the
Laplacian r2

normL and the
determinant of the Hessian
detHnormL computed from
the image in Fig. 4. Here, each
feature is illustrated by a red
sphere centered at the position
. Ox0; Oy0I Ot0/ of the scale-space
extremum and with the radius
increasing with the detection
scale Ot0. The blue spheres
have been inserted to simplify
visual interpretation

Scale-space extrema of the Laplacian ∇2
normL

Scale-space extrema of the determinant of the Hessian det HnormL
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noise, it does, however, not seem unlikely that the
two types of approaches could possibly benefit from
each other.

Application

Interest Point Detectors with Built-in Scale
Selection
Below, four different interest point detectors with auto-
matic scale selection will be presented. A more general
set of scale-invariant interest point detectors defined

according to a similar methodology can be found in
[15] with an in-depth theoretical analysis of their scale
selection properties in [16].

Blob Detection
Based on the notion of scale-space extrema, straight-
forward methods for blob detection can be obtained by
detecting scale-space extrema of either (i) the scale-
normalized Laplacian r2

normL D t .Lxx C Lyy/ or
(ii) the scale-normalized determinant of the Hessian
detHnormL D t2 .LxxLyy � L2

xy/ [10, 11]. Specifi-
cally, using the Laplacian operator one can detect
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– Bright blobs from negative scale-space minima of
r2
normL

– Dark blobs from positive scale-space maxima of
r2
normL

Using the determinant of the Hessian, one can on the
other hand detect
– Bright blobs from positive scale-space maxima of

detHnormL that satisfy r2L < 0

– Dark blobs from positive scale-space maxima of
detHnormL that satisfy r2L > 0

– Saddle-like image features from negative scale-
space minima of detHnormL

These two blob detection approaches do both satisfy
the basic scale selection property that if the scale-
adaptive blob detector is applied to a two-dimensional
Gaussian blob with scale value t0, i.e., f .x; y/ D
g.x; yI t0/, then the select scale Ot will be equal to the
scale of the blob in the input data, i.e., Ot D t0.

In comparison, the image features obtained from
the determinant of the Hessian blob detector do
often have better repeatability properties under affine
image deformations than Laplacian image features
[11, 15, 16].

Figure 5 shows the result of applying these inter-
est point detectors to a grey-level image. Please note
how the variations in the detection scales of the blob
responses reflect the perspective scaling effects in the
scene.

Corner Detection
A straightforward method for scale-invariant corner
detection can be obtained by detecting positive scale-
space maxima and negative scale-space minima of
the scale-normalized rescaled level curve curvature
measure

Q	.L/ D t2� jrLj2 	.L/ D t2��
L2

xLyy CL2
yLxx � 2LxLyLxy

�
; (19)

where 	.L/ denotes the curvature of the level curves
of the Gaussian smoothed image at any scale and
� D 7=8 turns out to be a good choice [11, Sect. 6]
[15]; see Fig. 6a for an illustration.

The Harris-Laplace operator [21] is structurally
different in the respect that it uses different entities
for spatial selection (the Harris measure) and scale
selection (r2

normL); see Fig. 6b.

Edge Detection
With regard to edge detection, the evolution prop-
erties over scales of the scale-normalized gradient
magnitude

jrLjnorm D t�=2
q
L2

x CL2
y (20)

can be shown to reveal local characteristics of the
type of edge [12, Sect. 4]. Specifically, by choosing
� D 1=2, a local maximum over scales will be
assumed at a scale corresponding to the diffuseness of
a one-dimensional diffuse step edge

ˆ.xI t0/ D
Z x

uD�1
g.uI t0/ du (21)

and may then provide cues to, e.g., focus blur, shadow
edges, or rounded edges.

Ridge and Valley Detection
Let ep and eq denote the eigendirections of the Hessian
matrixHL such that the mixed second-order derivative
in this coordinate frame is zero Lpq D 0 and denote
the eigenvalues of the Hessian matrix by Lpp and Lqq .
These eigenvalues are also referred to as principal cur-
vatures, and these directions are assumed to be ordered
such that Lpp < Lqq .

Then, a differential geometric definition of the
ridges in the image at any scale can be expressed as
the set of points that satisfy [12, Sect. 5.2]

Lp D 0; Lpp � 0; jLppj � jLqq j: (22)

Similarly, the valleys at any scale can be defined from
[14]

Lq D 0; Lqq � 0; jLqq j � jLppj: (23)

With R��norm denoting a scale-normalized measure
of ridge strength (or valley strength) defined from the
principal curvatures Lpp and Lqq , one can also express
ridge and valley detection methods with automatic
scale selection by detecting scale-space ridges using
the definition

Lp D 0; Lpp � 0; @t .R��norm/ D 0;

@t t .R��norm/ � 0 (24)
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Scale Selection, Fig. 5
Scale-invariant interest points
obtained from the 1,000
strongest scale-space extrema
of the Laplacian r2

normL and
the determinant of the Hessian
detHnormL with the size of
each circle reflecting the
detection scale of the
corresponding feature. Red
circles represent local maxima
of the operator response,
while blue circles indicate
local minima (Adapted from
[15])

Scale-space extrema of the Laplacian ∇2
normL

Scale-space extrema of the determinant of the Hessian det HnormL

and scale-space valleys according to

Lq D 0; Lqq � 0; @t .R��norm/ D 0;

@t t .R��norm/ � 0: (25)

Specifically, it can be shown that for natural measures
of ridge or valley strength, the choice � D 3=4 implies

that the selected scale will reflect the width of a Gaus-
sian ridge (or valley) [12]. For generalizations to 3-D
images, see [6, 9, 24].

Feature Tracking
By adapting the scales for feature detection by a
local scale selection mechanism, the resulting image
features will be robust to scale changes, which
means that they can be matched over substantial
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Scale Selection, Fig. 6
Scale-invariant interest points
obtained from the 1,000
strongest scale-space extrema
of the rescaled level curve
curvature Q	.L/ and the
Harris-Laplace operator. The
size of each circle reflects the
detection scale of the
corresponding feature. For the
rescaled level curve curvature
operator Q	.L/, the color of the
circles show the sign of the
curvature; red circles
represent a local maxima of
the operator response, while
blue circles indicate local
minima (Adapted from [15])

Scale-space extrema of the rescaled level curve curvature κ̃(L)

The Harris-Laplace operator

size variations [2]. Indeed, the variations over time
in the characteristic scale estimates obtained during
feature tracking can, if appropriately implemented,
be robust enough for computing estimates of time to
collision [17].

Image-BasedMatching and Recognition
The SIFT descriptor [20] comprises a bottom-up
keypoint detection stage with scale-space extrema

detection in a differences-of-Gaussians (DoG) pyra-
mid. The scale-invariant properties of the SIFT
descriptor can be explained as follows.

From the way that the DoG operator is implemented
in the pyramid in [20], it follows that the normaliza-
tion will be similar to the scale-normalized Laplacian.
Using the fact that the scale-space representation sat-
isfies the diffusion equation, it follows that the Lapla-
cian operator can be approximated from the difference
between two levels in the scale-space representation:
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1

2
r2L.x; yI t/ D @tL.x; yI t/

� L.x; yI t C
t/ �L.x; yI t/

t

D DOG.x; yI t; 
t/


t
; (26)

i.e., from the difference of two Gaussian smoothed
images.

With the scale levels distributed such that the ratio
between successive scale levels is k when measured
in terms of � D p

t , (i.e., �iC1 D k �i and tiC1 D
k2 ti which implies that 
ti D .k2 � 1/ ti ), it follows
that [15]

DOG.x; yI t/ D L.x; yI k2t/ � L.x; yI t/
� .k2 � 1/ t .@tL.x; yI t// D .k2 � 1/ t

1

2
r2

L.x; yI t/ D .k2 � 1/

2
t r2L.x; yI t/

D .k2 � 1/

2
r2
normL.x; yI t/: (27)

Hence, with self-similar sampling of the scale levels,
the pyramid-implemented DoG interest point operator
can be interpreted as an approximation of the scale-
adapted Laplacian operator in Eq. (11).

In the SURF descriptor [1], local feature detection
is performed by detecting local extrema over space and
scale of an approximation of the determinant of the
Hessian operator in terms of Haar wavelets, with the
filters normalized to constant l1- or Frobenius norm
over scales. According to Eq. (9), the � -normalized
derivative concept corresponds to normalization of the
Gaussian derivative operators to unit Lp-norm over
scales. Furthermore, it was shown in [17] that nor-
malizing the filter responses to constant lp-norm over
scales gives better accuracy in a practical implementa-
tion than normalization of the discrete filters by mul-
tiplication with the scale parameter raised to a power
of m�=2, where m denotes the order of differentiation.
Hence, the initial feature detection step in the SURF
descriptor can be seen as an approximation of the
scale-normalized determinant of the Hessian operator
in Eq. (12).

The scale-invariant property of the actual image
descriptors in the SIFT and SURF descriptors does
in turn follow from the scale-invariant properties of

the initial feature detection step, in line with the gen-
eral framework for computing scale-invariant image
descriptors from scale estimates obtained from local
extrema over scales of scale-normalized differential
expressions, as described in the “Theory” section
above.

In these ways, the notion of scale selection
constitutes a general mechanism for computing scale-
invariant image descriptors for image-based matching
and recognition.
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Scale-Invariant Image Features
and Image Descriptors
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Semantic Image Segmentation
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Synonyms

Object segmentation; Scene/image parsing

Definition

Semantic image segmentation describes the task of
partitioning an image into regions that delineate mean-
ingful objects and labeling those regions with an object
category label. Some example semantic segmentations
are given in Fig. 1. It can be seen as a generalization of
figure-ground segmentation [1] where one segments a
particular object, say a horse, from the background.

Background

Images typically contain multiple objects, including
things such as people, cars, and cows and stuff such
as grass, sky, and water. The imaging process com-
posites the appearances of these objects, leaving (at
most) an intensity edge between one object and the
next. Semantic image segmentation aims to recover
the image regions corresponding directly to objects, as
well as labeling those regions with the relevant object
category.

http://dx.doi.org/10.1007/978-0-387-31439-6_242
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Semantic Image Segmentation, Fig. 1 Top row: three input images. Bottom row: the corresponding semantic segmentations
where colors represent object categories

The task is usually approached as supervised or
semi-supervised machine learning, using a set of train-
ing images that are manually segmented and labeled.
The learning algorithm then discovers relevant image
features that help discriminate regions belonging to
different categories in unseen test images. Other cues
such as layout and context further help resolve ambi-
guities; for example, a pixel that neighbors a car pixel
is likely to have the same label, and a region contain-
ing a cow is likely to be above a region containing
grass.

Semantic image segmentation has been of interest
since at least 1989 [2], but only fairly recently [3, 4]
have processor speeds started to allow the rich models
for high accuracy across many object categories.

Theory

Problem Formulations In essence, the semantic seg-
mentation task can be treated as a pixel-labeling prob-
lem. The different methods proposed for solving this
problem can be categorized based on the relation-
ships they encode between different pixels (see Fig. 2).
Some methods for semantic segmentation solve the
pixel-labeling problem by classifying each pixel inde-
pendently [5, 6]. Another class of methods works by
grouping pixels into segments (or super-pixels) and
assigning a single label to each group [7]. Super-
pixels are computed from the image in a bottom-up
fashion [8–10] and can aid computational efficiency
but may lead to a final incorrect labeling.

Many semantic segmentation algorithms are based
on the pairwise Markov Random Field (MRF) [11]

or Conditional Random Field (CRF) models [12, 13]
which enforce relationships between pairs of neigh-
boring pixels [5]. They encourage adjacent pixels that
are similar in appearance to take the same semantic
label, and lead to segmentation results with smooth
boundaries. A related notion of layout consistency was
explored in [14].

Some methods go beyond pairwise interactions
between pixels and enforce higher-order relationships
between groups of (or even all) pixels in the image.
For instance, they encourage groups of pixels to take
the same semantic label [15], or make sure that some
semantic label is taken by at least one pixel in the
image [16]. These models also allow the use of top-
down object detection results to prime the segmenta-
tion [6, 17]. In related work, data-driven Markov Chain
Monte Carlo (DDMCMC) was used to parse images
with a rich generative model [18]. A nonparametric
approach to semantic segmentation was proposed in
[19], where labels were transferred between nearest-
neighbor images matched using SIFT flow features.

Features Used for Pixel/Super-Pixel Classification
There are many informative image cues that can
be used for semantic segmentation, including inten-
sity, color, texture, context, motion, and 3D struc-
ture. Dense interest point descriptors can be used, for
example, [20–22], or light-weight region integrals of
textons [5, 6], or even features based on histogram of
gradients [16]. Motion-derived 3D structure was used
in [23] to segment images from a video sequence.
Range images or depth cameras have been used for
semantic segmentation in [24].
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Semantic Image Segmentation, Fig. 2 Different approaches for semantic image segmentation

Incorporating Context
Context can be incorporated in several ways: (i)
appearance context [5] captures the notion that a sheep
might typically stand on something green, (ii) seman-
tic context [6, 25–27] captures the notion that a sheep
might typically stand on grass, and (iii) auto-context
[6, 28] describes a recursive classification procedure
whereby the classification uses contextual features
from a previous stage of classification, capturing the
notion that this pixel might belong to sheep because
a nearby pixel was classified as sheep at the previous
stage.

Datasets
To a large extent, the quality of the semantic seg-
mentation algorithm is related to the quality of the
training dataset. Most techniques require fully pixel-
wise labeled images which are expensive to obtain.
Other approaches reduce this requirement in various
ways, including multiple over-segmentations [29], co-
segmenting several images at once [30], incorporating
image or region labels [6, 17, 31], and exploiting
probabilistic aspect models [32].

Early datasets for semantic segmentation include
Corel and Sowerby [33] and the MSRC dataset [5].
Recently, more challenging dataset have been pro-
posed that dramatically increase the variability in
the images and thus bring us much closer to solv-
ing semantic segmentation as a real-world problem.
LabelMe [34] used a web interface to capture a large
number of image labels. The Pascal VOC Segmen-
tation Challenge [35] runs yearly and deliberately
tries to remove contextual clues in the data to fos-
ter the best object detection algorithms. The SUN 09
dataset [36] goes to the other extreme of labeling many
objects per image to include as much context as pos-
sible. LabelMe, Pascal VOC, and SUN 09 for the
most part only provide labels for things and not stuff,

often leaving the background a single heterogenous
category.

Application

Accurately segmenting and recognizing what those
objects are opens up many potential applications. Not
only does it tell us what things are in an image but also
where they are and how they look. This information
can be used in, for example, image search, image edit-
ing, augmented reality, robot navigation, and medical
image analysis.
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Semidefinite Programming

Chunhua Shen and Antonvan den Hengel
School of Computer Science, The University of
Adelaide, Adelaide, SA, Australia

Synonyms

Convex minimization; Semidefinite optimization

Definition

Semidefinite programming is a subtopic of convex
optimization. Convex optimization refers to minimiza-
tion of a convex function subject to a set of convex
constraints. Semidefinite programming involves mini-
mization of a linear objective function over the inter-
section of linear constraints and the cone of positive
semidefinite matrices. Clearly, semidefinite program-
ming is a special case of convex optimization.

Background

Many computer vision problems can be formulated as
convex optimization problems. The main advantage of
convex optimization is that if a local minimum exists,
then it is also a global minimum. In other words, the
convexity guarantees to attain the global optimum if it
exists.

In a semidefinite programming problem, one min-
imizes a linear function subject to the constraint that
an affine combination of symmetric matrices is pos-
itive semidefinite. Semidefinite programming unifies
a few standard problems such as linear program-
ming, quadratic programming, and second-order cone
programming. Semidefinite programming has many
applications in computer vision.

Theory

Mathematically, semidefinite programming solves the
following problem:

min
X

hC;Xi; s:t: hAk;Xi D bk; .k D 1; : : : ; m/;

X 	 0: (1)

Here, the optimization variable X 2 RD�D is a sym-
metric and positive semidefinite matrix. The operator
hA;Bi D P

ij AijBij calculates the inner product of
two matrices (or vectors). The last constraint X 	 0

means X is positive semidefinite. Such a constraint is
nonlinear and nonsmooth but convex. The following
statements about a semidefinite matrix are equivalent:
(1) X 	 0; (2) All eigenvalues of X are nonnegative;
and (3) 8u 2 RD , u>Xu � 0.

We can easily write the dual problem of (Eq. 1) by
finding the saddle point of its Lagrangian:

max
y

hb;yi; s:t:
mX
iD1

ykAk 
C: (2)

Here, y 2 Rm is the variable to optimize. The
notation A
B means B � A	 0. Weak duality and
strong duality hold for the primal problem (Eq. 1)
and dual problem (Eq. 2) under mild conditions. In
particular, strong duality means that optimal val-
ues of the primal and dual problems are the same.
Strong duality follows from Slater’s condition for
constraint qualification [1], which is stated as fol-
lows. If (Eq. 1) and (Eq. 2) both are feasible and
there is a strictly interior point for either (Eq. 1)
or (Eq. 2), then optimal primal and dual solutions
exist and the corresponding optimal values are the
same.

Semidefinite programming can be viewed as an
extension of linear programming where the element-
wise inequalities between vectors become linear
matrix inequalities (LMIs). An LMI takes the form
of
Pm

kD0 ykAk � 0; with y D Œy0 : : : ym� being a
vector and matrices Ak being symmetric matrices. An
LMI enforces a convex constraint on the vector y.
Indeed, the interior-point methods for linear program-
ming can be generalized to semidefinite programming.
In fact, as shown by Nesterov and Nemirovsky [2],
in principle interior-point methods for linear program-
ming can be generalized to all convex optimization
problems. Significantly, interior-point methods enable
semidefinite programs to be solved very efficiently. It is
theoretically guaranteed that the effort needed to solve
a semidefinite program to a prescribed accuracy grows
no faster than a polynomial of the problem size. Off-
the-shelf solvers include CSDP [3], SDPT3 [4], and
SeDuMi [5]. One can also use optimization modeling
languages such as CVX [6] and YALMIP [7] to greatly
simplify the problem modeling process.

http://dx.doi.org/10.1007/978-0-387-31439-6_100252
http://dx.doi.org/10.1007/978-0-387-31439-6_100253
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Although interior-point methods are polynomial-
time algorithms, they do not scale well. If the number
of constraints m is of order O.D2/ with the semidefi-
nite matrix beingD�D, at each iteration, the computa-
tional time is of orderO.D6/. This high computational
complexity makes interior-point methods impractical
for large-scale problems. Recently, first-order aug-
mented Lagrangian approaches have been proposed for
solving large problems. In particular, as shown in [8],
the alternating direction method is applied to solve
the dual augmented Lagrangian problem of the stan-
dard semidefinite problem. This method is much more
scalable than the conventional interior-point methods.

Application

Semidefinite programming has attracted extensive
research interests in computer vision and machine
learning due to its many applications in these fields.

Max-cut approximation and image segmentation. It is
well known that semidefinite programming can be used
to approximately solve some difficult combinatorial
optimization problems. It is a useful tool for approx-
imating NP-hard problems. Such an example is the
Max-cut problem, which can be described as follows.
Given a graph G D .V;E/, output a partition of the
vertices V so as to maximize the number of edges
crossing from one side to the other. This problem can
be expressed as an integer quadratic problem:

max
u

X
.i;j /2E

1 � uiuj

2
; s:t: ui 2 f�1; 1g;8i D 1; : : : ; n:

(3)

This problem is NP-hard due to the discrete con-
straints. To obtain a semidefinite relaxation, we lift
each scalar variable ui to a higher dimension ui 2 Rn

and kuk2 D 1. We introduce another variable substi-
tution Uij D u>i uj to bring (Eq. 3) into a semidefinite
program:

max
U

X
.i;j /2E

1 � Uij

2
; s:t: Ui i D 1;8iD 1; : : : ; nIU 	 0:

(4)

The constraint U 	 0 is due to the fact Uij D u>i uj .
The optimal value of (Eq. 4) is an upper bound of the

original problem (Eq. 3). It is easy to see that (Eq. 4)
is a semidefinite problem. Hence, the global solu-
tion of (Eq. 4) is guaranteed. Approximate solutions
to the original problem can be computed by round-
ing the vector solution of (Eq. 4). The solutions of
the SDP formulation suggest to cut nodes i and j if
Uij D u>i uj is close to �1. The Goemans-Williamson
randomized rounding technique is to choose a uni-
formly random hyperplane through the origin and
use it to cut vectors into separate parts. See [9] for
details. Similar ideas can be applied to solve combina-
torial problems of minimizing quadratic functionals in
binary decision variables subject to linear constraints,
which has many applications in image segmentation,
perceptual grouping, and image restoration. See, for
example, [10].

Maximum variance unfolding. Another application is
embedding high-dimensional data (such as image data)
into an underlying low-dimensional space by maxi-
mizing the variance while maintaining the data’s local
neighborhood. Here, the input data are assumed to
be sampled from a much lower dimensional mani-
fold that is embedded inside of a higher dimensional
vector space. The primary idea of maximum vari-
ance unfolding is to create a mapping that preserves
local neighborhoods at every point of the underlying
manifold.

Let ui .i D 1; : : : n/ be the original data points in
the high-dimensional manifold and vi be the unfolded
low-dimensional data points. For .i; j / 2 E are
neighbors, the local isometry constraints are

kvi � vjk22 D kui � ujk22 D dij ;8.i; j / 2 E: (5)

If we constrain the embedded data to center at the
origin, we have X

i

vi D 0: (6)

The variance of the embedded data can be written as
1
n

P
i v>i vi . So the optimization problem becomes

max
v

X
i

v>i vi ; s:t:
X
i

vi D 0; kvi � vj k22
D dij ;8.i; j / 2 E: (7)

This problem is a non-convex quadratic program.
To formulate it into a semidefinite problem, we
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introduce a new variable Vij D v>i vj , the same as in
the first example. We can then relax (Eq. 7) into

max
V

hV; Ii; s:t:
X
ij

Vij D 0; Vi i C Vjj � 2Vij

D dij ;8.i; j / 2 EIV 	 0: (8)

Here, I is an identity matrix. Problem (Eq. 8) is a relax-
ation of (Eq. 7). The optimal value of (Eq. 8) is an
upper bound of the one of (Eq. 7) because the feasi-
bility set of (Eq. 8) is a superset of (Eq. 7)’s feasibility
set. The advantage of this relaxation is that now (Eq. 8)
can be efficiently solved using off-the-shelf semidefi-
nite programming solvers. The embedded points v can
be obtained via Cholesky decomposition of the matrix
V . Weinberger and Saul [11] applied maximum vari-
ance unfolding to detect low-dimensional structure in
high-dimensional data sets of images.
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Synonyms

Multisensor data fusion

Related Concepts

�Data Fusion

Definition

Sensor fusion refers to systems, techniques, theory,
and tools that exploit the synergy in the informa-
tion acquired from multiple sensors to enhance system
performance.

Background

Conventional systems used single sensors for moni-
toring phenomenon of interest and make inferences
regarding them. Due to significant advances in sens-
ing, networking, and computing technologies, multiple
sensors are increasingly being used. This provides
improved system performance, resulting in a better
understanding of the phenomenon being monitored.
In addition, distributed sensing improves robustness,
extends spatial and temporal coverage while requiring
shorter response time [1–3]. In order to optimally fuse
information acquired from different distributed sensing
architectures, advances in theory and algorithm design
are required.

Theory

Data from multiple sensors can be combined at three
possible levels. In data level fusion, raw sensor data is
combined. This requires that data acquired from dif-
ferent sensors be commensurate and the data needs
to be transported to a fusion center for centralized

http://cvxr.com/
http://dx.doi.org/10.1007/978-0-387-31439-6_100091
http://dx.doi.org/10.1007/978-0-387-31439-6_298
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processing. This approach has the potential of achiev-
ing the best possible performance at the expense of
large communication requirements. For noncommen-
surate data, either feature level fusion or decision level
fusion is employed. In feature level fusion, features
are extracted from the data which are then fused.
In decision level fusion, higher level decisions such
as detections and estimates are obtained based on
data from individual sensors. These decisions are then
fused at the fusion center. In feature level and deci-
sion level fusion, data transmission requirements are
lower, but the quality of fused result degrades due to
data compression involved in the feature extraction and
decision-making processes. Several topologies for sen-
sor fusion such as parallel, serial, tree, and network
topologies can be used. Choice of topology is often
application dependent, but parallel topology is used
quite commonly.

Sensor fusion is employed to solve a number of
generic problems that results in improved situational
awareness for the phenomenon under observation.
Object and event detection using multisensor data
is carried out based on distributed detection theory
and decision fusion [4–6]. For conditionally indepen-
dent observations, a likelihood ratio-based quantizer is
employed at the sensors, and the fusion rule is based
on a weighted sum of incoming quantized data. For
parameter estimation or tracking problems, quantized
data are fused at the fusion center [7, 8]. For track-
ing, a number of distributed filtering and track fusion
algorithms are employed [9, 10]. When tracking mul-
tiple objects, data association is a major challenge
[11, 12]. When sensor data is image and video data,
data-level image fusion techniques are employed.
One popular approach is to transform image data
into another domain, e.g., wavelet domain, perform
fusion in the transformed domain, and then transform
the fused data back to the image domain [13]. Sen-
sor fusion approaches are often problem and sensing
modality dependent. New approaches are constantly
being devised, such as distributed inference based
on probabilistic graphical models [14] or through
consensus and gossip algorithms [15, 16].

Application

There are many military and nonmilitary applica-
tions of sensor fusion. In military applications, sensor

fusion is employed for the detection, location, track-
ing, and identification of military entities such as
aircrafts, ships, submarines, ground units, emitters,
and weapons. Different sensing modalities such as
radar, sonar, electro-optic imagers, infrared imagers,
and electronic intelligence are employed. Nonmilitary
applications are numerous and continue to increase.
Wireless sensor networks [17, 18] and distributed cam-
era networks [19, 20] are being deployed for many
application domains. These include air traffic control,
homeland security, medical diagnosis, smart homes
and buildings, monitoring of critical infrastructures,
robotics, vehicle health management, remote sensing,
and environmental monitoring.

Open Problems

There are many theoretical and practical challenges to
fully utilize the potential of distributed sensing and
sensor fusion. These include scaling, fundamental lim-
its on achievable performance, fusion of heterogeneous
sensors, treatment of dependent data, and fusion of
hard and soft data.
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�Penumbra and Umbra

Shape from Outlines of Projection

�Shape from Silhouette

Shape from Scatter
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Synonyms

Depth from Scattering

Definition

Light scatters in the presence of volumetric media
such as fog, smoke, mist, dust, and murky water. Vol-
umetric scattering results in several daily life visual
effects, such as the glow around the streetlights and
car headlights on a foggy day and the murky appear-
ance of underwater scenes. From a computer vision
point of view, while on one hand, volumetric scattering
degrades images by reducing contrast, it also pro-
vides important shape/depth cues, especially for out-
door scenes. This entry provides a summary of various
techniques and algorithms for recovering shape/depth
using scattering.

Background

Volumetric scattering in the atmosphere (atmospheric
scattering) has been studied for over two centuries in
the atmospheric optics literature. Some of the promi-
nent sources of literature on the subject are books by
Minnaert [1], Middleton [2], and McCartney [3]. In
computer vision literature, Cozman and Krotkov [4]
and Narasimhan, Schechner, and Nayar [5–12] were
among the first to develop techniques for scene anal-
ysis under volumetric scattering. Excerpts from these
papers are used in several locations in this entry. Most
of the algorithms presented in these papers required
capturing two or more images of the scene under dif-
ferent weather/imaging conditions. Note that while the
models and techniques in this entry are discussed in
the context of atmospheric scattering, they are valid in
general for other volumetric scattering scenarios, such
as underwater imaging [13, 14].

Theory

Mechanisms of Atmospheric Scattering: There are
two main mechanisms for getting depth from atmo-
spheric scattering: attenuation and airlight.

Attenuation: Light gets deflected and absorbed as
it travels through a volumetric medium (e.g., haze,
mist, murky water), resulting in exponential attenua-
tion of the intensity. Consider a collimated beam of
light traveling through a medium from point A to point
B. Suppose the irradiance of the beam at point A is

http://dx.doi.org/10.1007/978-0-387-31439-6_513
http://dx.doi.org/10.1007/978-0-387-31439-6_211-Shape-from-Silhouette-SY
http://dx.doi.org/10.1007/978-0-387-31439-6
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EA.�/, where � is the wavelength of light. The irra-
diance of the beam at point B after the attenuation is
given as

EB.�/ D EA.�/ e
� R BA �.x;�/dx ; (1)

where �.x; �/ is the attenuation coefficient of the
medium for light of wavelength �. �.x; �/ is directly
proportional to the volume density �.x/ of the
medium. For homogeneous media, �.x; �/ is constant
with respect to the spatial location, that is, �.x; �/ D
�.�/. Thus, in the presence of homogeneous media,
the attenuated intensity at point B is given as

EB.�/ D EA.�/ e
��.�/d ; (2)

where d is the distance between points A and B.
So far in this entry, light attenuation only for a col-

limated light beam has been considered. For diverging
beams from point light sources, there is an additional
inverse-square falloff. Given a point light source at
point A with a radiant intensity of Io.�/, the irradiance
at point B is

EB.�/ D g
Io.�/ e

��.�/d

d 2
; (3)

where the constant g accounts for the optical param-
eters of the camera and conversion between radiant
intensity and irradiance.

Airlight: A second mechanism causes the atmo-
sphere to behave like a source of light. This phe-
nomenon is called airlight [15], and it is caused by the
scattering of environmental illumination by particles in
the atmosphere towards the observer. The environmen-
tal illumination can have several sources, including,
direct sunlight, diffuse skylight, and light reflected by
the ground. Consider an observer at a distance d from
a physical object. The total radiance due to airlight at
the observer is given as (for a derivation, see [5])

L.d; �/ D L.1; �/
�
1 � e��.�/d

�
; (4)

where L.1; �/ is the radiance due to airlight for an
object at infinity (e.g., horizon). While attenuation
causes the scene radiance to decrease with path length,
airlight increases with path length. It therefore causes
the apparent brightness of a scene point to increase
with depth.

Application

1. Depth from Attenuation: Consider the image of a
scene at night. Suppose the scene has artificial light
sources, for example, street lights, building win-
dows, and car headlights. There is no airlight due
to sunlight or skylight. In this setting, the dominant
scattering mechanism is attenuation. The observed
irradiance due to a light source of radiance intensity
I.�/ at a distance d is

E.d; �/ D g
I.�/ e��.�/d

d 2
; (5)

where, as before, �.�/ is the attenuation coeffi-
cient of the medium and g is the parameter which
accounts for the conversion between radiant inten-
sity and irradiance. If the detector of the camera has
spectral response s.�/, the final image brightness
value recorded is determined as

E 0.d/ D
Z

s.�/E.d; �/d�

D
Z

gs.�/
I.�/ e��.�/d

d 2
d� : (6)

Since the spectral bandwidth of the camera is lim-
ited (visible light range when camera is black and
white and even narrower spectral bands when the
camera is color), it is safe to assume the attenuation
coefficient �.�/ to be constant over this bandwidth.
Then

E 0.d/ D g
e��d

d 2

Z
s.�/I.�/d� D g

e��d

d 2
I 0 :

(7)

If the light source is observed under two differ-
ent weather conditions, for example, dense fog and
mild fog (or one condition could be clear weather
with � D 0), there are two different attenuation
coefficients �1 and �2. Taking the ratio of the two
resulting image brightness values,

R D E 01
E 02

D e�.�1��2/d : (8)

Using the natural log,

R0 D lnR D .�1 � �2/d : (9)
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This quantity is independent of the sensor gain and
the radiant intensity of the source. By computing
the above quantity (log of ratio) for two different
light sources in the scene and taking their ratio, the
relative depths of the two source locations can be
computed:

R0i
R0j

D di

dj
: (10)

Hence, the relative depths of all sources (with
unknown radiant intensities) in the scene can be
computed from two images taken under unknown
but different haze or fog conditions.

2. Depth from Airlight: Under dense fog and close-by
objects or mild fog and distant objects, attenuation
of object brightness is severe, and airlight is the
main cause of image irradiance. Also, in the case of
dense haze around noon, airlight dominates. In these
scenarios, scaled scene depths can be computed
from a single image [5, 9].

Let a scene point at depth d produce airlight radi-
ance L.d; �/. If the camera has a spectral response
s.�/, the final brightness value recorded for the
scene point is

E 0.d/ D g

Z
s.�/L.d; �/d� ; (11)

where, as before, g accounts for the constant of
proportionality between scene radiance and image
irradiance. Substituting the model of airlight from
Eq. 4:

E 0.d/D
Z

gs.�/L.1; �/ .1 � e��.�/d /d�: (12)

By assuming that the scattering coefficient �.�/ is
more or less constant over the spectral band of the
camera,

E 0.d/ D E.1/ .1 � e��d / : (13)

This equation gives a relationship between the
observed airlight intensity E 0 and the scaled scene
depth �d . E.1/ is the image intensity correspond-
ing to a scene point at infinity and can be measured
from the image if the horizon is visible (this part can
be identified as the brightest region of the image).
Then, the scaled depth can be computed as

� d D ln

�
E.1/

E.1/� E 0.d/

�
: (14)

3. Depth from Chromatic Decomposition: So far in the
entry, attenuation and airlight have been considered
separately. At night, there can be no airlight (since
there is no environmental illumination) and hence,
attenuation dominates. In contrast, under dense fog
or haze during daylight, the radiance from a scene
point is severely attenuated and hence airlight dom-
inates. However, in most situations, the effects of
both attenuation and airlight coexist.

Narasimhan and Nayar presented a technique
[6, 9] to recover depths for these situations by
considering the chromatic effects of atmospheric
scattering. The key idea is that the spectral com-
position of the irradiance at a scene point is the
weighted sum of two distributions, corresponding to
the direct transmission after attenuation and airlight.
The weights are a function of the weather condi-
tions. Using this model, the authors showed that it
is possible to recover depths by capturing and per-
forming simple arithmetic operations on two images
of the scene under different bad weather conditions.
For details, the reader is referred to Refs. [6, 9].

4. Depth from Dehazing: There are several techniques
which explicitly remove the effects of scattering
from the images, for example, using polarization
[8, 10] or image priors [16–18]. While the primary
goal of these dehazing techniques is to improve vis-
ibility in the images, as a by-product, scene depths
are also recovered by using the technique outlined
in the section Depth from Airlight on the separated
haze layer (airlight).

Open Problems

A long-standing open problem has been single image
dehazing, that is, removing the effects of atmo-
spheric scattering using a single image. This would
enable image and scene recovery for dynamic scenes.
Recently, there have been a few techniques which have
addressed this problem [16–18]. In order to account
for the under-constrained nature of the problem, these
techniques use a variety of scene priors [16–18].
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Definition

Shape from shadows is the inference of the three-
dimensional shape of objects from their shadows.

Background

David Waltz first introduced to computer vision the
problem of shape from shadows while attempting
to segment objects that had sharp edges in a three-
dimensional scene under various lighting conditions
[1]. The problem was then refined to arbitrary sur-
faces [2]. Nowadays, shape from shadows is a cue
commonly used when one is interested in inferring
the three-dimensional structure of a visual scene.
A benefit relative to other cues such as stereopsis
or motion parallax is that it is available in a sin-
gle image. Shape from shadows differs from shape
from shading because in the latter the useful infor-
mation is the gradient of reflected light on a curved
surface, whereas shape from shadows considers that
the information coming from the area inside cast
shadow is uniform (there are no variations inside
the shadow that are related to the scene geometry
[3]). However, it is important to remember that sim-
ilar to most cues to three-dimensional shape, shape
from shadows is an under-constrained problem in
the sense that several critical scene parameters are
often unknown, in particular the light source position
and the nature of the surface on which the shadow
is cast.

Shadow Identification
The first serious problem in shape from shadows is
to identify a region of the image as a shadow. Dark
regions on a surface can be caused by the
absence of illumination or by a darker sur-
face reflectance (albedo). The cues that allow
humans to distinguish variations in light inten-
sity from variations in material properties include
luminance relations across shadow borders, figural
relations, 3D-shape, depth, color, texture, and motion
[4]. In computer vision, very promising results have
been obtained if a shading model is assumed [5].

Another dichotomy exists between self-shadows (or
attached shadows, i.e., shadows cast on the object
itself) and cast shadows (shadows cast on a remote
surface) [6]. This differentiation can be achieved to
some extent by using some invariant color properties
[7]. In addition, a variety of geometrical constraints of
self-shadows on a smooth surface have been derived
[8, 9]. The list of shadow properties that human and
artificial visual systems could use is still open [10].
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Shadow Correspondence Problem
In order for shadows to be useful, appropriate parts of
an object should be matched to corresponding parts
of shadows. The choice of the appropriate features
to solve the correspondence problem is still a topic
of intense research [11]. Potential candidates include
points of high curvature along the object and shadow
contours, some Fourier components for textured sur-
faces [12], or only the low spatial frequencies if one
is merely interested in inferring where an object is rel-
ative to the background [11]. The shadow correspon-
dence problem is more complex when the receiving
surface is not flat. In particular, perceptual problems
are thought to arise when the receiving surface is
saddle shaped [13].

Using multiple images of the scene under various
illuminations, especially if the light source positions
are controlled in an active way, is highly beneficial
[14, 15]. Multiple images can also be useful to detect
the presence of concavities in an object [16].

Open Problems

Object segmentation and recognition are believed to be
easier when shadows are absent from the image [17].
Is it true, and if so, what is the best method to eliminate
shadows in a scene?

The dual problem of shape from shadows is to
infer the illumination from shadows [18]. Should we
separately estimate the shape and the illumination
from shadows or is it better to attempt to infer both
simultaneously?

Moving shadows bring new challenges for object
segmentation and tracking [19]. So why do human
observers appear to excel at extracting the spatial lay-
out of a scene when moving shadows are present [20]?
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Synonyms

Shape from outlines of projection; Visual hull
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Related Concepts

�Visual Hull

Definition

Shape from silhouette (SfS) algorithms compute the
(approximate) 3D shape of an object from multiple 2D
projections considering only the outline of the object
in the projections. The most important class of SfS
methods are Visual Hull algorithms.

Background

The problem of computing shape from outlines
(silhouettes) of projections is generally undercon-
strained. Depending on the object’s geometry and
the number of available views, approximations can
be computed which are sufficient for some appli-
cations. Often, the SfS output serves as initializa-
tion for appearance-based shape reconstruction meth-
ods such as volumetric reconstruction or multiview
stereo.

The most general class of SfS approaches, where
no assumptions about the type of objects to reconstruct
are made, are the Visual Hull algorithms (e.g., [1–4]).
These are treated in a dedicated article.

If the class of objects to handle is restricted, spe-
cialized model-based algorithms can solve SfS-like
problems even for a single view. In this case, the 3D
shape is not actually reconstructed. The algorithms
rather compute a shape within the scope of the model
that satisfies silhouette constraints and otherwise max-
imizes domain-specific priors (e.g., a likelihood with
respect to a learned distribution). Examples are [5, 6],
where human body pose is estimated from a single sil-
houette, or [7] where the shape of a head is estimated
from a face profile.
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�Shape from Specularities

Shape from Specularities

Silvio Savarese
Department of Electrical and Computer Engineering,
University of Michigan, Ann Arbor, MI, USA

Synonyms

Shape from specular reflections

Definition

Specular reflections or specularities carry valuable
information about the geometry of reflective surfaces
and can be used to recover their shape.

Background

Cues such as texture and shading are often inadequate
for recovering the shape of shiny reflective objects. For
such objects it is not possible to observe their surfaces
directly, rather only what they reflect. Yet, specular
reflections present an additional cue that potentially
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Shape from Specularities, Fig. 1 The basic shape from spec-
ularity problem. Given a scene point reflected off a specular sur-
face M at r and given its observation in the camera image plane
at q, the goal is to recover 3D location of r and higher-order local
parameters of M around r

may be exploited for shape recovery. A curved mirror
produces “distorted” images of the surrounding world.
For example, the image of a straight line reflected by
a curved mirror is, in general, a curve (Fig. 2). It is
clear that such distortions are systematically related
to the shape of the surface. Is it possible to invert
this map and recover the shape of the mirror from its
reflected images? The general “inverse mirror” prob-
lem is under-constrained: by opportunely manipulating
the surrounding world, we may produce a great variety
of images from any curved mirror surface. This inverse
problem may become tractable under the assumption
that some knowledge about the structure of the scene,
the shape of the object, or the observer is available.

Theory

The basic shape from specularities problem is formu-
lated as follows: Let M be a reflective surface whose
shape is unknown (Fig. 1). Consider a camera observ-
ing M and let c be the camera projection center. Given
a scene point (or light point source) p, let q be the
image of p observed in the image plane through a spec-
ular reflection on the reflective surface at r. Let nr be
the unit normal to the surface at r (i.e., the normal
of the tangent plane of M at r). The main objective
of the shape from specularities problem is to recover
the 3D location of r in the camera reference system

given the observation q. Often, it is desirable to recover
higher-order local shape information around r. In this
case the objective is to estimate r, the unit normal nr ,
and second- or higher-order local parameters of M at r
such as, for instance, directions and magnitudes of the
surface principal curvature at r.

If the camera is calibrated (i.e., if the internal
camera parameters are known), the surface position
at r is completely determined by a single distance
parameter s. This is easy to show: It follows from the
perspective projection constraint that the point r must
belong to the line defined by c and q, resulting in the
following relationship:

r D c C s d; (1)

where the unit vector d D .q� c/= jjq � c jj is parallel
to the line of sight and s D jj r � c jj is the distance
from c to r. It follows that r is known up one degree
of freedom (i.e., s). Notice that no information about
the surface normal nr or other higher-order surface
parameters can be obtained in this case.

Assumptions on geometrical configuration of the
scene (light source) or the reflectance properties of the
surface lead to further constrains for estimating s and
higher-order local shape information around r. Some
of the most notable cases are:
– Single calibrated scene point (light point source).

If one assumes that the location of p is known in
the camera reference system, it can be shown that r
and nr are known up to one-dimensional family of
solutions parameterized by s [1, 2]. This unknown
can be determined if one further assumes that p is at
infinity [3].

– Extended calibrated scene (light source). The fol-
lowing assumptions are made. Assume that (at least)
three points fpi ;pj ;pkg can be identified within
a neighborhood of a scene planar patch and their
reflection fri ; rj ; rkg off the surface M are observ-
able in the image plane as fqi ;qj ;qkg (Fig. 2).
Assume that correspondences between image points
and scene points can be established (e.g., one knows
that qi is the observation of reflection ri of scene
point pi , for any i ). Then, it can be shown that
location of fri ; rj ; rkg and corresponding surface
normals at fri ; rj ; rkg can be recovered as long
as fpi ;pj ;pkg are close enough and are not col-
inear. Moreover, second-order information of M

at fri ; rj ; rkg (i.e., directions and magnitudes of
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Shape from
Specularities, Fig. 2 Local
shape of a reflective surface
M can be recovered up
second order if (at least) three
points fpi ; pj ; pkg (along
with their observations
fqi ; qj ; qkg) can be identified
within a small planar patch in
the scene [1]
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principal curvature) can be estimated up to one-
dimensional family of solutions. Details of this
analysis are presented in the theoretical work by
Savarese et al. [1] where necessary and sufficient
conditions for reconstructing the local shape of
a specular surface from one or multiple reflected
calibrated points and (or) lines are discussed.

– Known reflectance model for the surface. If
the reflected light is modeled using a physical
reflectance model such as the Torrance-Sparrow
BRDF model [4], a reflected point on the surface.
can be in general characterized by an extended pat-
tern which is typically indicated as a highlight. It
can be shown that by measuring the radiance falloff
of specular highlights [5], the local curvature can be
estimated.
Several practical methods have been proposed for

recovering the shape of specular surfaces that use a
setup similar to that in Figs. 1 and 2 wherein a cal-
ibrated fixed camera observes a scene element (light
source) being reflected off the surface. Methods vary
depending on whether the scene is calibrated or uncal-
ibrated, static or time varying, and point source or
extended. Pioneering work by Ikeuchi [3] and, later,
works by Sanderson et al. [6] utilize distant light
sources which are sequentially activated so as to gen-
erate sequences of point source reflections. Halstead
et al. [7] and Tarini et al. [8] use extended scene
structures composed of conically shaped patterns and
a sequence of striped patterns, respectively. These
methods recover the complete surface of a shiny object
by iteratively fitting a parametric representation of the

shape to local measurements. Zheng and Murata [9]
propose a system where the object rotates while being
illuminated by extended radial light sources. Savarese
et al. [1] use a single calibrated grid pattern similar
to that in Fig. 2 to obtain sparse local surface esti-
mates (up to second order). Rozenfeld et al. [10]
extend this analysis and demonstrate that dense recon-
struction can be obtained from sparse correspondences
between scene points and observations. Kutulakos and
Steger [11] exploit directed ray measurements of a
calibrated planar target reflected off the surface and
positioned at different locations in the world reference
system. Adato et al. [12] show that it is possible to
relax the hypothesis of calibrated scene by analyzing
the reflection of a time varying distant unknown scene
observed by an orthographic camera.

Additional constraints for estimating the reflection
point r (along with higher-order shape information)
can be obtained by having multiple observations of r
from different vantage points. These observations can
be generated from a moving camera. Unfortunately,
standard structure from motion (SFM) constraints
based on epipolar geometry [13] cannot be used in this
case: As the camera vantage point changes, reflected
points move (flow) on the surface following the law
of reflection; this violates the assumption of static
3D points which is essential in SFM methods. As
shown in the pioneering studies by Koenderink and
van Doorn [14], Blake [15], and Zisserman et al.
[2], even when multiple observations of the same
reflected point r are available, r and nr can still be
estimated up to one-dimensional family of solutions
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(whereas the local concave/convex shape ambiguity
can be determined [15]). Similarly to the case of static
cameras, additional constraints are required to estimate
the unknown parameters. The theoretical analysis in
Oren and Nayar [16] and more recently the level set
formulation by Solem et al. [17] demonstrate that cam-
era movements allow to recover 3D surface profiles if
boundary conditions at object occluding contours are
used. Bonfort and Sturm [18] develop a discrete multi-
view approach where the surfaces reflect a calibrated
3D scene using a volumetric stereo framework [19].
Roth and Black [20] relax the assumption of calibrated
scene by introducing a probabilistic formulation-based
expectation-maximization that combines cues from
specular and diffuse components, the former being
defined as specular flow.

Application

Modeling the shape of reflective surfaces is valuable
in numerous research and industrial applications such
as digital archival (e.g., acquisition of digital mod-
els for preservation of artistic artifacts with reflective
components), medicine (e.g., noninvasive inspection
of organs such as the cornea of the eye [7]), and
metrology of industrial parts.
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Definition

The shock graph is obtained from the 2D Blum medial
axis by incorporating properties of the radius func-
tion along the skeleton. The direction in which the
radius function increases, or equivalently, the direc-
tion of the grassfire flow, is used to order groups of
skeletal points and to derive parent-child relationships.
This results in a directed acyclic graph whose nodes
represent skeletal points and whose edges represent
adjacency relationships. A variant of this construction
associates skeletal points with edges, with the nodes
representing the adjacencies.

Background

When Blum conceived of the medial axis or skeleton,
his goal was to use it as a means to categorize objects
from their projected (2D) outlines [4]. Specifically,
by associating the direction of increasing radius value
along a skeletal branch, or equivalently the direction of
propagation of singularies of the grassfire flow, he pro-
posed the concept of an axis-morphology or a-morph
by which to achieve object categorization. His basic
insight was that this could lead to a decomposition that
reflected the qualitative part structure of the object. As
an example, ignoring their detailed boundary geom-
etry, outlines of hands would have similar a-morphs
and these would be quite distinct from those of out-
lines of humans, fish or other object classes. In fact,
he drew upon these later examples towards the end of
his classic paper [4], where he also sketched possible
extensions to 3D.

Whereas much has been written about medial or
skeletal representations over the years (see [23] and
also the medial axis/skeleton entry in this encyclope-
dia) the idea that an a-morph was essentially a directed
graph which could be used for object recognition
caught on only in the early 1990s. One likely reason
is that it took the image analysis and computer vision
communities many years to develop robust algorithms
for skeleton computation. Since this time, however, a
variety of successful approaches to view-based recog-
nition using shock-graphs have been proposed and
have been validated on large databases. Several of
these are described in the present entry. There also

exist more recent variants of the shock graph, such
as Macrini et al.’s bone graph [14], which attempt to
mitigate the representational instability of the Blum
medial axis. In fact, the mapping of the Blum skele-
ton to a graph-based representation, of which the shock
graph is the most widely researched example, remains
an active area of investigation.

Theory

The Blum medial axis or skeleton of a 2D outline
is homotopic to it and is comprised of three types
of skeletal points: endpoints of skeletal curves, inte-
rior points and branch points. The branch points are
generically of degree 3, i.e., three skeletal curves are
connected at a branch point. A formal classification
is presented in [11]. The shock graph takes the 2D
skeleton of a simple closed curve as input (one with-
out holes) and labels each skeletal point according to
whether the radius function at it is increasing mono-
tonically (a 1-shock), is a local minimum (a 2-shock),
is constant (a 3-shock) or is a local maximum (a 4-
shock). Groups of adjacent 1-shocks are considered
together, as are groups of 3-shocks. Given this interpre-
tation, a directed acyclic graph is obtained by consider-
ing the skeletal points with the largest radii, which are
the last to form in the grassfire flow, as the children of a
dummy root node. The children are then placed, recur-
sively, in order of decreasing radius value. This process
of reversing the grassfire flow and adding 1-shock
groups or 3-shock groups as children, is governed by
the rules of a grammar, as shown in [24].

Rather than provide all the details of the grammar
in this entry, the reader is referred to the examples
in Fig. 1, which show the construction of the shock
graphs of two brush shapes. The medial axis of each
object is shown in the bottom row, with distinct groups
of shocks being given a unique color (3-shocks are
shown in yellow). In the labeling, the shock type
appears first, followed by a unique identifier. The asso-
ciated shock graphs are shown in the top row. It is
clear that each shape is abstracted by a single root
node (the 3-shock group describing the elongated por-
tion of the brush), with its children being additional
protrusions (1-shock groups). One of these protrusions
has a 3-shock group as a child, which describes the
handle of each brush. From this example it is evident
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Shock Graph, Fig. 1 The shock graphs derived for two differ-
ent views of a brush using the algorithm of Siddiqi et al. [24]
are represented in the top row. The bottom row depicts the

correspondences between nodes in the shock graphs computed
by the matching algorithm

that the shock graph is a formalization of Blum’s
a-morph, with the advantage that it lends itself to the
use of graph-based methods for object categorization,
as detailed below.

It is also important to point out that there is a variant
of the shock graph where the representation places the
skeletal points at edges of the graph, with the nodes
representing connections. This variant is described in
detail in [18, 19]. This representation has lead to dif-
ferent but equally successful methods for object recog-
nition, based on a notion of the edit-distance between
two graphs. The results of using this approach are also
briefly described below.

Shock Graph-Based Object Categorization

An object categorization system based on shock graphs
consists of two components: (1) an indexing compo-
nent, which takes an input shock graph and returns,
from a large database of model shock graphs, a small

number of candidate shock graphs that might account
for the input; and (2) a matching component, which
takes one of the candidates and the input, and com-
putes a similarity (or distance), along with a set of node
correspondences. Under ideal conditions, the input
shock graph would contain no artifacts due to noise,
occlusion, or clutter, and would be isomorphic to one
of the model shock graphs (provided that the input
object represents one of the model objects). However,
such conditions are highly unlikely, for in addition to
noise, occlusion, and scene clutter, ligature-induced
instabilities [1] often lead to spurious nodes/edges as
well as medial branch oversegmentation. Formulating
the problem as graph isomorphism, subgraph isomor-
phism, or even largest isomorphic subgraph will not
lead to a meaningful solution, for large, or even signif-
icant isomorphisms may simply not exist between two
shock graphs that represent instances of the same cat-
egory. The shock graph indexing and matching prob-
lems are therefore inexact graph indexing/matching
problems.
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Indexing Shock Graphs
Given an input shock graph, the goal of the index-
ing module is to quickly (sublinearly) retrieve a small
number of candidate model database shock graphs
among which the input is likely included. As men-
tioned above, the input shock graph may be corrupted
in a number of ways, precluding a simple global (based
on the entire input) indexing framework. For example:
(1) occlusion may remove part of the input shock graph
and replace the missing part with a shock graph (or
subgraph) belonging to a different object; (2) shadows
or poor ilumination may simply delete some portion of
the input shock graph; (3) scene clutter may embed the
object shock graph (or portion thereof) in a much larger
“scene” shock graph; and (4) ligature-based instabil-
ity may introduce spurious nodes or may overpartition
other nodes in the input shock graph. These factors
require a part-based indexing framework that can oper-
ate in the presence of noise, occlusion, clutter, and
ligature-based instability.

One such indexing framework that is applicable
to not only shock graphs but any hierarchical, graph-
based representation (specifically, any directed acyclic
graph-based representation) was introduced by Shoko-
ufandeh et al. [22], originally for the purpose of shock
graph indexing. The key concept behind the approach
is to capture the abstract shape of a graph (or subgraph)
with a low-dimensional vector, yielding an efficient
indexing mechanism. Capturing the abstract shape of a
graph is important so that the index is invariant to noise
and minor within-class shape deformation. Indexing at
the part level is important in the presence of occlusion
and scene clutter. Mapping a discrete graph structure
to a low-dimensional point facilitates a simple nearest-
neighbor search in a geometric space for similar model
parts which, in turn, can vote for those model objects
that contain those parts. Those model objects receiv-
ing the largest votes represent those candidate objects
passed to the shock graph matching module for a more
detailed analysis.

The graph-based shape abstraction is computed
at every non-leaf node, and captures the abstract
“shape” of the underlying subgraph rooted at that
node. Therefore, each non-leaf node (with only four
shock graph node types, leaf nodes are far too
uninformative/ambiguous) “votes” for those objects
that share its substructure; the root of the graph
would therefore vote at the object level, and would be

meainingful only if the object were unoccluded and not
embedded in a larger scene. Mapping the structure of a
rooted subgraph to a vector assigned to the subgraph’s
root is based on a spectral analysis of the graph’s struc-
ture. The eigenvalues of a graph’s adjacency matrix
(whose values are 0,1,�1) capture important proper-
ties of the degree distribution of the graph’s nodes.
The eigenvalues can be combined to yield a low-
dimensional abstraction of the graph’s shape in terms
of how and where the edges are distributed throughout
the graph. Moreover, such a spectral “signature,” called
the topological signature vector, is proven to be sta-
ble under minor perturbations of graph structure due to
noise. Details of the approach are found in [22], while
an application of the same indexing framework to a
different hierarchical graph, specifically a 3-D medial
surface graph, can be found in [25].

Matching Shock Graphs
Given two shock graphs, e.g., one representing the
input and one representing a model candidate, the
matching component needs to return not only a similar-
ity or distance measure that can be used to rank order
the candidates, but also an explicit correspondence that
defines which model nodes correspond to which input
nodes. Such correspondence is necessary, for in the
case of a cluttered scene, those nodes found to match a
given model would be removed, and another candidate
model matched to the remaining nodes. Moreover, the
correspondence need not be one-to-one, for in the case
of ligature-induced medial branch oversegmentation,
node correspondence many be many-to-many.

Siddiqi et al. [24] developed a matching algorithm
for shock graphs which, like the indexing framework
of Shokoufandeh et al. [22] discussed above, can be
applied to the matching of any directed acyclic graph
structure, provided that a domain-dependent node sim-
ilarity function is given. The algorithm is based on the
same spectral graph theoretic abstraction that forms
the heart of the indexing component described above.
The algorithm fomulates the matching of two graphs
as finding a maximal matching in a bipartite graph
over the two nodes sets (input and model). The edge
weights (each spanning one input shock graph node
and one model shock graph node) in the graph have
two components: (1) the distance between the two
nodes’ respective topoligical similarity vectors, defin-
ing the similarity of their underlying graph structures
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(rooted at the two nodes); and (2) a node similar-
ity function (the only domain-dependent component
of the algorithm) that defines the similarity of the
node attributes (for shock graphs, this encodes the geo-
metric similarity between the two skeletal branches
corresponding to the two nodes).

At first glance, the matching algorithm would seem
to throw out all the important hierarchical structure in
the two graphs (absent in the bipartite graph); nodes
in one graph are matched to nodes in the other graph,
but the edges in the two original graphs appear to play
no role. However, the key contribution of the algo-
rithm is that the hierarchical edge structure is brought
back via the topological signature vector similarity
term. For the bipartite matching algorithm to match
two nodes (i.e., select that edge in the matching), both
their geometric similarity and their topological simi-
larity must be high. In other words, the contents of the
two nodes must be similar and the subgraphs rooted at
the two nodes must be similar. The algorithm iterates
by computing a matching, selecting the best edge from
the matching (having maximum similarity), adding it
to the solution set, and recursively continuing the pro-
cess on the remaining graphs (after removing the pair
of matching nodes defined by the best edge). Details
of the approach are found in [24], while its applica-
tion to other shape matching problems is described in
[21] (multiscale blob and ridge graphs), [25] (medial
surface graphs), and [8, 26] (curve skeleton graphs).

The above algorithm eventually yields a one-to-
one node correspondence between the two graphs.
However, because the algorithm generates the node
correspondence in a coarse-to-fine manner, stopping
the algorithm at the level of a coarse node-to-node cor-
respondence defines an explicit many-to-many corre-
spondence between the nodes in the subgraphs rooted
at the coarse nodes. Moreover, since the topological
signature vectors are stable under small amounts of
additive graph noise, similarity can remain high even
though the two subgraphs may have different numbers
of nodes. As the cardinalities of the two graphs’ node
sets begin to differ more dramatically, for example
due to heavy under- or over-segmentation, the method
breaks down and more powerful many-to-many graph
matching must be employed.

One such method for many-to-many graph match-
ing of medial axis-based graphs was proposed by
Demirci et al. [ 9, 10]. Their algorithm transforms the

graphs into a finite dimension metric space in which
an approximate solution to the many-to-many match-
ing problem becomes tractable. The embedding step
will result in a set of points, each representing a vertex
of the original graph. Their proposed embedding has
the additional property that pairwise distances between
points in the target metric space closely resemble
the shortest-path distances between the corresponding
nodes in the graphs. Matching two graphs can then
be formulated as the problem of matching their two
embeddings. The many-to-many matching of the two
embeddings then can be computed by solving a trans-
portation problem using the Earth Mover’s Distance
algorithm [7]. The solution of this latter problem com-
putes the mass which flows from one weighted point
set to another that minimize the total transportation
cost. The computed flows, in turn, define the many-
to-many node correspondences between the original
graphs.

The problem of matching shock graphs has also
been studied in the context of edit-distance meth-
ods [18, 29]. These algorithms estimate the cost of
matching as a function of edit operations, including
node relabelings, additions and deletions, and edge
contraction that transform one graph into another.
A fundamental issue in devising algorithms based on
edit-distance is the choice of cost of each operation.
Torsello and Hancock [29] use the heuristic proposed
by Bunke [5] for the cost associated with their edit
operations. For example, the cost of relabeling ele-
ments is less than the cost of performing a deletion
followed by inserting a new node with a new label.
In contrast, Sebastian et al. [18] propose a multi-
step heuristic to derive their edit costs. Their overall
heuristic is centered around the notion of a shape cell,
i.e., a collection of shapes which have identical shock
graph topology. They define the cost of the deforma-
tion operation as a function of the discrepancy between
matching shock attributes of shapes within a given
cell. The cost associated with other edit operations is
derived as the limit of the deformation cost when a
shape moves to the boundary a shape cell.

Caelli and Kosinov [6] show how inexact matching
can be utilized for measuring shape similarity between
shock graphs. Their method establishes correspon-
dence between sets (clusters) of vertices of two given
graphs and as such can be viewed as a many-to-many
matching approach. Their algorithm can be viewed as
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Shock Graph, Fig. 2 Similarity between database and class prototypes computed using the algorithm of Siddiqi et al. [24]. In each
row, a box is drawn around the most similar shape

a generalization of the approach of Scott and Longuet-
Higgins [17]. The actual matching is established using
the renormalization of projections of vertices into the
eigenspaces of graphs combined with a form of rela-
tional clustering. Similar to other inexact matching
algorithms, their eigenspace renormalization projec-
tion clustering method is able to match graphs with
different numbers of vertices.

Experimental Results

This section presents some examples of shock graphs
and their matchings using the approaches described
above. Figure 1(top) illustrates two shock graphs,
describing different views of a brush, computed by
the algorithm of Siddiqi et al. [24]. The underlying
shocks, along with the computed matchings between
segments (nodes), are shown in Fig. 1(bottom).

Figure 2 represents the ability of the algorithm to com-
pare objects based on their prototipical or coarse shape.
Here, columns 2 through 10 denote the prototype views
for each of nine object classes. The similarity between
the prototypes and some of the objects in the database
is reflected in the rows of this table. For each row, a
box has been placed around the most similar shape.
Demirci et al. [9] also evaluated the effectiveness of
their matching algorithm for shape retrieval based on
shock graphs from the Rutgers Tool Database [24].
Figure 3 shows some examples of the many-to-many
feature matching results obtained from the algorithm
for some of the objects in the Rutgers Tools Database.
Finally, Fig. 4 shows the results obtained from apply-
ing the edit-distance algorithm of Sebastian et al. [18]
to the matching of shock segments. Note that their
edit distance algorithm will also produce a sequence
of intermediate shock graphs that identify the steps of
the transformation of one input shock graph to another.
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Shock Graph, Fig. 3 The
results of matching skeleton
graphs for some pairs of
shapes in the Rutgers Tools
Database using the algorithm
of Demirci et al. [9] .
Corresponding segments are
shown using the same color.
Observe that correspondences
are intuitive in all cases
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Shock Graph, Fig. 4 The matching results for a few shock
graphs produced by the edit-distance algorithm of Sebastian
et al. [18]. Matching shock branches are shown using the same

color, while the gray colored edges in the shock graphs indicate
that they are spliced or contracted

Open Problems

Symmetry is a powerful shape regularity that has
formed the basis of many shape representations,
including generalized cylinders [3], superquadrics
[16], and geons [2]. Just as geons provide a quali-
tative and discrete shape abstraction of a generalized
cylinder, shock graphs provide a discrete and qualita-
tive shape abstraction of a medial axis. The resulting
graph is ideally suited to shape categorization, for it
is part-based, is stable under within-class deforma-
tion, and is stable under part articulation. However,
the shock graph also faces some important challenges.
First of all, it assumes that a closed contour has been
recovered from an image, separating figure from back-
ground. While figure-ground segmentation remains an
open research problem, it is important to note that
in a categorization system, a perfect figure-ground
separation may not be necessary. If a significant por-
tion of the figure’s boundary is correctly segmented,
a significant portion of the resulting shock graph
may be correct – enough to yield the correct candi-
date (among the list of returned candidates) during
indexing. Still, while a shock graph does preserve

locality of representation, significant figure-ground
segmentation errors can propagate through the rep-
resentation, disrupting it to a degree that prevents
effective indexing. A recent attempt to recover a sym-
metric part decomposition from a cluttered scene has
been reported by Levinshtein et al. [13], in which sym-
metric parts are detected locally (bottom-up) and then
grouped to form an approximation to a medial axis.

The second challenge facing the shock graph is
the ligature-based instability discussed earlier [1]. A
number of approaches exist to try and regularize the
medial axis through boundary smoothing, e.g., [12,
20, 27]; however, these methods do not effectively
address the ligature structure. Other methods have
sought to abstract the medial axis by regularizing out
small internal branches, e.g., [28, 30]; however these
methods don’t explicitly target ligature structure. A
recent promising approach to abstracting out ligature
structure is proposed by Macrini et al. [14, 15], yield-
ing a representation, called the bone graph, whose
parts are the non-ligature medial branches that repre-
sent the salient parts and whose edges represent the
“glue” (defined by the ligature branches) that binds the
parts.
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Definition

Simulated annealing is a stochastic computational
technique derived from statistical mechanics for
finding near globally-minimum-cost solutions to large
optimization problems [1].

Background

Many computer vision problems require the minimiza-
tion of an application dependent objective function in
a high-dimensional state space subject to conflicting
constraints. Finding the global minimum can be an
NP-complete problem since the objective function
tends to have many local minima. A procedure for
solving hard optimization problems should sample
values of the objective function in such a way as
to have a high probability of finding a near-optimal
solution and should also lend itself to efficient imple-
mentation. A method which meets these criteria was
introduced by Kirkpatrick et al. [2] and independently
by Černy [3] in the early 1980s. They introduced
the concepts of annealing in combinatorial optimiza-
tion. These concepts are based on a strong analogy
between the physical annealing process of solids and
the problem of solving large combinatorial optimiza-
tion problems.

Theory

Statistical mechanics is the study of the behavior of
very large systems of interacting components, such
as atoms in a fluid, in thermal equilibrium at a finite
temperature. If the system is in thermal equilibrium
at a given temperature T , then the probability �T .s/

that the system is in a given state s depends upon the
energy E.s/ of the state and follows the Boltzmann
distribution:

�T .s/ D
exp

�
�E.s/

kBT

�
P

s02� exp
�
�E.s0/

kBT

� ; (1)

where kB denotes a physical constant known as the
Boltzmann constant and � the set of all possible states.

Using a technique developed by Metropolis
et al. [4], one can simulate the behavior of a system

of particles in thermal equilibrium at temperature T .
Suppose that at time t the system is in state qt . Then,
a subsequent state rtC1 is generated by a perturbation
mechanism which transforms the current state into a
next state. If the energy difference, E.rtC1/�E.qt /, is
less than or equal 0, the state rtC1 is accepted as cur-
rent state. Otherwise, the state rtC1 is accepted with
probability

p D �T .rtC1/

�T .qt /
D exp

�
�E.rtC1/� E.qt /

kBT

�
: (2)

Since the method accepts states that decrease the
energy as well as those that increase the energy, it is
the principle that avoids entrapment at a local mini-
mum. It can be shown that as t ! 1, the probability
that the system is in a given state s equals �T .s/, and
thus that the distribution of states generated converges
to the Boltzmann distribution [5].

In order to obtain a low-energy state of the energy
function E , one must use an annealing process, where
the temperature of the system is elevated, and then
gradually lowered, spending enough time at each
temperature to reach thermal equilibrium. Applying
simulated annealing to an optimization problem in
computer vision where the energy function becomes
the objective function to minimize, requires two
ingredients:
– An annealing schedule consisting of a starting tem-

perature, a decreasing set of temperatures, and the
amount of time to spend at each temperature;

– A perturbation mechanism that generates new states.
The annealing algorithm proposed by Kirkpatrick

et al. [2] consists of running the Metropolis-Hastings
algorithm [4, 6] at each temperature in the anneal-
ing schedule for the amount of time prescribed by the
schedule, and selecting the final state as a near-optimal
solution.

Geman and Geman [5] applied simulated anneal-
ing to image restoration and determined an annealing
schedule sufficient for convergence. Specifically, for a
given sequence of temperatures fTt g such that Tt ! 0

as t ! 1 and Tt � c
log.t/ for a large constant c,

the probability that the system is in configuration s as
t ! 1 is equal to �0.s/. For a finite set �, the optimal
annealing schedule for the convergence of the gener-
ated states to the set of global minima with probability
1 was determined by Hajek [7].
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Simulated annealing is not limited to discrete state
spaces. It can also be applied to minimize objec-
tive functions defined on Euclidean spaces, i.e.,
� � R

d , where similar convergence results have been
proved [8]. Further convergence results and detailed
discussions on simulated annealing are given in the
books [9, 10].

In the discrete case, the perturbation mechanism
depends usually on the application where some exam-
ples are given in [9]. In the simplest case, a new state
is randomly sampled from a local neighborhood of
the previous state, e.g., by permutations, swapping, or
inversions. In the continuous case, the visiting distri-
bution can be modeled as Gaussian distribution that
favors local search, the algorithm is also called Boltz-
mann machine, but also other distributions like the
Cauchy-Lorentz distribution, known as fast simulated
annealing [11], can be applied. This distribution results
in frequently local searches, but can also generate a
state that is very distant to the current state. Having
the state qt , a new state rtC1 D qt C 
s is generated
by sampling from

gt .
s/ D 1

.�Tt /
d
2

exp

�
�k
sk2

Tt

�

.Boltzmann machine/; (3)

gt .
s/ D
.dC1
2

/

�
dC1
2

Tt

.k
sk2 C T 2
t /

dC1
2

.Cauchy machine/: (4)

The new state is then accepted according to the prob-
ability p (2). An approach that covers Gaussian and
Cauchy-Lorentz distribution as special cases is called
generalized simulated annealing [12]. The generalized
acceptance probability (2) reads

p D
�
1C .a � 1/.E.rtC1/� E.qt //

T a
t

�� 1
a�1

; (5)

the generalized visiting distribution is defined by

gv
t .
s/ D

�
v � 1

�

� d
2 


�
1

v�1 C d�1
2

�


�

1
v�1 � 1

2

�
.T v

t /
� d

3�v

�
1C .v � 1/ k
sk2

.T v
t /

2
3�v

� 1
v�1C d�1

2

; (6)

and the generalized annealing schedule is given by

T b
t D T b

1

2b�1 � 1

.1C t/b�1 � 1
b 2 fa; vg: (7)

The additional parameters .a; v/ give an additional
flexibility where .1; 1/ corresponds to the Boltz-
mann machine and .1; 2/ to the Cauchy machine.
In practice, the optimal choice of .a; v/ depends on
the objective function and needs to be empirically
determined.

For speeding up simulated annealing, the algorithm
can be implemented in parallel [9]. The annealing prin-
ciple is also used for other optimization methods. For
instance, a deterministic annealing method has been
proposed for clustering [13] or an interacting particle
system with annealing properties has been proposed
in [14] and applied to human motion capture [15],
where at each iteration a set of particles estimates the
current distribution.

Application

Since its introduction in 1983, simulated annealing
has been applied for solving complex, non-convex
optimization problems in image processing and com-
puter vision. An overview of applications in the 1980s
including the work of Geman and Geman [5] is given
in [9]. Nowadays, simulated annealing is still an easy-
to-implement and practically useful tool for solving
a wide spectrum of optimization problems, particu-
larly for solving hard problems where no completely
successful heuristics exist. For an optimal perfor-
mance, however, the algorithm needs to be tailored to
the problem at hand.

Experimental Results

The following example for global optimization in R
2

is taken from [16]: Let

h.x; y/ D .x sin.20 y/C y sin.20 x//2 � cosh

.sin.10 x/ x/C .x cos.10y/ � y sin.10 x//2 �
cosh.cos.20 y/ y/ (8)
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Simulated Annealing, Fig. 1 (a) Function h.x; y/. (b) Visited
points using Boltzmann machine and initial temperature 100.
The starting point, .0:8; 0:8/, and the final estimate are indicated

by a white star. (c) Visited points using Cauchy machine. The
Cauchy machine cools down faster, focusing the search more on
low energy regions

Simulated Annealing, Table 1 Average and standard deviation for the obtained estimate . Ox; Oy/, its function value h. Ox; Oy/, and
the number of required function evaluations at different initial temperatures T1.

T1 . Ox; Oy/ h. Ox; Oy/� 105 ] function evaluations
Boltzmann 1 .�0:02; 0:04/˙ .0:23; 0:37/ 1:14˙ 2:00 1;681:9˙ 507:5

Cauchy 1 .0:42; 0:38/˙ .0:38; 0:43/ 700:61˙ 3241:27 1;504:4˙ 461:0

Boltzmann 10 .�0:04;�0:01/˙ .0:38; 0:51/ 7:16˙ 12:01 1;740:9˙ 573:0

Cauchy 10 .0:00;�0:02/˙ .0:46; 0:39/ 0:20˙ 0:55 1;732:0˙ 580:7

Boltzmann 100 .�0:02; 0:03/˙ .0:34; 0:33/ 2:41˙ 4:02 1;733:9˙ 560:8

Cauchy 100 .0:00; 0:02/˙ .0:19; 0:24/ 0:50˙ 1:12 1;802:6˙ 494:0

be the objective function to minimize (Fig. 1). Its
global minimum is 0, attained at .x; y/ D .0; 0/.

In Table 1, results are shown for the Boltzmann and
the Cauchy machine. The starting point was .0:8; 0:8/

and each simulation was repeated 100 times. Each sim-
ulation was stopped when the average change in value
of the objective function in 1;000 iterations was less
than 10�6. The table contains the average and standard
deviation for the obtained estimate . Ox; Oy/, its function
value h. Ox; Oy/, and the number of necessary function
evaluations.
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Synonyms

Generically describable situation; Situation scheme

Definition

Situation Graph Trees (SGT) provide a determinis-
tic formalism to represent the knowledge required for
human behavior modeling.

Background

In many domains, high-level descriptions to rep-
resent the status of an environment are desirable.
Describing a situation requires to conceptualize the
knowledge about the possible actions of the actors
involved in the environment and their possible interac-
tions. Conceptual descriptions of different application
domains like traffic analysis [1], parking lot security
[2, 3], and human behavior recognition [4] are of pri-
mary importance. The conceptualization can proceed
from simple descriptions (simple events) to complex
descriptions (complex events). Following relations,
concepts can be aggregated into more complex con-
cepts. Hence, an event can be described as a sequence
of simple events. To allow such an incremental descrip-
tion of the events, two main processes are required:
(a) modeling of the behaviors and (b) the reasoning
engine. Different approaches like Bayesian networks
[5], Hidden Markov models [6], and SVM [7] have
been recently introduced. However, in complex envi-
ronments, such models are difficult to apply as they
would require a large amount of data for training the
models. In such cases, a formalism to model behav-
iors by means of temporal and semantic relationships
or specialization of fundamental concepts can be use-
ful. Situational Graph Trees (SGTs) represent such a
modeling tool.

Theory

The Situation Graph Trees (SGTs) [4] provide a deter-
ministic formalism to represent the knowledge neces-
sary to describe an actor behavior. Generally, SGTs are
based on the description of the situation that consists
on an agent state and the possible actions that the agent
can actuate in such a state. Thus, a hierarchy of pos-
sible situation is defined on temporal and conceptual
terms. This means that given a recognized situation
only, its possible successor is evaluated at the next time
instant.

http://dx.doi.org/10.1007/978-0-387-31439-6_458
http://dx.doi.org/10.1007/978-0-387-31439-6_100093
http://dx.doi.org/10.1007/978-0-387-31439-6_100094
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Situation Graph
Trees, Fig. 1 Example of
SGT

The fundamental block of the SGT is the situation
scheme that represents the knowledge of an agent for a
given time instant. A situation scheme is composed by
sections:
– State: describe the state of an agent in terms of

predicates
– Action: describe the possible and supposed actions

that an agent can do whenever one of the state
predicates is satisfied
Situation schemes are connected by means of direct

edges (called prediction edges) to define a temporal suc-
cessor relationship between situation schemes. When
an agent is instantiated by its predicates, a possible
next situation is represented by a scheme pointed by
a prediction edge originated by the current situation.
If an agent keeps on staying in its current situation
for more than a single time instant, self-prediction
edges, starting from a situation and pointing to itself,
are used to model such a behavior. Thus, a situation
scheme can be a ring of a chain of situation schemes
describing a sequence of situations. Such sequences,

composed by situation schemes and prediction edges,
are called situation graphs. A situation can be tem-
porally or conceptually refined by particularizing its
situation scheme. In such a case, a situational graph
is connected to a situational scheme by means of a par-
ticularized edge. Following [4], it is possible to derive
the following definitions for SGTs.

Definition 1 (SGT-Episode) Any sequence E of situa-
tions inside a situation graph G that is a path from a start
situation to a end situation is defined as SGT-Episode.

Definition 2 (Particularized SGT-Episode) Any SGT-
Episode of a situation graph G particularizing a situation
scheme s is defined as a particularizing SGT-Episode.

Definition 3 (SGT-Event) Given a SGT T , an event is
defined as:
– Any SGT-Episode E within the root situation graph

of T .
– Given an SGT-Event E , replacing any situation S in E

with a particularized SGT-Episode of S is a new SGT-
Event.



Situation Graph Trees 743 S

S

Get_Off_Car

Person_Appears_near(Person,Car_1)

Parking_Car

Standing_on Parking Spot(Car_1)
Person_Appears_near(Person,Car_2)

Parked_On_Spot
On_Spot(Car_1,Position)
Has_speed(Car_1,speed)

Entering_Spot

Close_to_Spot_(Car_1,Position)
Has_direction(Car_1,path)

Not_near_Spot(Car_1,Position)
Has _speed(Car_1,speed)

Drive_To_Parking_Spot

Look_For_Parking_Spot

Change_Car

Is_true(Car_1,Car_2,Person)

Close_to_Spot(Car_1,Position)

Walk_To_Car

Person_Disappears_near(Person,Car_2)

Get_In_Car

Situation Graph Trees, Fig. 2 Example of SGT for an event of interest in a parking lot monitoring context

Definition 4 (Particularized SGT-Event) Given a SGT
T and a SGT-Event E , a SGT-Event OE is defined as a
particularized SGT-Event of E iff OE is obtained from
E by substituting any situation scheme S of E with a
particularized SGT-Episode of S .

Definition 5 (Maximal Event) Given a SGT T , any
SGT-Event E is a maximal event iff there not exists a
situation scheme S in E that can be substituted with a
particularized SGT-Episode of S .

Definition 6 (Compatible Events) Given a SGT T , E
and E 0 are compatible events iff:
– Each situation scheme in E is a situation scheme in E 0.
– For each pair .Si ; Sj / in E where Si proceed Sj , there

is the same pair in E 0.

Representation
The common representation of SGTs is given on
Fig. 1. Situation schemes are represented as rectan-
gles and situation graphs as set of rectangles with
rounded corners. Start situations (end situations) are
depicted with small rectangles in the upper left (right)

corner of the situation schemes. Prediction edges
are thin arrows that decide the current situation and
the possible next situation. Thick arrows represent
particularization edges.

Application

A common application of SGTs is the representation of
behaviors in video-surveillance context. In such a field,
contrarily to anomaly detection algorithm, expected
behaviors or behaviors of interest can be defined for
all the actors/agents operating inside the monitored
environment. To represent such behaviors, SGT can be
powerfully exploited. As example in a parking lot, the
monitoring application may be interested in detecting
and recognizing a person driving into a parking spot,
leaving the parked car, and driving away on board of a
second car. Such an event can be described by the SGT
depicted in Fig. 2 that can be further particularized in
the situation schemes of the first child node.
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Synonyms

Sparse representation

Definition

Sparse coding is the act of expressing a given input
signal (e.g., image or image patch) as a linear super-
position of a small set of basis signals chosen from a
prespecified dictionary.

Background

At a high level, the problem of sparse coding is one
of representing a given input signal as efficiently as
possible:

Given an input signal y 2 R
m (say an image or image

patch) and a dictionary of basis signals a1 : : : an 2 R
m,

find a good approximation

y � x1a1 C x2a2 C � � � C xnan

in which most of the coefficients xi are zero.

That is, we try to represent y as a linear combination
of basis elements in which only a few of the coef-
ficients are nonzero (i.e., the vector x D .x1 : : : xn/

is sparse). This deceptively simple problem arises
repeatedly in signal processing, modern statistics, and
machine learning. The most readily apparent applica-
tion is in data compression, where we can consider the
sparse coefficients x as a compressed representation of
the signal y. However, numerous additional applica-
tions arise in signal and image acquisition, denoising,
and inpainting. Sparse coding techniques have also
received significant attention in the statistics literature,
where sparsity is recognized as a means of regularizing
high-dimensional inference – in particular, for regular-
izing linear regression when the number of predictors
is larger than the number of observations.

These interactions make sparse coding a very
vibrant area of research, with contributions from statis-
tics, signal processing, optimization, applied mathe-
matics, and cognitive neuroscience. Indeed, the term
“sparse coding” originally comes from the neuro-
science literature, where it has been observed that
seeking a sparse codes for natural image patches yields
Gabor-like basis functions that resemble the receptive
fields in the human visual system [1]. In applied math-
ematics and statistics, a deep literature has developed
around the question of when it is possible to solve
sparse coding problems efficiently.

http://dx.doi.org/10.1007/978-0-387-31439-6_313
http://dx.doi.org/10.1007/978-0-387-31439-6_263
http://dx.doi.org/10.1007/978-0-387-31439-6_644
http://dx.doi.org/10.1007/978-0-387-31439-6_100096
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While the tools and problems encountered in sparse
coding have precedents dating back almost a century,
much of the development has been relatively recent. In
computer vision, techniques from sparse coding (and
related areas of sparse error correction and compressed
sensing) have been employed for recognizing faces
and objects, performing image upsampling, denoising,
and superresolution. At the time of writing this arti-
cle, sparse coding techniques are the subject of intense
exploration in the vision community [2].

Theory

The model problem in sparse coding is one of search-
ing for the sparsest representation of a given input
signal y as a linear combination of dictionary ele-
ments:

minimize kxk0 subject to Ax D y: (1)

Above, the `0-pseudonorm

kxk0 D #fi j xi ¤ 0g

simply counts the number of elements in x that are not
zero. Although conceptually desirable, the problem (1)
is computationally intractable (hard to approximate in
the worst case), and so it is common practice to replace
the `0 norm with a more tractable surrogate. One way
to do this is to instead minimize the `1-norm

kxk1 D
X
i

jxi j:

This gives a convex optimization problem

minimize kxk1 subject to Ax D y: (2)

This relaxation is well motivated, in the sense that the
`1 norm can be shown to be the tightest convex under-
estimator of the `0 norm over the set of all vectors
x with maxi jxi j � 1. Moreover, whereas the non-
convex cardinality minimization problem (1) does not
admit an efficient algorithm, the convex problem (2)
can be cast as a linear program and solved efficiently.
For more details on available techniques for solving

the optimization problem (2), the interested reader can
refer to the survey paper [3].

In certain situations, the link between (2) and (1)
can be made quite a bit tighter. When the dictionary
A satisfies technical conditions that essentially assert
that its columns are not too collinear, it can be shown
that these two problems are formally equivalent: the
tractable optimization (2) exactly recovers the sparse
solution to (1)! For example, suppose that the columns
ai of A have unit `2 norm, and let

�.A/
:D max

i¤j

ˇ̌˝
ai ;aj

˛ˇ̌
: (3)

Then, whenever y D Ax0 for some x0 satisfying

kx0k0 < 1
2
.1C 1=�.A//; (4)

we have that x0 is the unique optimal solution to the `1

minimization (2). That is to say, whenever there exists
a sufficiently sparse solution to the system of equa-
tions y D Ax, this solution will be recovered by `1

norm minimization. Variants of this result have been
obtained by a number of authors; the version described
above is due to Donoho and Elad [4]. There is a vast
literature on guarantees for `1-minimization – in par-
ticular, a family of beautiful results on `1-minimization
with random matrices A has inspired the recent devel-
opment of compressed sensing, an approach to more
efficiently acquire signals that are sparse in some
known basis. For readers who are interested in learning
more, one starting point is the survey paper [5].

In practice, the observation y may contain noise,
and so it is desirable to relax the constraint Ax D y .
This leads to a new convex program

minimize kxk1 subject to kAx � yk2 � "; (5)

which is known in the signal processing literature as
basis pursuit denoising [6]. Its Lagrangian reformula-
tion,

minimize kxk1 C �kAx � yk22=2; (6)

is known as the Lasso in statistics [7]. The optimization
problems (5) and (6) are equivalent under an appropri-
ate calibration " $ �, although no explicit expressions
for the corresponding parameters are known.

The theoretical results alluded to above make `1-
minimization a very attractive approach to sparse
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coding. However, it is by no means the only avail-
able algorithm. Researchers have explored a number
of nonconvex objective functions which may more
closely approximate the `0 norm in (1), at the expense
of being hard to solve in general. Examples include
the `p norms kxkp D .

P
i x

p
i /

1=p (0 < p < 1) and
entropy-like functions such as

P
i log.1C jxi j2/.

Greedy algorithms comprise another popular alter-
native to `1-minimization. These algorithms construct
a solution x via an iterative procedure that repeat-
edly selects a “best” dictionary element ai to add to
the representation. One prototypical example is the
Orthogonal Matching Pursuit (OMP) algorithm [8]
(which has been rediscovered in a number of different
settings). OMP maintains an active set of indices J and
a residual r. Initially, J is empty, and r D y. At each
step, the index j 2 f1 : : : ng that maximizes

ˇ̌˝
aj ; r

˛ˇ̌
is

added to the active set J . The sparse coefficients x are
estimated via

minimize ky �Axk22 subject to x.J c/ D 0: (7)

The residual r is updated as r D y �Ax. This proce-
dure is repeated until a sufficiently accurate approx-
imation to y is obtained. OMP is attractive for its
simplicity and also comes with performance guaran-
tees in some situations; the interested reader can refer
to [5] and the references therein for a start.

All of the algorithms described above assume that
the given observation y indeed has a sparse approx-
imation in terms of a known dictionary A. In some
situations, this can be guaranteed from prior under-
standing of the physical structure of the problem. For
example, in face recognition, the dictionary A can be
constructed from images of training faces chosen in
order to guarantee a good approximation of the test
image y [9]. In other situations, it may be possible to
design optimal representations for classes of signals –
as witnessed by the development of signal representa-
tions in signal processing and harmonic analysis over
the past few decades.

However, if the signal model is not known ahead
of time, or if the specific class of signals is believed
to have some additional structure, an attractive alterna-
tive is to attempt to learn the dictionary A itself from
sample data. This leads to a problem known as dictio-
nary learning, in which we observe multiple examples
Y D y1 : : : yp 2 R

m. The goal is to find a dictionary

A 2 R
m�n of basis functions and sparse coefficient

vectors X D x1 : : : xp 2 R
n such that Y � AX :

minimizeA;X kXk0 subject to kY�AXkF � ": (8)

Notice that here the minimization is with respect to
both A and X , and so even if we relax the `0 norm,
the resulting optimization problem,

minimizeA;X kXk1 C �kY �AXk2F =2; (9)

is not convex, and guaranteeing a global optimum
is difficult. The key observation is that if either A

or X is fixed, the optimization (9) becomes convex
in the remaining variable. This naturally suggests an
alternating directions approach:

XkC1 D arg min
X

kXk1 C �kY �AkXk2F =2 (10)

AkC1 D arg min
A

kX kC1k1 C �kY �AXkC1k2F =2:
(11)

Each of these subproblems can be solved efficiently. It
is not difficult to show that this procedure converges to
some pair .A?;X?/. However, unlike the problem of
sparse coding in a known dictionary A (as discussed
above), for dictionary learning there is currently no
theory to explain when the algorithm will succeed.
This is partially a consequence of the fact that the
unknowns A and X enter into the equation Y D AX

in a bilinear fashion – the dictionary learning prob-
lem is difficult to analyze for the same reason that it
is difficult to solve.

Nevertheless, empirical evidence suggests that there
are situations in which this approach learns very effec-
tive data representations, and many researchers have
used dictionary learning techniques to solve problems
in image processing and vision. In fact, much of the
initial excitement about sparsity in vision came from
the classical paper of Olshausen and Field [1], which
observed that the dictionary elements ai learned from
natural images patches are similar to the receptive
fields in the human visual system.

Many variants of the basic alternating directions
approach have been investigated in the literature. For
a more thorough history and additional references, we
refer the interested reader to the survey paper [10].
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Application

As alluded to above, at the time of this writing, numer-
ous applications of sparse coding are being explored
in the computer vision community. Due to their sheer
number, most of these works lie beyond the scope of
this article. In this section we briefly outline two exam-
ples of how the algorithms for sparse coding can be
useful for solving problems in imaging and vision.
The interested reader is invited to see [2] for a more
thorough review.

Our first example comes from automatic face recog-
nition [9]. In this application, the “dictionary ele-
ments” ai are training images of subjects in the
database. Several images of each subject are taken
under varying illumination, stacked as vectors in R

m

(here m D W � H is the number of image pixels),
concatenated together to form a large matrix A 2
R

m�n. Given a new test image y taken under new
illumination, and possibly subject to some additional
corruption or occlusion, one can solve a sparse coding
problem:

minimize kxk1Ckek1 subject to y D AxCe: (12)

Here, the sparse “error” term e allows some robustness
to occlusion, while the sparse coefficients x naturally
select images of the same subject to participate in
the representation of y . This sparse code can be used
for identifying the subject pictured in y or reject-
ing impostors not present in the database; see [9] for
details.

Another representative example comes in image
inpainting and superresolution [11, 12]. Suppose that
patches y of a given input image are known to
have good sparse approximations in some dictionary
A, learned from a large collection of natural image
patches. Suppose that some of the image pixels miss-
ing, so that rather than observing y 2 R

m, we observe
only a subset y.�/, where � � f1 : : : mg. Then, one
very natural approach to recovering the missing pixels
is to solve a sparse coding problem (In [11], greedy
algorithms are used, rather than `1-minimization.)

minimize kxk1 subject to ky.�/�P�Axk22 � "2;

(13)

where P� 2 R
j�j�m is a projection matrix onto the

coordinates indexed by �. Once the solution Ox is
recovered, one can estimate the missing elements via
Oy D A Ox. For more examples of how sparse cod-
ing algorithms can be used in inpainting and related
problems, see [11].

Open Problems

At the time of writing this article, there are numer-
ous open problems in sparse coding, many of which
are currently under vigorous attack. One question that
has received significant recent attention is how to
incorporate additional structure or prior knowledge
into the algorithm to allow more accurate recovery of
the sparse coefficients x. This leads to notions such
as “group sparse coding,” in which certain subsets
of coefficients are known to all be either active or
inactive, simultaneously [13].

For some vision applications, explaining the good
performance of sparse coding techniques and under-
standing their limitations remain open problems. At
the same time, with so much recent development, we
arguably have yet to fully realize the full power of
sparsity for vision problems.

References

1. Olshausen B, Field D (1997) Sparse coding with an over-
complete basis set: a strategy employed by V1? Vis Res
37(23):3311–3325

2. Wright J, Yang A, Mairal J, Sapiro G, Huang T, Yan S
(2010) Sparse representation for computer vision and
pattern recognition. Proc IEEE 98(6):1031–1044

3. Tropp J, Wright S (2010) Computational methods for
sparse solution of linear inverse problems. Proc IEEE 98(6):
948–958

4. Donoho D, Elad M (2003) Optimally sparse represen-
tation in general (non-orthogonal) dictionaries via `1-
minimization. Proc Natl Acad Sci 100:2197–2202

5. Bruckstein AM, Donoho DL, Elad M (2009) From sparse
solutions of systems of equations to sparse modeling of
signals and images. SIAM Rev 51(1):34–81

6. Chen S, Donoho D, Saunders M (2001) Atomic decomposi-
tion by basis pursuit. SIAM Rev 43(1):129–159

7. Tibshirani R (1996) Regression shrinkage and selection via
the Lasso. J R Stat Soc B 58(1):267–288

8. Pati Y, Rezaiifar R, Krishnaprasad P (1993) Orthogonal
matching pursuit: recursive function approximation with
applications to wavelet decomposition. In: Proceedings of



S 748 Sparse Representation

the Asilomar conference on signals, systems and computers,
Pacific Grove, CA. vol 1, pp 40–44

9. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009)
Robust face recognition via sparse representation. IEEE
Trans Pattern Anal Mach Intell 31(2):210–227

10. Rubenstein R, Bruckstein A, Elad M (2010) Dictionar-
ies for sparse representation modeling. Proc IEEE 98(6):
1045–1057

11. Mairal J, Elad M, Sapiro G (2008) Sparse representations
for color image restoration. IEEE Trans Image Process
17(1):53–69

12. Yang J, Wright J, Huang T, Ma Y (2010) Image super-
resolution via sparse representation. IEEE Trans Image
Process 19(11):2861–2873

13. Yuan M, Lin Y (2007) Model selection and estimation in
regression with grouped variables. J R Stat Soc B 68(1):
49–67

Sparse Representation

�Sparse Coding

Spatiotemporal Reasoning

David Young
School of Informatics, University of Sussex, Falmer,
Brighton, UK

Definition

Spatiotemporal reasoning is the use of time-varying
information in image sequences, together with
assumptions about the properties of objects and the
environment, to make predictive inferences or to test
hypotheses about the scene.

Background

Spatiotemporal reasoning plays an important rôle in
theories of human and animal vision, especially those
associated with the ecological psychology school of
J.J. Gibson and his followers [6]. A central idea is
that the optic flow field provides active organisms with
the means to pick up the affordances of their envi-
ronment (the likely possibilities for future interaction
with the environment). A seminal example is the case
of an object approaching to the viewer along the line

of sight and without rotation: in this case, the rate of
expansion of the object’s image specifies the inverse
of the expected time to collision, assuming that the
relative velocity remains constant.

The essential point of this example is that the
time to collision may be estimated from the changing
image without having any information about positions
or velocities and without estimating these variables.
A spatiotemporal relationship in the image (rate of
expansion) is linked to a spatiotemporal property of
the scene (time to collision) with no need for any geo-
metrical reconstruction. This is particularly relevant to
systems where rapid control of action in response to
visual information is required, and the relationship has
been proposed as part of the mechanism controlling
interceptive actions in people and animals, as well as
for the automatic control of vehicles [1, 7].

In computer vision, the expansion/time-to-collision
relationship has been explored theoretically [8], while
practical methods for measuring expansion rates have
been investigated [2, 9, 11]. However, this particular
relationship can best be seen as a special case of the
general theory describing the optic flow induced by
the relative motion of a camera and a surface, laid
out by Koenderink and coworkers [4, 5]. This the-
ory allows predictive inferences to be made without
assuming line-of-sight approach or pure translation.

In parallel with such quantitative reasoning, qual-
itative spatiotemporal reasoning has also been inves-
tigated. Here, object attributes such as identity are
assigned partly on the basis of expectations generated
from the history of the image sequence. An example is
the logging of vehicle movements at an airport, exploit-
ing expectations about the spatiotemporal structure of
event sequences [3, 10].

Although qualitative and quantitative spatiotempo-
ral reasoning have very different flavors, both aim
to extract practically useful information from image
sequences by exploiting such properties of the scene
as continuity of motion, the solidity and compact-
ness of objects, and surface smoothness. The area
is thus closely related to object tracking and robot
navigation.

Theory

First-order optic flow provides an example of the use
of spatiotemporal information. It is straightforward to

http://dx.doi.org/10.1007/978-0-387-31439-6_326
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establish the relationship between the parameters of
first-order flow models and information that may be
applied to the control of action.

We assume that the optic flow in a region of an
image may be approximated by a first-order model;
thus,

�
u1
u2

	
D
�

v1
v2

	
C
�
D C S1 S2 � R

S2 C R D � S1

	 �
x1

x2

	

where


u1 u2

�T
is the optic flow vector at image posi-

tion


x1 x2

�T
and



v1 v2

�T
is the optic flow at the

origin of image coordinates (the “zero-order” flow). D,
R, S1, and S2 are the parameters of the first-order com-
ponent of the flow: respectively, dilation, rotation, and
the two components of shear.

If we also assume that the flow is generated by
a smooth surface patch in the scene, we can define
some parameters which provide a partial description of
the current state of relative motion between the patch
and the camera. For example, the plane immediacy is
the reciprocal of the time remaining until the camera
passes through the plane tangent to the surface patch,
assuming constant velocity. For a parachutist looking
at a patch anywhere on a planar ground surface, it is the
reciprocal of the expected time to landing. It is possible
to show (using, e.g., Koenderink’s framework [4]), that
plane immediacy is computable from the optic flow
parameters plus the component of the camera’s angu-
lar rotation rate about the line of sight (also called the
spin). The equation is

iP D D � 3S cos�

where S D
q
S2
1 C S2

2 , sin� D .R � !/=S , and ! is
the spin. The relationship for direct approach, iP D D,
is a special case, applicable when the shear component
of the flow vanishes.

Similarly, the immediacy of the plane passing
through the surface patch, and normal to the line of
sight, may be determined from

iA D D � S cos�

The essential quality of these quantities is that no
information about the spatial layout of the scene is

required or inferred. Nonetheless, they can be applied
to the practical control of movement, such as braking
a vehicle to a halt at an obstacle. In general, optic flow
measurements constrain the physical motion param-
eters to some subspace without determining those
parameters exactly; this constraint may nonetheless be
sufficient information to solve practical navigational or
interceptive tasks.
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Synonyms

Interface reflection; MirrorLike reflection; Specular
highlight

Related Concepts

�Dichromatic Reflection Model; �Fresnel Equations;
�Surface Roughness

Definition

Specular reflection occurs when light is incident on a
boundary interface between two different media and
immediately reflects back to the medium where it
comes from. Specular reflectance is the ratio of the
reflected light by a boundary interface to the incident
light. The visual appearance of specular reflections is
known as specularity or specular highlight. To find the
regions of surfaces that exhibit specular reflections is
generally known as specularity detection.

Background

Reflection of light from an object is principally caused
by the surface and body of the object. The former is
known as specular or interface reflection and the lat-
ter is body or diffuse reflection. The specular reflection
is the shiny mirrorlike reflection, which is commonly
present in both man-made and natural objects. Mirrors,
glass, ceramics, gold, silver, many fruits’ skins, some
leaves, etc. emit specular reflections. Theoretically, by
considering the definition, almost all objects emit spec-
ular reflections, although the amount of the reflections
varies depending on the object’s optical properties,
such as the surface roughness and the Fresnel reflection
coefficient.

There are two main reasons why specular reflection
is important in computer vision: (1) Many algorithms
in computer vision assume perfect diffuse reflections
and deem specular reflections to be outliers. However,
in the real world, the presence of specular reflections
is inevitable. Hence, incorporating the knowledge of
specular reflections is essential to make the algorithms
more robust. (2) Many computer vision algorithms
may benefit from the information conveyed by specular
reflection. This information includes the photometric
and the geometric information, where the photometric
information may be important for material recognition,
and the geometric information may be useful for shape
recognition.

Theory

Fresnel equations describe the reflection and transmis-
sion of light or electromagnetic waves at an interface
between two media of differing refractive indices.
According to the equations, when unpolarizing light
impinges on a point of a flat and smooth surface, the
reflection coefficient is R D 0:5.R? CRk/, where R?

and Rk are the reflections of the electric field when it is
perpendicular and parallel to the surface, respectively.
The reflection coefficient is dependent on the angle of
incoming light with respect to the surface normal and
the refractive indices of the two media.

When a surface is perfectly flat and smooth (i.e., a
perfect mirror), the direction of specular reflection will
follow the law of reflection, which states the angle of
incoming light �i and the angle of outgoing reflected
light �r are the same (�i D �r ). This implies that the
specularly reflected light cannot be seen by an observer
if the observer’s position is not at the same direction as
�r , which is true for the case of perfect mirrors. How-
ever, in many objects which are not perfect mirrors, a
certain degree of specularity is still observable, even
though the observer’s position is slightly apart from
the direction of �r . In other words, specular reflec-
tions do not only form a sharp line (spike) distribution
of reflection but also form a lobe distribution. There-
fore, there are two components of specular reflections:
(1) specular spike and (2) specular lobe.

The Torrance-Sparrow reflection model [1] pro-
vides a good approximation of the specular lobe com-
ponent, which is expressed as:

http://dx.doi.org/10.1007/978-0-387-31439-6_100181
http://dx.doi.org/10.1007/978-0-387-31439-6_100182
http://dx.doi.org/10.1007/978-0-387-31439-6_100183
http://dx.doi.org/10.1007/978-0-387-31439-6_532
http://dx.doi.org/10.1007/978-0-387-31439-6_569
http://dx.doi.org/10.1007/978-0-387-31439-6_539
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Specularity, Specular Reflectance, Fig. 1 (a) A dichromatic object exhibiting both diffuse and specular reflection. (b) The
separated diffuse reflection component. (c) The separated specular reflection component. The results were computed using [5]

� D FG

cos �r
exp

�
� ˛2

2�2

�
(1)

where F is the Fresnel reflection coefficient, G is
the geometrical attenuation factor, �r is the angle
between the viewing direction and the surface nor-
mal, ˛ is the angle between the surface normal
and the bisector of the viewing direction and the
light source direction, and � represents the surface
roughness.

The Torrance-Sparrow reflection model uses geo-
metric optics to describe the mechanism of specular
reflection, which is only valid when the wavelength
of light is much smaller than the roughness of the
surface. According to [2], the model uses a slope dis-
tribution model to represent the profile of a surface.
The surface is assumed to be a collection of pla-
nar microfacets, where their dimension is much larger
than the wavelength of incident light. Each micro-
facet is perfectly smooth, and the orientation of each
facet deviates from the mean orientation of the sur-
face by an angle ˛. The model considers the mask-
ing and shadowing of microfacets by adjacent facets,
where they can block light going into a facet or light
reflected by it. The geometrical attenuation factor,G, is
introduced to compensate the masking and shadowing
effect. The surface roughness, � , represents the spa-
tial distribution of the lobe. The larger the value of
� , the larger the lobe distribution (implying less shiny
surfaces), and vice versa. In this reflection model,
the distribution of the specular reflections follows the
Gaussian distribution, with mean ˛ and standard devi-
ation � . Later, Cook and Torrance [3] replaced the
Gaussian distribution with the Beckmann distribution
function.

While the Torrance-Sparrow reflection model is
able to approximately generate a mirrorlike distribu-
tion, namely, when � is considerably small, its main
drawback is that it cannot generate both the spec-
ular spike and specular lobe at the same time. To
overcome this drawback, Nayar et al. [2] introduced
a model unifying the Torrance-Sparrow’s specular
lobe and a spike specular model, and the latter is
modeled as:

Kssı.�i � �r/ı.�r/ (2)

where Kss is the strength of the specular spike and
(�r ; �r ) is the direction of the reflected. Nayar et al.
base their analysis on the Beckmann-Spizzichino
reflection model [4], which predicts the presence of
both the specular lobe and spike. Unlike the Torrance-
Sparrow reflection, the Beckmann-Spizzichino reflec-
tion model is based on physical optics analysis derived
from the Maxwell’s equations.

In comparison with diffuse reflections, in princi-
ple, specular reflections have three different proper-
ties [5]:
1. The diffuse and specular reflections have different

degrees of polarization (DOP). The DOP represents
the ratio of the light being polarized. For unpolar-
ized incident light, the DOP of specular reflection is
larger than that of diffuse reflection for most angles
of incidence light, meaning that specular reflection
is generally more polarized than diffuse reflection
[6–8].

2. While recently a number of researchers (e.g., [9])
have introduced more complex models, the inten-
sity distribution of diffuse reflections approximately
follows Lambert’s law [10]. In contrast, the inten-
sity distribution of specular reflections generally
follows the Torrance-Sparrow reflection model [1].
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3. For optically inhomogeneous objects, the spec-
tral power distribution (SPD) of specular reflection
is determined by the object’s interface spectral
reflectance, which is mostly constant throughout
the wavelength of visible spectrum, causing the
SPD of specular reflections to be the same as the
illumination’s SPD [11]. In contrast, the SPD of
diffuse reflection is determined by the object’s body
spectral reflectance. This spectral power distribution
(color) independence of diffuse and specular reflec-
tions was described in the dichromatic reflection
model proposed by Shafer [12].

Note that the condition that the SPD of specular
reflections is the same as the illumination’s SPD is
called neutral interface reflection or NIR [11]. This
mostly occurs for the surfaces of optically inhomo-
geneous objects (such as ceramics, plastics, paints);
however, it does not always occur for the surfaces of
optically homogeneous objects (such as gold, bronze,
copper) [13].

Application

Many existing algorithms in computer vision assume
perfect diffuse surfaces and deem specular reflections
to be outliers. However, in the real world, the pres-
ence of specular reflections is inevitable since there
are many objects that exhibit both diffuse and spec-
ular reflections. To properly acquire the diffuse-only
reflections, a method to separate the two components
robustly and accurately is required (e.g., [5], see Fig. 1
for an example of the separation). Once this separation
has been accomplished, the specular reflection com-
ponent can be advantageous since it conveys useful
information of the object photometric properties (e.g.,
[6, 14]). Moreover, specular highlights are useful for
estimating illumination colors or color constancy (e.g.,
[15]). Aside from the photometric properties, specular
reflections can be employed to estimate the geometric
properties (e.g., [16–18]).

Open Problems

Without knowing the polarizing states and only ana-
lyzing image intensities, specularity detection from a
single image is still an open problem.
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Synonyms

Piecewise polynomial

Related Concepts

�Algebraic Curve; �Parametric Curve

Definition

In mathematics, splines are piecewise continuous func-
tions, such as polynomials, defined in successive
subintervals. They are often used to represent one- or
multidimensional data set (e.g., a curve or a surface)
in the applications requiring interpolation, smooth-
ing or nonrigid transformation [1]. For example, a
spline curve is a piecewise collection of curve seg-
ments defined in polynomials that are connected end
to end to form a single continuous curve. A curve
in L-dimensional space can be simply defined by the
following form:

S W Œa; b� ! R
L; (1)

where function S takes variables from an interval Œa; b�
and maps them to an L-dimensional real number. If
the interval Œa; b� is divided into k ordered disjoint
subintervals ti ; tiC1 with

a D t0 � t1 � : : : � tk D b; i D 0; : : : ; k � 1; (2)

then in each subinterval Œti ; tiC1� there is a polynomial
defined as

Pi W Œti ; tiC1� ! R
L: (3)

Therefore,

S.t/ D Pi .t/; ti � t < tiC1; (4)

where ti is called a knot and vector t D .t0; : : : ; tk/
T is

called a knot vector.
Many types of splines have been developed through

that P.t/ is defined in different types of functions.
Some examples of representative splines are Bézier
spline, B-spline, Nonuniform rational B-spline and
Thin-plate spline which are briefly introduced in the
following sections.

Bézier Spline
The polynomial for Bézier spline of degree n is

P.t/ D
nX

iD0

Bn
i .t/pi ; (5)

where pi (2 R
L) are called the control points of

a Bézier spline, and Bn
i .t/ are the basis functions

determined by Bernstein polynomials of degree n as

Bn
i .t/ D

nŠ

iŠ.n � i/Š
t i .1 � t /n�i : (6)

Several Bézier spline curves can be concatenated by
sharing the first and last control points. While a Bézier
spline has C1 continuity to its defined interval, at the
shared control points it gets C0 continuity. C1 conti-
nuity can be achieved by sharing two control points
at the end of two curves. An improvement that adds
an adjustable weight to each basis can make it easier
to control and more closely approximated to arbitrary
shapes.

B-Spline
Similar to Bézier spline, the polynomial for B-spline is
defined as

P.t/ D
nX

iD0

Ni;k .t/pi ; (7)

where pi (2 R
L) are called the control points of a

B-spline curve and the basis functionsNi;k.t/ of degree
k can be derived by the recurrence equations as

Ni;1.t/ D
�

1 .ti � t < tiC1/

0 .otherwise/
(8)

http://dx.doi.org/10.1007/978-0-387-31439-6_100118
http://dx.doi.org/10.1007/978-0-387-31439-6_403
http://dx.doi.org/10.1007/978-0-387-31439-6_412
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Ni;k.t/ D t � ti

tiCk�1 � ti
Ni;k�1.t/

C tiCk � t

tiCk � tiC1

NiC1;k�1.t/ (9)

The knots ti for B-spline are generally with uniform,
open uniform or nonuniform intervals.

Compared to Bézier splines, B-splines can have
C2 continuity at the joint control points. B-splines is
more flexible and pleasing to work with, and thus it is
popular in various graphics development environment.

Nonuniform Rational B-Splines (NURBS)
Since B-spline can be viewed as weighted sum of its
control points and the weights Ni;k usually have the
property:

Pn
iD0 Ni;k .t/ D 1. As weights Ni;k.t/ of

B-spline depend only on the knot vector, it is useful to
add to every control point one more weight wi which
can be set independently as

P.t/ D
Pn

iD0 wiNi;k.t/piPn
iD0 wiNi;k.t/

: (10)

Then increasing a weight wi makes the point more
influential and attracts the curve to it. NURBS is often
employed in computer-aided design systems.

Spline Surface
Not only for curve representation, spline is easy to be
extended for representing a surface segment. Appro-
priately parameterized 2D variables are required for
defining the 2D region subinterval to control a sur-
face. For example, through a parameterized u-v plane,
Bézier spline can be used to represent a surface with
the following form:

P.u; v/ D
mX

iD0

nX
jD0

Bm
i .u/B

n
j .v/pij ; (11)

where pij (2 R
3) are the control points of Bézier spline

surface.

Thin-Plate Spline (TPS)
Different to Bézier spline or B-spline in parametric
form, Thin-plate spline (TPS) explicitly takes the point
x on a curve or a surface as the variable and maps it to a
new value f .x/. A TPS function is often composed of
a summation of radial basis functions and a low-order

polynomial, e.g., defined in the following form:

f .x/ D
NX

iD1

wi �.jjx � ci jj/C vT

�
1

x

	
; (12)

where c i are the control points of TPS; wi are the map-
ping coefficients through weighting the basis functions
�.�/; v is the coefficient vector of the polynomial of
degree 1; basis function �.�/ is defined as

�.r/ D
(
rk with k D 1; 3; 5; : : : ;

rk ln.r/ with k D 2; 4; 6; : : : :
(13)

where k is equal to the dimension of dataset.
TPS has been widely applied for building a smooth

nonrigid transformation model, by minimizing the
integral bending energy [4]. It is also useful for data
interpolation, since it can explicitly represent the arbi-
trarily spaced tabulated data set, e.g, .xi ; yi ; f .xi ; yi //
in 2D case. The interpolation is smooth with deriva-
tives of any order.

Background

The idea of presenting a curve using the connection
with splines comes from the ship building industry,
where they construct templates for ships by passing
thin strips of wood (called “splines”). In some sub-
fields of computer science, wide class of spline func-
tions are applied to the applications where the discrete
data requires interpolation and/or smoothing. Because
splines are superior in terms of the following qualities:
the simplicity of their construction, the ease and accu-
racy of control, their capacity to approximate complex
shapes and the ability to design curves interactively.

Application and Theory

In addition to the usages of interpreting or smooth-
ing for image representation, such as the work in [9],
splines also play an important role in some specific
computer vision applications. For example, in the
Snake-based image segmentation designed by Kass
et al. [5] and modified by Brigger et al. [3], splines
are used to model the image contours by minimizing
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the energy under the guidance of external and inter-
nal forces; For image motion estimation, Szeliski and
Coughlan [8] proposed to represent the local motion
flow field using multi-resolution splines; A classical
linear method for estimating the TPS coefficients for
image warps is proposed by Bookstein [2]; And Free
Form Deformation (FFD) proposed by Sederberg [7]
represents the nonrigid deformation of object using
grid B-splines, which has a successful application in
medical image registration [6].
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Synonyms

CIE standard illuminant

Related Concepts

�Chromaticity

Definition

A standard illuminant, as defined by the International
Commission on Illumination (Commission Interna-
tional de L’Eclairage, abbreviated as the CIE), denotes
a specific relative distribution of energy (“spectral
power distribution”) for an illuminant, over the range
300–830 nm [3].

Background

The motivation for a definition of standard illumi-
nants arises from the need for accurate measurement
of the colors of objects. It is well understood that for
a Lambertian surface with a spectral reflectance func-
tion given by r.�/, and under an illuminant given by
i.�/, the three-vector of CIE XYZ tristimulus values is
given by [8]:

X D k

Z
�

Nx.�/i.�/r.�/d�

Y D k

Z
�

Ny.�/i.�/r.�/d�

Z D k

Z
�

Nz.�/i.�/r.�/d�; (1)

where Nx, Ny, Nz denote the three CIE XYZ color-
matching functions (based on a standard observer) and
k is a constant. Working in the XYZ color space –
natively three-dimensional in nature – when a color
changes it is difficult to attribute the change to a spe-
cific function of wavelength, because of the above
3-D projection: the observer color-matching functions
f Nx; Ny; Nzg, the illuminant i.�/, or the object’s reflectance
r.�/. When the primary objective of a measurement
is to quantify the object’s reflectance properties, it is
therefore helpful to use a standard observer and a stan-
dard illuminant. The standardization of the observer is
well documented in various CIE standards since the
early 1900s, most recently in CIE 15-2004 [1].

http://dx.doi.org/10.1007/978-0-387-31439-6_100123
http://dx.doi.org/10.1007/978-0-387-31439-6_451
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Standard Illuminants, Fig. 1
Standard illuminants as
specified by the CIE,
normalized to a peak of 100 at
560 nm
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Theory

In CIE-1998c (and in CIE 15-2004), the CIE defines
the following standard illuminants, along with their
relative spectral power distribution, in the spectral
range 300–830 nm [1, 3]:
– Standard Illuminant A
– Standard Illuminant C
– Standard Illuminant D50
– Standard Illuminant D55
– Standard Illuminant D65
– Standard Illuminant D75
The spectral range 300–830 nm, wider than the
range of visual perception, which is approximately
360–830 nm ([8], p.122), is used specifically to enable
the evaluation of luminescent samples where the
ultraviolet range becomes important. For colorimet-
ric measurements, however, typically 380–780 nm
is used.

Standard Illuminant A represents a black-body radi-
ator with a temperature of approximately 2,856 K.
Standard Illuminant C, although not used often, rep-
resents average daylight with correlated color temper-
ature of about 6,800 K. Standard Illuminant D65 is

used to represent a phase of daylight with a correlated
color temperature of approximately 6,500 K and is
by far the most commonly used standard illuminant
in colorimetry. Other D-illuminants are standard day-
light illuminants annotated with the first two digits of
their correlated color temperature; e.g., D55 denotes
a standard daylight illuminant with a correlated color
temperature of 5,500 K. Figure 1 shows the relative
spectral power distributions of the above standard
illuminants.

It is to be noted that although the plots in Fig. 1
show the spectra in the extended range from 300 to
780 nm (as is given in the CIE standard), data from
300–330 nm to 780–830 nm is extrapolated, but con-
sidered sufficiently accurate for colorimetric purposes.
Further, the standard provides data to 5 nm increments,
and should finer increments be needed the standard
recommends performing linear interpolation on the
spectra.

The correlated color temperature (T ) of a daylight
illuminant, for the purposes of interpolating standard
daylights, is related to its chromaticity coordinates
in the x; y chromaticity diagram by the following
equations ([6], p. 111):
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yD D �3:0000x2
D C 2:870xD � 0:275 (2)

xD D

8̂
<
:̂
�4:6070 � 109

T 3
C 2:9678 � 106

T 2
C 0:09911 � 103

T
C 0:244063; 4; 000K � T � 7; 000K

�2:0064 � 109

T 3
C 1:9018 � 106

T 2
C 0:24748 � 103

T
C 0:237040; 7; 000K � T � 25; 000K:

(3)

Note that several other suggestions for a best CCT have
been posited [4, 7].

Figure 2 shows the locus of chromaticities of stan-
dardized daylight illuminants, specifically denoting
the locations D55, D65, and also, for reference, the
location of illuminant A and the equi-energy point,
E (x D y D 0:33) (all for the CIE 1931 2ı observer).

The CIE also specifies equations to compute the rel-
ative spectral power distribution of other D-illuminants
as a function of their x,y chromaticity coordinates.

S.�/ D S0.�/CM1S1.�/CM2S2.�/; (4)

where S0.�/, S1.�/, and S2.�/ are specified in the
CIE standard [1] and plotted in Fig. 3. These may be

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.40 0.2 0.6 0.8

y

x

A

D55
D65

E
D75

Standard Illuminants, Fig. 2 CIE x; y chromaticity diagram
showing illuminants D55, D65, D75, A, and E (‘+’, equi-energy
illuminant)

considered as the mean and the following two eigen-
vectors of the space of daylight illuminants [5].

M1 and M2 are scale factors defined as a function of
the chromaticity coordinate of illuminant, given by:

M1 D �1:3515 � 1:7703xD C 5:9114yD

0:0241C 0:2562xD � 0:7341yD
(5)

M1 D 0:03 � 31:4424xD C 30:0717yD

0:0241C 0:2562xD � 0:7341yD
: (6)

These equations provides the relative spectral power
distribution of the various D-illuminants, which are
shown in Fig. 4. Customarily, S.�/ is scaled such that
its value at wavelength � D 560 nm is 100.

It is perhaps most important to note that standard
illuminants are not the same as standard sources –
which are the real-world equivalents of standard
illuminants. In other words, a standard illuminant –
defined by its relative spectral power – may not nec-
essarily be realizable by a physical emitter of radiation
(see Fig. 5 for an example of a D65 source made by a
flourescent lamp and the D65 illuminant). The details
of the challenges between the “theoretical” illuminant
that is useful for computations and the “real” source
may be found in a different CIE standard [2], and also
in the book by Wyszecki and Stiles [8].
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Standard Illuminants, Fig. 3
Component vectors (S0, S1,
S2 defined by the CIE), also
considered as the mean and
two additional eigenvectors of
the space of daylight
illuminants
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Daylight illuminants of
different correlated color
temperatures as computed
from the component vectors
(S0 , S1, S2 defined by the
CIE)
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Standard Illuminants, Fig. 5
Comparison of a standard
illuminant (D65) and a
standard source (FL 3.15)
normalized to 100 at 560 nm
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Statistical Independence
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Related concepts

�Principal Component Analysis (PCA)

Definition

Statistical independence is a concept in probability the-
ory. Two events A and B are statistical independent
if and only if their joint probability can be factorized
into their marginal probabilities, i.e., P.A \ B/ D
P.A/P.B/. If two events A and B are statistical inde-
pendent, then the conditional probability equals the
marginal probability: P.AjB/ D P.A/ and P.BjA/ D
P.B/. The concept can be generalized to more than
two events. The events A1; : : : ; An are independent if
and only if P.

Tn
iD1 Ai / DQn

iD1 P.Ai /.

Theory

Two random variables X and Y are independent if and
only if the events fX � xg and fY � yg are indepen-
dent for all x and y, that is, F.x; y/ D FX.x/FY .y/,
where F.x; y/ is the joint cumulative distribution func-
tion and FX and FY are the marginal cumulative distri-
bution functions of X and Y , respectively. If X and
Y are continuous random variables, then X and Y are
independent if f .x; y/ D fX.x/fY .y/, where f .x; y/

is the joint probability density function and fX and
fY are the marginal probability density functions of X
and Y , respectively. Similar results hold when both X

http://dx.doi.org/10.1007/978-0-387-31439-6_680
http://dx.doi.org/10.1007/978-0-387-31439-6_649
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and Y are discrete, or one is discrete and the other is
continuous.

If two random variables X and Y are indepen-
dent, then their covariance Cov.X; Y / D E.XY / �
E.X/E.Y / D 0, that is, they are uncorrelated. However,
the reverse may not be true. Two uncorrelated random
variables are not necessarily independent of each other.
For example, if X 
 UniformŒ�1; 1� and Y D X2, then
Cov.X; Y / D 0, but clearly they are not independent.

The concept of independence can be generalized to
more than two random variables. In probability the-
ory, the law of large number, the central limit theorem,
and concentration inequalities are usually obtained for
independent random variables, although these results
can be generalized to dependent random variables. In
statistical learning theory, it is usually assumed that
the training and testing examples are independent and
identically distributed.

Application

Statistical independence is a key assumption in inde-
pendent component analysis (ICA) [1], where the
observed multivariate signal is assumed to be linear
mixing of independent sources. A useful extension is
independence is conditional independence. Two events
A and B are independent given event C if P.A \
BjC/ D P.AjC/P.BjC/. If X , Y , and Z are discrete
random variables, then X and Y are independent given
Z if P.X D x; Y D yjZ D z/ D P.X D xjZ D
z/P.Y D yjZ D z/ for all x; y; z. If X , Y , and Z are
continuous, then X and Y are independent given Z if
fX;Y jZ.x; yjz/ D fX jZ.xjz/fY jZ.yjz/, where fX;Y jZ is
the conditional probability density function of .X; Y /

given Z and fX jZ and fY jZ are the conditional proba-
bility density functions of X given Z and Y given Z,
respectively.

Conditional independence is a key assumption in
Markov chains, Markov random fields, and more gen-
erally graphical models [2].
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Synonyms

Morphology, form analysis

Related Concepts

�Activity Recognition; �Object Detection

Definition

What is shape? Although the use of words shape or
shape analysis is very common in computer vision,
its definition is seldom made precise in a mathemat-
ical sense. According to the Oxford English Dictio-
nary, it means “the external form or appearance of
someone or something as produced by their outline.”
Kendall [1] described shape as a mathematical prop-
erty that remains unchanged under certain transforma-
tions such as rotation, translation, and global scaling.
Shape analysis seeks to represent shapes as mathemat-
ical quantities, such as vectors or functions, that can
be manipulated using appropriate rules and metrics.
Statistical shape analysis is concerned with quantify-
ing shape as a random quantity and developing tools
for generating shape comparisons, averages, probabil-
ity models, hypothesis tests, Bayesian estimates, and
other statistical procedures on shape spaces.

Background

Shape is an important physical property of objects
that characterizes their appearances and can play an
important role in their detection, tracking, and recogni-
tion in images and videos. One usually restricts to the
boundaries of objects, rather than the whole objects,
for shape analysis and that leads to a shape analysis of
curves (for 2D images) and surfaces (for 3D images).

http://dx.doi.org/10.1007/978-0-387-31439-6_100291
http://dx.doi.org/10.1007/978-0-387-31439-6_63
http://dx.doi.org/10.1007/978-0-387-31439-6_660
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Statistical Shape Analysis, Fig. 1 Shapes of boundary curves are useful in object characterizations

Figure 1 suggests that shapes of boundaries can help
characterize objects present in images. Any boundary
contains only some partial information about the object
since the color (texture) information inside and outside
the boundary is lost. However, even with this limited
information, it is often possible to broadly classify an
object using shape analysis.

To understand the issues and challenges in shape
analysis, one has to look at the imaging process
since that is a major source of shape data. A pic-
ture can be taken from an arbitrary pose (arbitrary
distance and orientation of the camera relative to the
imaged object), and this introduces a random rotation,
translation, and scaling of boundaries in the image
plane. Therefore, any proper metric for shape analy-
sis should be independent of the pose and scale of the
boundaries. A visual inspection also confirms that any
rotation, translation, or scaling of a boundary, while
changing its coordinates, does not change its shape.
Figure 2 shows an example of 16 curves that differ
in orientations, scales, and locations, but still represent
the same shape.

In case of parameterized curves and surfaces, an
additional challenge arises when it comes to invari-
ance. Let ˇ W Œ0; 1� ! R

2 represent a parameterized
curve, and let � W Œ0; 1� ! Œ0; 1� be a smooth, invert-
ible function such that �.0/ D 0 and �.1/ D 1.
Then, the composition Q̌.t/ � .ˇ ı �/.t/ represents a
curve with coordinate functions that are different from
those of ˇ.t/ but have the same shape. Q̌ is called
a re-parameterization of ˇ. Figure 3 illustrates this
issue with a simple example. It shows that the coordi-
nate functions of the re-parameterized curve, Q̌

x.t/ and
Q̌
y.t/, as functions of t , are different from the original

coordinate functions ˇx.t/ and ˇy.t/. But when Q̌
x.t/

is plotted versus Q̌
y.t/, it traces out the same curve as

that traced by ˇx.t/ versus ˇy.t/. This results in an

Statistical Shape Analysis, Fig. 2 Sixteen curves with differ-
ent orientations, scale, and locations, but with identical shapes

additional invariance requirement in shape analysis of
parameterized curves (and similarly for surfaces). That
is, the shape metrics should be invariant to how the
curves are parameterized.

In statistical shape analysis, one treats shapes as ran-
dom quantities and tries to answer questions of the
type:
– What is the difference between shapes of any two

given objects? How can such shape differences
be quantified while maintaining the desired invari-
ances?

– What shape best represents the shapes of a given
collection of objects? Another way to ask the same
questions is: What is the statistical average of a
given collection of shapes?

– What are the principal modes of variations in a given
set of shapes?

– How can one capture the main shape variability in
a population using probability models? Can random
shapes be generated from such models?
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Statistical ShapeAnalysis, Fig. 3 Re-parameterized curve has
different coordinate functions but same shape as the original
curve. Left: curves .t; ˇx.t/; ˇy.t// and .t; Q̌x.t/; Q̌y.t//. Next

two panels: ˇx.t/ and Q̌x.t/, and ˇy.t/ and Q̌y.t/. Right: curves

.ˇx.t/; ˇy.t// and . Q̌x.t/; Q̌y.t//

– How can one use such probability models for shape
classification and object recognition?
To start answering such questions, one needs

precise mathematical representations of shapes and
tools from algebra and geometry for analyzing them.
In the literature there are numerous mathematical
representations of objects that have been used for
this purpose. These include representations using
(unordered) point sets, (ordered) landmarks, level
sets, deformable images, medial representations, and
parameterized curves and surfaces. An important
aspect, common to most representations, is the nonlin-
ear geometry of a shape space. It is easy to recognize
that shape is not a quantity that can be added, aver-
aged, or grouped easily using Euclidean calculus. The
desired invariance of shape to certain transformations
(rigid motion, global scaling, and re-parameterization)
implies that some nontraditional tools are
needed.

Among the different methods used in shape analy-
sis, the earlier methods typically represented objects by

finite sets of points, such as point sets or landmarks, but
more recent methods are beginning to handle parame-
terized curves and surfaces directly as functions. Two
of the earlier ideas based on point-set representations
are summarized next.

Active Shape Models (ASM)
The active shape models approach to shape analysis
was introduced by Cootes and Taylor in [2]. The sim-
plest idea in shape analysis is to sample the boundaries
at a number of points and form polygonal shapes by
connecting those points with straight lines. Of course,
the number and locations of these points on the objects
can drastically change the resulting polygonal shapes,
but this issue will be disregarded for the moment. One
can organize the coordinates of these points in a form
of a vector of coordinates and perform standard vec-
tor calculus. Let x 2 R

n�2 represent n ordered points
selected from the boundary of an object. It is often con-
venient to identify points in R

2 with elements of C, i.e.,
xi � zi D .xi;1 C jxi;2/, where j D p�1. Thus, in this
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complex representation, a configuration of n points x

is now z 2 C
n. Before analyzing the shape of z, it is

“standardized” by moving its center to the origin (of
the coordinate system):

zi 7!
 

zi � 1

n

nX
iD1

zi
!
:

To remove the scale variability, z is rescaled to have
norm one, i.e., z 7! z=kzk. Then, one uses tools from
standard multivariate statistics to analyze and model
them. So far, the translation and the scale variabil-
ity of a configuration are removed, but the rotation
remains. That is, two configurations, z and a rotation
of z, will have a nonzero distance between them even
when they have the same shape. This problem is solved
by using an additional step of rotational alignment
when comparing shapes, as follows:

�� D argmin
�2S1

kz1 � ej�z2k2

D argmin
�2S1

�kz1k2 C kej�z2k2 � 2R
�˝

z1; e
j�z2

˛��

D argmax
�2S1

�
R
�
e�j� hz1; z2i

�� D �;

where hz1; z2i D rej� ; (1)

and h�; �i is the standard Hermitian inner product.
The distance between the two configurations is then
kz1 � ej�

�

z2k D p
2.1 � r/. The corresponding opti-

mal deformation from one shape to another is simply
a straight line between z1 and ej�

�

z2, i.e., ˛asm.�/ D
.1 � �/z1 C �ej�

�

z2 for � 2 Œ0; 1�.
One remaining issue in this analysis is that on a

closed curve which point should be selected as z1, the
first point or the seed. If there are n points sampled
on a curve, then there are n candidates for the seed.
The solution is to select the best seed during a pair-
wise comparison of configurations. That is, select any
point on the first configuration as the seed for the first
shape and try all n points in the second configuration as
candidate seeds for the second shape. Of those, select
the one that results in the smallest distance from the
first configuration. Figure 5 shows several examples of
these deformations: one between a pair of human sil-
houettes, one between a pair of hands, and so on. These
geodesics have been computed using n D 200 points
on each configuration so that the resulting polygons
look like smooth curves.

One can define the mean shape of several configura-
tions z1; z2; : : : ; zk as the configuration that minimizes
the sum of squares of distances:

�asmDargmin
z2Cn

kX
iD1

kz� ej�
�

i zik; ��

i Dcos�1.R.hz; zi i// :

Figure 6 shows several illustrations of the mean
computations.

Although this technique is relatively simple and
fast, it has some important limitations. One limita-
tion is that it does not preserve the scale constraints
imposed on the shape representations. For instance, the
intermediate shapes along the optimal deformations
between any two unit length configurations do not have
unit length. Similarly, the mean shape of fzig is gen-
erally not of unit length. This is because no effort is
made to restrict to the set of unit-length configurations,
a limitation that is addressed in the next approach.

Kendall’s Shape Analysis (KSA)
This approach, first laid out by Kendall [1] and
advanced by several others [3], preserves desired con-
straints by restricting to appropriate manifolds. Once
again a configuration of n points, taken from the
boundary of an object, is treated as a complex vector.
As earlier, the translations are removed by restricting
to those elements of C

n whose average is zero and
the scale variability by rescaling the complex vector
to have norm one. This results in a set:

D D
(

z 2 C
nj 1
n

nX
iD1

zi D 0; kzk D 1

)
:

D is not a vector space because a1z1 C a2z2 for a1; a2 2
R and z1; z2 2 D is typically not in D, due to the unit
norm constraint. However, D is a unit sphere and one
can utilize the geometry of a sphere to analyze points
on it. Under the Euclidean metric, the shortest path
between any two elements z1; z2 2 D, also called a
geodesic, is given by the great circle: ˛ksa W Œ0; 1� ! D,
where

˛ksa.�/ D 1

sin.�/
Œsin.�.1 � �//z1 C sin.��/z2� ; and

� D cos�1.R.hz1; z2i//: (2)
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Statistical Shape
Analysis, Fig. 4 Registration
of points across two curves
using the uniform and a
convenient nonuniform
sampling. Nonuniform
sampling allows a better
matching of features between
ˇ1 and ˇ2

b1(uniform sampling) b2(uniform sampling) b2(non-uniform sampling)

ASM

KSA

ESA

ASM

KSA

ESA

ASM

KSA

ESA

Statistical Shape Analysis, Fig. 5 Examples of geodesic paths between same shapes using ASM, KSA, and ESA

In order to compare the shapes represented by z1 and z2,
they need to be aligned rotationally, as was done ear-
lier, but the shape space is defined more formally this
time. Let Œz� be the set of all rotations of a configuration
z according to:

Œz� D fej�zj� 2 S
1g :

One defines an equivalence relation on D by setting all
elements of this set as equivalent, i.e., z1 
 z2 if there
exists an angle � such that z1 D ej�z2. The set of all
such equivalence classes is the quotient space D=U.1/,
where U.1/ D SO.2/ D S

1 is the set of all rotations

in R
2. This space is called the complex projective space

and is denoted by CP
n�1. A geodesic between two

elements z1; z2 2 CP
n�1 is given by computing ˛ksa

between z1 and ej�
�

z2, where �� is the optimal rota-
tional alignment of z2 to z1. The length of the geodesic
is given by � and that quantifies the difference in
shapes of the boundaries represented by z1 and z2.
Figure 5 shows several examples of geodesic paths
between the same shapes as for the ASM examples.

Issue of Landmark Selection
Although Kendall’s approach succeeds in preserv-
ing the unit-length constraints on the landmark
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Statistical Shape Analysis, Fig. 6 Examples of mean shapes under three different methods

configurations, it does not address a very important
practical issue: How to systematically select points on
objects, say curves, to form representative point sets?
This process is difficult to standardize and different
selections can lead to drastically differing solutions.
This issue is present in any point-based approach,
including the ASM method discussed above. Some
may suggest to sample a curve uniformly along its
length, i.e., parameterize a curve ˇ using arc length
and sample fˇ.ti /ji D 0; 1; 2; : : : ; ng where ti D i=n.
Although this provides a standardized way of sam-
pling curves, the results are not always good since
this forces a particular registration of points, i.e., the
point ˇ1.ti / on the first curve is matched to the point
ˇ2.ti / on the second curve, irrespective of the shapes
involved. Figure 4 illustrates this point using an exam-
ple. Shown in the left two panels are two curves: ˇ1

and ˇ2, sampled uniformly along their lengths. For

ti D i=4; i D 1; 2; 3; 4 the corresponding four points
on each curve fˇ1.ti /g and fˇ2.ti /g are shown in the
same color. While two of the four pairs seem to match
well, the pairs shown in red and green fall on dif-
ferent parts of the body, resulting in a mismatch of
features. This example shows the pitfall of using uni-
form sampling of curves. In fact, any predetermined
sampling and preregistration of points will, in gen-
eral, be problematic. A more natural solution is to
treat the boundaries of objects as continuous curves,
rather than discretize them into point sets at the outset,
and find an optimal (perhaps nonuniform) sampling,
such as the one shown in the rightmost panel, that
better matches features across curves. This way one
can develop a more comprehensive solution, including
theory and algorithms, assuming continuous objects
and will discretize them only at the implementation
stage.
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Theory

The elastic shape analysis (ESA) framework, for ana-
lyzing shapes represented by simple, closed, planar,
curves is described here. (These ideas are also appli-
cable, with some modifications, to curves in higher
dimensions and to shape analysis of surfaces, but
that is not discussed here.) The most natural way
to study shapes of curves seems to be by treating
them as parameterized curves. As mentioned earlier,
an important aspect of this framework is that shape dis-
tances, geodesics, and statistics should be invariant to
how the curves are parameterized.

Basic Challenge
To understand the basic challenge in analyzing shapes
of parametrized curves, let k � k denote the L

2 norm
of a vector-valued function, i.e., kˇk D R

S1
kˇ.t/k2dt ,

where the norm inside the integral is the vector
2-norm. Let ˇ1; ˇ2 W S1 ! R

2 be two parameterized
closed curves and � be a re-parameterization function
of the type used in Fig. 3. (It is more natural for the
domain of parameterization to be S

1 instead of Œ0; 1�

for closed curves.) The basic challenge in using the
L
2 norm kˇ1 � ˇ2k for comparing shapes of these two

curves, even after a proper translation and scaling for
standardization, is that kˇ1�ˇ2k ¤ kˇ1 ı� �ˇ2 ı�k in
general. That is, the distance between any two curves
changes even if they are re-parameterized in the same
way. This implies that the shape distance will depend
on parameterizations, and this violates the requirement
of invariance to parameterization. This problem neces-
sitates a new representation and/or a new metric for
analyzing shapes of curves.

Mathematical Representation
Let a parameterized closed curve be denoted as ˇ W
S
1 ! R

2. In order to analyze its shape, one repre-
sents ˇ by its square-root velocity function (SRVF):

q.t/ D P̌.t /p
k P̌.t /k

2 R
2. The SRVF q includes both the

instantaneous speed (kq.t/k2 D k P̌.t/k) and the direc-

tion
�

q.t/

kq.t/k
D P̌.t /

k P̌.t /k

�
of the curve ˇ at time t . The use

of the time derivative makes the SRVF invariant to any
translation of curve ˇ. Conversely, one can reconstruct
the curve ˇ from q up to a translation. In order for
the shape analysis to be invariant to scale, one rescales
each curve to length one. With a slight abuse of nota-
tion, let us denote the rescaled curves by ˇ. Since

R
S1
k P̌.t/kdt D 1:

R
S1
kq.t/k2dt D R

S1
k P̌.t/kdt D 1.

In other words, the L
2 norm of the SRVF q is one.

Additionally, if the curve ˇ is closed, then its SRVF
satisfies

R
S1
q.t/kq.t/kdt D 0. Restricting to the curves

of interest, represented by their SRVFs, the following
set is obtained:

C D fq W S1 ! R
2j
Z
S1

q.t/kq.t/kdt D 0;

Z
S1

kq.t/k2dt D 1g :

C is called the preshape space and is the set of SRVFs
of all unit length, closed curves in R

2. Four shape-
preserving transformations were mentioned: transla-
tion, scale, rotation, and re-parameterization. Of these,
the first two have already been eliminated from the
representations, but the other two remain. Curves that
are within a rotation and/or a re-parameterization of
each other result in different elements of C despite hav-
ing the same shape. The unification of such curves is
performed algebraically as follows: Let SO.2/ be the
group of 2 � 2 rotation matrices and 
 be the group of
all re-parameterizations (they are actually positive dif-
feomorphisms of the unit circle S

1). For a curve ˇ, a
rotation O 2 SO.2/ and a re-parameterization � 2 
 ,
the transformed curve is given by O.ˇ ı �/. The SRVF
of the transformed curve is given by O.q ı �/

p P� . In
order to unify all elements in C that denote the same
shape, one can define equivalence classes of the type:

Œq� D fO.q ı �/p P� jO 2 SO.2/; � 2 
g :

Each such equivalence class Œq� is associated with a
shape uniquely and vice versa. The set of all these
equivalence classes is called the shape space S; math-
ematically, it is a quotient space of the preshape space:
S D C=.SO.2/ � 
/. The preshape space C is a non-
linear manifold because it is a subset of a unit sphere.
One cannot perform calculus on this space as if it is
a vector space. Operations such as addition, subtrac-
tion, and multiplication are not available on nonlinear
spaces. This means that standard techniques in func-
tional analysis for inferences on C and S cannot be
used.

It should be noted that the mathematical represen-
tation used here, i.e., the SRVF, is not the only such
representation. Younes et al. [4, 5] use a slightly differ-
ent expression for an SRVF, based on an identification
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S

of R
2 with C and taking complex square roots of the

coordinates. The advantage of the SRVF form used in
the current article is that it applies to curves in R

m

for any m, while the complex analysis in [4, 5] is
applicable only to curves in R

2.

Elastic Riemannian Metric
Now that a mathematical representation of the shape of
a curve, namely Œq�, has been defined, how should one
compare the shapes of two curves? In other words, for
any two curves ˇ1 and ˇ2, represented by their shape
classes Œq1� and Œq2�, respectively, what should be the
shape metric ds.Œq1�; Œq2�/ that quantifies their shape
differences? First, consider the role of a metric more
closely. When one curve is deformed into another, a
continuous sequence of curves, or a path in the curve
space, is generated, and a natural question is how long
that path is. The length of this path also quantifies the
amount of deformation in going from one curve to the
other. The question changes to the following: What
should be the metric to measure this path length? A
metric called the elastic metric will be used for this
purpose. An elastic metric is a metric that measures
the amount of bending and stretching between succes-
sive curves along the path and adds them up for the
full path. Mio et al. [6] defined a family of elastic met-
rics depending upon how much relative weights are
attached to bending and stretching. More recently, it
was shown that (Joshi et al. [7], Srivastava et al. [8])
under the SRVF representation, the complicated elastic
metric turns into (using a change of variables) the stan-
dard L

2 metric. That is, one can alternatively compute
the path lengths, or the sizes of deformations between
curves, using the cumulative norms of the differences
between successive curves along the paths in the SRVF
space. This turns out to be much simpler and a very
effective strategy for comparing shapes of curves, by
finding the paths with least amounts of deformations
between them, where the amount of deformation is
measured by an elastic metric. Another distinct advan-
tage of using SRVFs is that for any q1; q2 2 C, O 2
SO.2/ and � 2 
:

kq1 � q2k D kO.q1 ı �/
p P� �O.q2 ı �/

p P�k :

This means that the distance between any two
curves remains the same if they are rotated and re-
parameterized in the same way! This property, when

combined with an optimization step Eq. 3 (later),
allows one to make shape metrics invariant to parame-
terizations.

Shape Comparison and Geodesics
Once a Riemannian metric on a manifold has been
defined, one can compute distances between points in
that manifold. For any two points, the distance between
them is given by the length of the shortest path, called
a geodesic, connecting them in that manifold. An inter-
esting feature of this framework is that it not only
provides a distance between shapes of two curves but
also a geodesic path between them in S . This path has
the interpretation that it provides the optimal defor-
mation of one shape into another. The geodesics are
actually computed using the differential geometry of
the underlying space S . Consider two curves ˇ1 and ˇ2,
represented by their SRVFs q1 and q2. Let ˛ W Œ0; 1� !
C be a differentiable path connecting them in C. The
length of this path is given by

LŒ˛� D
Z 1

0

h P̨ .�/; P̨ .�/i1=2 d� ;

where the inner product inside the integral is given by
the elastic Riemannian metric. A geodesic is a path
whose length cannot be minimized by locally perturb-
ing it. It is often obtained by minimizing the cost
function of the type:

Ǫ D argmin
f˛WŒ0;1�!Cj˛.0/Dq1; ˛.1/Dq2g

�Z 1

0

h P̨.�/; P̨ .�/i dt
�

:

This cost function differs from the expression for LŒ˛�
in that the square root inside the integral is missing. It
can be shown that a local minimizer of this cost func-
tion is also a local minimizer of LŒ˛� and, hence, is a
geodesic.

One technique for finding geodesics is called path
straightening. It is an iterative technique that initializes
an arbitrary path and then iteratively “straightens” it
by updating it along the negative gradient of the cost
function. Klassen and Srivastava [9] provide a nice
analytical expression for the gradient of this cost func-
tion that results in a convenient gradient iteration. One
applies these iterative updates, or straightening, until
the gradient becomes negligible and the resulting path
is the desired geodesic Ǫ . The length of this curve is
denoted by dc.q1; q2/ D LŒ Ǫ �. This gives a geodesic
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and a geodesic distance between SRVFs in C, but the
goal is to compute geodesic paths in S . In other words,
geodesic paths between the equivalence classes Œq1�

and Œq2� are needed and not just q1 and q2. It turns
out that the desired geodesic is obtained by finding the
shortest geodesic among all pairs . Qq1; Qq2/ 2 .Œq1��Œq2�/.
This search is further simplified by fixing an arbitrary
element of Œq1�, say q1, and searching over all rota-
tions and re-parameterizations of q2 to minimize the
geodesic length:

.O�; ��/ D argmin
O2SO.2/;�2


dc.q1;O.q2 ı �/
p P�/ : (3)

The minimization over SO.2/ is similar to the ASM
and KSA alignments earlier, but the optimization
over 
 is new. This is accomplished using the
dynamic programming algorithm or a gradient-type
approach [8]. The resulting geodesic between q1 and

O�.q2 ı ��/

q
P�� is actually a geodesic between Œq1�

and Œq2� in the shape space S; its length ds.Œq1�; Œq2�/ D
dc.q1;O

�.q2 ı ��/

q
P��/ provides the geodesic dis-

tance in S . Several examples of geodesic paths in the
shape space S are shown in Fig. 5; these geodesics are
compared with the deformations/geodesics obtained
by two previously described methods: ASM and KSA,
for the same shapes. It is easy to see that the geodesics
resulting from ESA provide more natural deformations
as they are better in matching features across shapes.

The role of geodesics is preeminent in this frame-
work because (1) its length ds is a quantitative measure
of difference between shapes of curves represented
by q1 and q2; (2) this measure is invariant to rigid
motion, scaling, and re-parameterization of any of the
curves; (3) it also provides a full deformation (along
the geodesic path) for taking one shape into another in
an optimal way; and (4) the availability of geodesics
leads to a further development of tools for building
statistical summaries of shape classes, as described
next.

Mean Shape
The first important task in statistical shape analysis
is to define and compute the mean shape for a set of
curves. Compared to the sample means of real-valued
random variables, this task is not straightforward since
the shape space S is not a vector space. One cannot
simply take the SRVFs of the given curves and average
them point by point to get a mean shape. The notion

of a mean on a nonlinear manifold is typically estab-
lished using the Karcher mean [10]. For a given set
of curves ˇ1; ˇ2; : : : ; ˇn, represented by their SRVFs
q1; q2; : : : ; qn, their Karcher mean is defined as the
quantity that satisfies:

Œ�� D argmin
Œq�2S

nX
iD1

ds.Œq�; Œqi �/
2 :

There is a gradient-based iterative algorithm for find-
ing the minimizer of this cost function that can be
found in [10–12]. Since this algorithm is based on a
local search, the solution obtained is usually local and
depends on the initial condition. Shown in Fig. 6 are
some examples of mean shapes. The top six rows show
a set of given curves and bottom rows display their
means computed using the three methods discussed
here: ASM, KSA, and ESA.

Shape Covariance and Principal Modes of
Variation
Now that the first moment, i.e., the mean, of a set of
curves has been defined, one can look for the higher
moments. The role of the second centralized moment,
the covariance, is especially important as (1) one can
define a Gaussian distribution using just the mean and
the covariance and (2) the singular value decomposi-
tion (SVD) of the covariance matrix can be used for
a principal component analysis (PCA) of shape data.
These two ideas are briefly summarized next, starting
with the PCA.

For computing and analyzing the second and higher
moments of a shape sample, the tangent space to the
shape manifold S at the point � is used. This space,
denoted by T�.S/, is convenient because it is a vec-
tor space and one can apply more traditional methods
here. First, for each given curve qi , the vector vi 2
T�.S/ is computed such that a geodesic that goes from
� to qi in unit time has the initial velocity vi . The
function vi W S

1 ! R
2 is also called the shooting

vector from � to qi . Let OK be the sample covari-
ance matrix of all the shooting vectors from � to the
SRVFs qis. For capturing the essential variability in
a shape set, one can use principal component analy-
sis (PCA) of the shooting vectors. The basic idea is to
compute the SVD OK D U†U T , where U is an orthog-
onal matrix and † is the diagonal matrix of singular
values. Assuming that the entries along the diagonal
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PC1 PC2

ASM

KSA

ESA

ASM

KSA

ESA

ASM

KSA

ESA

Statistical Shape Analysis, Fig. 7 Two principal directions of variability in shapes given in Examples 1–3 in Fig. 6

Method “Gaussian” Random Samples

ASM

KSA

ESA

Statistical Shape Analysis, Fig. 8 Random samples from the “Gaussian”-type distributions under the three methods: ASM, KSA,
and ESA, for parameters estimated from the given shapes shown in Examples 1–3 of Fig. 6

in † are organized in a nonincreasing order, U1, U2,
etc. represent the dominant directions of variability in
the data. If a singular vector Uj is used to form vec-
tors t

p
†jjUj , then they represent shooting variability

in the direction Uj . One can map these directions back
on the shape space S using an exponential map at �.
The details of this exponential map are omitted here,
but it is basically the point reached on S by construct-
ing a geodesic in the shooting direction so that the
length of the geodesic is the same as the length of
the shooting vector. The resulting geodesics are also
called the principal geodesic paths. Figure 7 shows the

principal geodesic paths along U1 and U2, respectively,
for t D �1:5 to t D 1:5. Of course, the middle points
in each row are the mean shape �.

Probabilistic Shape Models
One important use of means and covariances of shape
families is in devising “Gaussian”-type probability
densities on the shape space S . In case of ASM this
idea is straightforward since the shape representations
are simple vectors, and one can define multivariate
normal densities on these vector spaces. However,
for KSA and ESA the shape spaces are nonlinear
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manifolds and such probability densities are not easy
to define. One common idea to tackle the nonlinearity
of the shape space is to impose a Gaussian distribu-
tion on the tangent space T�.S/ since that is a vector
space. In case of ESA this space is infinite dimen-
sional, so the Gaussian model is actually imposed on a
finite-dimensional subspace, e.g., a principal subspace,
of T�.S/. Let fUj g; j D 1; 2; : : : ; k denote the singu-
lar vectors of the sample covariance matrix as earlier.
Then, one can define a random vector v �Pk

jD1 fjUj

where fj 
 N.0;†jj / and define q D exp�.v/, the
exponential map of v from T�.S/ to the shape space S .
The procedure defines a generative random model on
the shape space and is easy to sample from. Shown in
Fig. 8 are examples of random samples from S using
means and covariances estimated from the given data
in Examples 1–3 from Fig. 6. For comparison, this fig-
ure also shows random samples from similar Gaussian
models but using ASM and KSA. It is easy to observe
the superiority of the results obtained using ESA; the
modeling results from ASM are typically the worst of
the three methods.

Open Problems

Although there has been a significant progress in shape
analysis of curves, especially the planar curves, several
important problems remain open. Firstly, the choice of
Gaussian-type models for capturing shape variability
of curves is more for convenience than data driven. It
is important to explore and develop statistical models
on shape manifolds that are both efficient, e.g., para-
metric models are more efficient, and provide a better
representation of the observed variability. The second
family of open problems relates to the shape analysis
of surfaces. One needs to develop special mathemati-
cal representations of parameterized surfaces that will
enable their shape analysis in a manner that is invari-
ant to their parameterizations. Some preliminary ideas
in that direction have been proposed in [13].
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Definition

A stochastic partial differential equation (SPDE) is
a partial differential equation (PDE) with an extra
stochastic term, e.g., an Itô integral. Sometimes partial
differential equations, where the differential operator
or the initial condition is disturbed, are also called
SPDEs, but the more common term for these equations
is random PDEs.

Background

First results on SPDEs and infinite-dimensional
stochastic differential equations (SDEs) appeared in
the mid-1960s. Ample publications and results are due
to the end 1970s and early 1980s. Here the work by
Walsh [20] and Pardoux [16] should be mentioned.
In the early 1990s, Da Prato and Zabczyk published
their book with an infinite-dimensional approach to
SPDEs driven by Wiener processes [6]. In the last
years, a number of books on SPDEs were pub-
lished, in particular an extension of [6] by Peszat and
Zabczyk [17]. Other recent publications to be men-
tioned are Chow [3], Prévôt and Röckner [18], and
Holden et al. [8].

The motivation to study SPDEs was driven on the
one hand from the internal development of analysis
and theory of stochastic processes and on the other side
from applications. Random phenomena studied in nat-
ural sciences needed to be described. Especially appli-
cations in physics, chemistry, biology, control theory,
nonlinear filtering, engineering, and finance pushed the
development of the theory of SPDEs and are still push-
ing it. In recent years, the applications also inspire the
design of numerical methods to “create numbers,” i.e.,
to simulate the equations.

Theory

Let .�;F ; .Ft /t�0;P/ be a filtered probability space.
The filtration is supposed to be right continuous, and
F0 contains all P-zero sets. A stochastic differential
equation is given by

dX.t/ D a.t; X.t// dt C b.t; X.t// dM.t/ (1)

with initial condition X.0/ D X0 and X W RC �
� ! R

d . The initial condition might be a random

variable. This notation is the abbreviation for the inte-
gral equation

X.t/ D X0 C
Z t

0

a.s; X.s// ds

C
Z t

0

b.s; X.s// dM.s/:

In this notation, M is a stochastic process adapted to
.Ft / which is, e.g., a local martingale. In many appli-
cations, the stochastic process is a Brownian motion
also called Wiener process and abbreviated by B or
W . Especially in recent years, other typical stochastic
processes that are considered are Lévy processes. The
expression

Z t

0

b.s; X.s// dM.s/

is a stochastic integral of Itô type (cf. [5, 9, 14, 15, 19]).
In order to ensure the existence of a solution to Eq. (1),
the functions a W RC � R

d ! R
d , b W RC � R

d ! R
d ,

and the stochastic process M have to satisfy certain
conditions. One possibility is that a and b are of linear
growth and Lipschitz type.

One approach to derive an SPDE is to extend Eq. (1)
to maps X W RC � � ! R

d where d tends to infinity.
Another possibility to derive SPDEs is to start with a
PDE. Therefore, let A be a differential operator on a
domain D � R

d . Then,

@

@t
u.t; x/ D Au.t; x/C f .u.t; x//C g.u.t; x// P�.t; x/

with initial condition u.0; x/ D u0.x/ for x 2 D

denotes an SPDE where P� is white noise. As in general
stochastic processes are almost surely nowhere differ-
entiable with respect to time t , this notation is used
seldom. Instead of that, SPDEs are integral equations,
i.e.,

u.t; x/ D u0.x/C
Z t

0

.Au.s; x/C f .u.s/// ds

C
Z t

0

g.u.s; x// dM.s; x/:

One approach to solve equations of that type was intro-
duced by Da Prato and Zabczyk in 1992 [6]. There,
a more general framework is used. Let H and U be
separable Hilbert spaces, e.g., L2.D/;Rd , or Sobolev
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spaces H˛.D/, then the previous equation can be
rewritten as

u.t/ D u0 C
Z t

0

.Au.s/C F.u.s/// ds

C
Z t

0

G.u.s// dM.s/;

where F W D.F / � H � � ! H , G W D.G/ �
H ! L.U;H/, and M is a U -valued stochastic pro-
cess, e.g., a square integrable martingale like a Wiener
or Lévy process. Here D.F / denotes the domain of F ,
and L.U;H/ is the space of linear operators from U

into H . The stochastic process u is a mapping from
RC�� into the Hilbert space H . The abbreviated form
of the previous equation is

du.t/ D .Au.t/C F.u.t/// dt C G.u.t// dM.t/ (2)

with u.0/ D u0. So instead of solving an SPDE, here
Hilbert space-valued SDEs are solved. Existence and
uniqueness of solutions might be shown, using, e.g.,
semigroup theory and classical SDE theory. In the
theory of SPDEs, there exist three main concepts of
solutions which are similar to those known from PDE
theory:
1. Strong solutions [6]: A predictable H -valued

stochastic process u D .u.t/; t 2 RC/ is a strong
solution to Eq. (2), if:
– For all t � 0, u.t/ takes values in D.A/\D.F /\

D.G/ P-a.s.
– For all t � 0, it holds P-a.s.

u.t/ D u0 C
Z t

0

.Au.s/C F.u.s/// ds

C
Z t

0

G.u.s// dM.s/:

2. Weak solutions [17]: A predictableH -valued process
u is a weak solution to Eq. (2), if:
– sup

t2Œ0;T �

E.ku.t/k2H / < C1 for all T 2 RC

– For all a 2 D.A�/, t � 0, it holds P-a.s.

ha; u.t/iH D ha; u0iH C
Z t

0

.hA�a; u.s/iH
C ha; F.u.s//iH ds

C
Z t

0

hG�.u.s//a; dM.s/iH:

Here A� denotes the adjoint operator and H is
the reproducing kernel Hilbert space generated
by M .

3. Mild solutions [17]: Let A be the generator of
a strongly continuous semigroup .S.t/; t � 0/,
then the stochastic process u is a mild solution to
Eq. (2), if:
– sup

t2Œ0;T �

E.ku.t/k2H / < C1 for all T 2RC

– For all t � 0, it holds P-a.s.

u.t/ D S.t/u0 C
Z t

0

S.t � s/F.u.s// ds

C
Z t

0

S.t � s/G.u.s// dM.s/:

Furthermore, there are viscosity solutions [13]. One
could also think of solutions in probability or in expec-
tation and many other concepts.

If A is the generator of a strongly continuous
semigroup, similarly to SDE theory, solutions exist
under linear growth and Lipschitz conditions, but
many extensions are possible. The reader is referred
to the literature for explicit conditions for existence
and uniqueness results. In this context, an overview
can be found in [17], but the subject is still evolving
such that recent research papers will give more general
results.

For applications, a suitable type of solution has to be
chosen. This leads to the next section where some pos-
sible applications are discussed as well as the problem
that solutions for most SPDEs are not known. There-
fore, numerics of SPDEs have become more and more
important within the last year.

Application

SPDEs are relevant in many different applications. In
engineering such as image analysis, surface analysis,
and filtering, they result from addition of noise to
PDEs. In finance, systems of SDEs are common that
extend to infinite-dimensional problems and therefore
to SPDEs. Furthermore, first applications to life and
bio-sciences are done.

All these applications are interested in solutions of
SPDEs, but these are not known explicitly in most
cases. Therefore, numerics of SPDEs have become
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Stochastic Partial
Differential
Equations, Fig. 1
Simulation of one path of an
SPDE with additive noise on
an interval. (a) Parabolic
equation. (b) Hyperbolic
equation
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important within the last years. Methods combine SDE
methods with PDE methods. Simulation methods for
SDEs are especially Euler–Maruyama, Milstein, and
higher-order schemes, where a good survey is given
in [11], as well as Monte Carlo methods [7]. From
PDE theory Galerkin methods, especially finite ele-
ments are relevant, where the reader is referred, e.g.,
to [4] and [2].

Open Problems

As the topic is fairly new, there are still many open
questions. People are still working on existence and
uniqueness theory and extending known results. Espe-
cially the simulation of SPDEs, i.e., the numerics
evolve a lot in recent years, and so far, no book on the
topic is available.
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Stochastic Partial Differential Equations, Fig. 2 Segmentation using an SPDE and stochastic active contours. (a) initial
condition. (b) Intermediate step. (c) Segmentation result

Experimental Results

To illustrate what an SPDE is and where to use it for,
two figures are included. Fig. 1 shows two simulated
paths, i.e., ! 2 � was chosen and a finite element
method in space and an Euler–Maruyama scheme in
time were used. On the left-hand side, the heat equation
with additive noise and Dirichlet boundary conditions,
i.e.,

du.t/ D 
u.t/ dt C dW.t/

on the space and time interval Œ0; 1� with initial con-
dition u.0; x/ D sin.�x/, is displayed, where W is
a Wiener process with space correlation given by the
kernel function q.x; y/ D exp.�2jx�yj/. On the right-
hand side, a hyperbolic equation with additive noise is
presented. It is given by

du.t/ D ru.t/ dt C dW.t/

with initial condition u.0; x/ D sin.2�x/ and inflow
boundary condition u.t; 0/ D � sin.2�t/. The other
parameters are the same as for the heat equation. In
both figures, time evolves from left to right. This and
more simulation and convergence results can be found
in [1].

One example for an application of SPDEs in com-
puter vision is segmentation. This approach was sug-
gested by Juan et al. [10]. Using level set methods and
variational calculus, we obtain as one possible SPDE
to be simulated

du.t; x/ D r ru.t; x/

jru.t; x/j dt C jru.t; x/j dW.t; x/;

where the initial condition is, e.g., a weighted distance
function as in Fig. 2a. The red circles are the zero level
sets. Different types of noise than the coupling with the
size of the gradient can be found in [10] and [12]. An
example of the segmentation of a zebra from [12] is
shown in Fig. 2.
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Structure-from-Motion (SfM)
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Subpixel Estimation

Robert B. Fisher
School of Informatics, University of Edinburgh,
Edinburgh, UK

Synonyms

Superresolution

Definition

Subpixel estimation is the process of estimating the
value of a geometric quantity to better than pixel reso-
lution even though the data was originally sampled on
an integer pixel quantized space.

Background

It is naively assumed that information at a scale smaller
than the pixel level is lost when continuous data is
sampled or quantized into pixels from, e.g., time-
varying signals, images, data volumes, and space-time
volumes. However, in fact, it may be possible to esti-
mate geometric quantities to better than the original
pixel accuracy. The underlying foundations of this
estimation are the following:
– Models of expected spatial variation: Discrete struc-

tures, such as edges or lines, produce characteristic
patterns of data when measured, allowing fitting of
a model to the data to estimate the parameters of the
structure.

– Spatial integration during sampling: Sensors typically
integrate a continuous signal over a finite domain
(space or time), leading to measurements whose val-
ues depend on the relative position of the sampling
window and the original structure.

– Point-spread function: Knowledge of the PSF could
be used, e.g., by deconvolution of a blurred signal,
to estimate the position of the signal.
Applications commonly benefitting from subpixel

estimation are (1) camera calibration and triangulation
(e.g., in stereo and structured light depth estimation)
and (2) image motion estimation for improved image
stabilization and compression.

One of the earliest instances of subpixel edge detec-
tion in computer vision research was by MacVicar-
Whelan and Binford [13] in 1981.

The accuracy of subpixel estimation depends on
a number of factors, such as the image point-spread
function, noise levels, and spatial frequency of the
image data. A commonly quoted rule of thumb is 0.1
pixel, but lower is achievable, e.g., about 0.02 pixel is
shown for stripe position detection in [1].

Theory

There are four common approaches to estimating sub-
pixel positions:

http://dx.doi.org/10.1007/978-0-387-31439-6_680
http://dx.doi.org/10.1007/978-0-387-31439-6_689
http://dx.doi.org/10.1007/978-0-387-31439-6_100036
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MEASURED
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TRUE
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x x+1x−1

PIXEL BOUNDARIES

PIXEL

f(x+1)f(x)f(x−1)

δ

Subpixel Estimation, Fig. 1 The values of f .x/ created by
integrating the continuous signal over the whole pixel

1. Interpolation: An example is in subpixel edge posi-
tion estimation, which is demonstrated here in one
dimension in ideal form in Fig. 1. One can see that
intensity f .x/ is a function of the edge’s actual posi-
tion within a pixel and the values at adjacent pixels.
Here we assume that the pixel “position” refers to
the center of the pixel. Let ı be the offset of the true
edge position away from the pixel center. Then, one
can model the value f .x/ at x in terms of the values
at the neighbors, assuming a step function:

f .x/ D
�
1

2
C ı

�
� f .x � 1/C

�
1

2
� ı

�
� f .x C 1/

from which we can solve for the subpixel edge
position x C ı by:

ı D 2f .x/ � f .x � 1/ � f .x C 1/

2.f .x � 1/ � f .x C 1//

Another approach is to interpolate a continuous
curve (or surface) and then find the optimal position
on the reconstructed curve (e.g., by using correlation
for curve registration).

2. Integration: An example is the estimation of the
center point of a circular dot, such as required for
control point localization in a camera calibration
scheme. The assumption is that the minor deviations
from many boundary pixels can be accumulated to
give a more robust estimate. Suppose that g.x; y/

are the gray levels of a light circle on a dark
background, where .x; y/ are in a neighborhood N

closely centered on the circle. Assume also that the
mean dark background level has been subtracted
from all values. Then, the center of the dot is
estimated by its gray-level center of mass:

Ox D
P

.x;y/2N xg.x; y/P
.x;y/2N g.x; y/

and similarly for Oy.
3. Taylor series approximation: An example is the sub-

pixel feature point position estimation in the SIFT
[12] operator. Given the difference of Gaussian
function D.x/, where x represents the two spa-
tial and one scale dimensions, the Taylor series
expansion is:

D.x C ı/ D D.x/C @D.x/

@x

>

ı C 1

2
ı>

@2D.x/

@x2
ı

Differentiating with respect to ı and setting to 0 give
the subpixel (and subscale) estimate:

ı D �@2D.x/

@x2

�1
@D.x/

@x

4. Phase correlation: The key principle behind phase
correlation is the assumption that the pattern of
data across a whole window is more distinctive
than the individual pixel values. The technique is
also independent of intensity, so it can be used
for multispectral or illumination-varying registra-
tion. Assume that we have two image windows fa
and fb and their discrete Fourier transforms Fa D
F.fa/ and Fb D F.fb/. Compute the cross-power
spectrum as FaF

�

b (by elementwise multiplication)
where � is the complex conjugate, normalize ele-
mentwise by j FaF

�

a j, and finally apply the inverse
Fourier transform:

T D F�1

�
FaF

�

b

j FaF �

a j
�

The peak position in T is the desired offset. For
subpixel alignment, the above method can be used
to remove the integer component of the registra-
tion. Thereafter, one can estimate the subpixel peak
position of the original registration or repeat the
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process on an upsampled version of the image win-
dows once the integer portion of the offset has been
removed.

Application

Subpixel methods have been developed to analyze the
following:
– Shape parameters: circle and other “blob” shape

parameters [9], ellipse parameters for improved
camera calibration [20], photometric stereo [19],
superresolution [18], decomposition of mixed pix-
els formed by imaging two or more source types
[2]

– Feature positions: point-like signals [10], “interest”
points [12], “edge” transitions [15], “line” transi-
tions [6]

– Shape matching and registration: image registration
using phase analysis [7, 16] or spatial domain
matching [11], motion estimation prior to image
compression [17], stereo matching [8] and dispar-
ity estimation [14], feature tracking [3], optical flow
[4], image and video stabilization [5]
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Related Concepts

�Dimensionality Reduction; �Principal Component
Analysis (PCA)

Definition

Subspace analysis in computer vision is a generic
name to describe a general framework for comparison
and classification of subspaces. A typical approach in
subspace analysis is the subspace method (SM) that
classifies an input pattern vector into several classes
based on the minimum distance or angle between the
input pattern vector and each class subspace, where a
class subspace corresponds to the distribution of pat-
tern vectors of the class in high-dimensional vector
space.

Background

Comparison and classification of subspaces has been
one of the central problems in computer vision, where
an image set of an object to be classified is compactly
represented by a subspace in high-dimensional vector
space.

The subspace method is one of the most effective
classification method in subspace analysis, which was
developed by two Japanese researchers, Watanabe and
Iijima around 1970, independently [1, 2]. Watanabe
and Iijima named their methods the CLAFIC [3] and
the multiple similarity method [4], respectively. The
concept of the subspace method is derived from the
observation that patterns belonging to a class form
a compact cluster in high-dimensional vector space,
where, for example, a w�h pixels image pattern is
usually represented as a vector in w�h-dimensional
vector space. The compact cluster can be represented
by a subspace, which is generated by using Karhunen-
LoJeve (KL) expansion, also known as the principal
component analysis (PCA). Note that a subspace is
generated for each class, unlike the Eigenface Method
[5] in which only one subspace (called eigenspace) is
generated.

The SM has been known as one of the most useful
methods in pattern recognition field since its algorithm

is very simple and it can handle classification of mul-
tiple classes. However, its classification performance
was not sufficient for many applications in practice,
because class subspaces are generated independently
of each other [1]. There is no reason to assume a pri-
ori that each class subspace is the optimal linear class
subspace in terms of classification performance.

To deal with this problem, the SM has been
extended. Two typical extensions are the orthogonal
subspace method and the learning subspace methods.
The orthogonal subspace method [6] executes the SM
to a set of class subspaces that are orthogonalized
based on the framework proposed by Fukunaga and
Koontz [7] in learning phase. The orthogonalization
is known as a useful operation to boost the perfor-
mance of angle-based method, such as SM, since class
subspaces are usually close to each other in many
classification problems.

The learning subspace methods [1, 8, 9] execute
the SM to a set of class subspaces, the boundaries
between which are adjusted to suppress classification
errors for the learning pattern vectors. This adjustment
is performed based on the following procedure. First, a
learning vector x is classified by using the SM. Then,
if x is wrongly classified into an incorrect class sub-
space Lr , which is not corresponding to the class of
x, subspace Lr is slightly rotated into the direction
away from x, and in contrast the correct class subspace
Lc of x is slightly rotated to the direction close to x.
This adjustment is repeated several times for a set of
learning vectors until a minimum classification error is
achieved.

Moreover, to deal with the nonlinear distribution
of pattern vectors, the SM had also been extended
to the kernel nonlinear SM [10, 11] by introducing a
nonlinear transformation defined by kernel functions.

These extensions aim mainly to improve the clas-
sification ability. In addition to such extensions, the
generalization of the SM to classification of sets of
patterns is also important for many computer vision
problems. In order to handle a set of multiple pattern
vectors as an input, the SM has been extended to the
mutual subspace method (MSM) [12]. The MSM clas-
sifies a set of input pattern vectors into several classes
based on multiple canonical (principal) angles [13, 14]
between the input subspace and class subspaces, where
the input subspace is generated from a set of input
patterns as class subspaces. The concept of the MSM
is closely related to that of the canonical correlation

http://dx.doi.org/10.1007/978-0-387-31439-6_652
http://dx.doi.org/10.1007/978-0-387-31439-6_649


Subspace Methods 779 S

S

analysis (CCA) [13]. Actually, the cosine of the i-th
smallest canonical angle corresponds to the i-th largest
canonical correlation.

The MSM has achieved high performance in recog-
nition of complicated 3D object such as face, using
a set of images from image sequence or multi-view
images. This success can be mainly explained by the
fact that the MSM implicitly utilizes 3D shape infor-
mation of objects in classification. This is because
the similarity between two distributions of various
view images of objects reflects the 3D shape similar-
ity between the two objects. To boost the performance
of the MSM, it has been further extended to the con-
strained mutual subspace method (CMSM) [15] and
the whitening (or orthogonal) mutual subspace method
(WSM) [16], where the relationship among class sub-
spaces is modified to approach orthogonalization in
the learning phase. These extensions have boosted
the classification ability of the MSM. The MSM and
its extensions also have been further extended to the
kernel nonlinear SM [17–20].

Theory

Subspace Method
Assume an input vector p and k class subspaces in
f -dimensional vector space. The similarity S of the
pattern vector p to the i-th class is defined based on
either of the length of the projected input vector Op on
the i-th reference subspace [3] or the minimum angle
[4] between the input vector p and the i-th class sub-
space as shown in Fig. 1a. The length of an input vector
p is often normalized to 1.0. In this case, these two cri-
teria coincide. In the following explanation, therefore,
the angle-based similarity S defined by the following
equation will be used:

S D cos2� D
dqX
iD1

.p � ���i /
2

jjpjj2 ; (1)

where dq is the dimension of the class subspace and
���i is the i-th f -dimensional orthogonal normal basis
vector of the class subspace, which are obtained from
applying the principal component analysis (PCA) to a
set of patterns of the class. Concretely, these orthonor-
mal basis vectors can be obtained as the eigenvectors
of the correlation matrix

Pl
iD1 xix

>

i calculated from
the l learning patterns fxg of the class.

Process Flow of the SM
The whole process of the SM consists of a learning
phase and a recognition phase.

In the Learning Phase All k class dq-dimensional sub-
spaces are generated from a set of pattern vectors
of each class by using PCA.

In the Recognition Phase The similarities S of an input
vector p to all the k class subspaces are calculated
by using Eq. (1). Then, the input vector is classi-
fied into the class of the class subspace with highest
similarity. If the highest similarity is lower than a
threshold value fixed in advance, the input vector is
classified into a reject class.

Mutual SubspaceMethod
Assume an input subspace and class subspaces in f -
dimensional vector space. The similarity of the input
subspace to the i-th class subspace is defined based
on a minimum canonical angle �1 [13, 14] between
the input subspace and the class subspace, as shown
in Fig. 1b.

Given a dp-dimensional subspace P and a
dq-dimensional subspace Q (for convenience, dp �
dq) in the f -dimensional vector space, the canonical
angles f0 � �1; : : : ; �dp � �

2
g between P and Q are

uniquely defined as [14]

cos2�i D max
ui?uj .i¤j; i; j D 1
dp/

vi?vj .i¤j; i; j D 1
dp/

.ui � vi /
2

jjui jj2jjvi jj2
;

(2)

where ui 2 P; vi 2 Q; kuik ¤ 0,kvik ¤ 0, .�/ and k k
represent an inner product and a norm, respectively.

Let ˆi and ‰ i denote the i-th f -dimensional
orthonormal basis vectors of the subspaces P and
Q, respectively. A practical method of finding the
canonical angles is by computing the matrix X=A>B ,
where A = Œˆ1; : : : ;ˆdp � and B = Œ‰1; : : : ;‰dq �. Let
f	1; : : : ; 	dp g .	1�; : : : ;� 	dp / be the singular values
of the matrix X . The cosines of canonical angles
f�1; : : : ; �dp g can be obtained as f	1; : : : ; 	dp g. The orig-
inal MSM uses only a minimum canonical angle �1
to define the similarity. However, since the remaining
canonical angles also have information for classifica-
tion, the value, QS D 1

t

Pt
iD1 cos2 �i , defined from the
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Subspace Methods, Fig. 1
Conceptual illustrations of
SM and MSM. (a) Subspace
method (SM). (b) Mutual
subspace method (MSM)

Input vector

a b
Subspace Subspace

..... ..........
u1

v1

Subspace

smallest t canonical angles is often used as the sim-
ilarity in many computer vision problems. The value
QS reflects the structural similarity between two sub-

spaces. The whole process of the MSM is the same as
that of the SM except that an input vector is replaced
by an input subspace.

Application

The subspace methods and their extensions have been
applied to various problems [1, 10, 11] of computer
vision due to their high general versatility and low
computational cost. In particular, the extended SMs
have produced remarkable results in optical charac-
ter recognition (OCR), such as handwriting Chinese
character recognition [2, 4], in Japanese industry.

The mutual subspace method has also been demon-
strated to be extremely effective for 3D object recog-
nition. In particular, the MSM has been known to
be suitable for face recognition [15, 16, 21] because
the subspace (called “illumination subspace”), which
includes any face image patterns under all possible
illumination conditions, can be generated from face
images under more than three different illumination
conditions [22]. The nonlinear extensions of the MSM
have been shown to be further effective for 3D object
recognition using image sequences, multi-view images
[17–20].
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Superresolution

�Subpixel Estimation

Surface Corrugations

�Surface Roughness

Surface Orientation Histogram
(Discrete Version of EGI)

�Extended Gaussian Image (EGI)

Surface Reconstruction

�Three Dimensional View Integration

Surface Roughness

S. C. Pont
Industrial Design Engineering, Delft University of
Technology, Delft, The Netherlands

Synonyms

Micro scale structure; Surface corrugations; Surface
undulations

Related Concepts

�Bidirectional Texture Function and 3D Texture

Definition

Surface roughness is structure on the microscale
of object surfaces. The illumination of such rough
surfaces causes shading, shadowing, interreflections,
and occlusion effects on the microscale, resulting in
3D texture, which depends strongly on the viewing
direction and on the illumination conditions.

Background

Most natural surfaces are rough on the microscale. This
microscale structure can be described mathematically
with exact geometrical models, with statistical surface
height or attitude (slope) distributions.

Surface roughness causes 3D texture in images,
which varies over objects as a function of the local
viewing angle and illumination conditions. They can
be described by the bidirectional texture function or
BTF [3]. Thus, textures of rough objects cannot be
texture-mapped, in contradistinction to flat, wallpaper-
type textures. They need to be synthesized using
surface models or photographed BTFs [6]. Even unre-
solved 3D texture in an image affects material appear-
ance, through effects on the bidirectional reflectance
distribution function (BRDF [7]).

Theory

Since the optical effects due to surface roughness are
quite complicated, it is hard to formally derive models
for 3D textures. Physics-based optical models can be
of a geometrical optical or a statistical nature. Physi-
cally exact geometrical models are scarce, because for
most surface roughness structures the shadowing and
interreflections calculations are intractable. As a sum-
mary description of surface roughness, one may use
such measures as the probability density of heights,
the autocorrelation function of heights, and the prob-
ability density of orientations of local microfacets. For
example, “bump mapping” techniques [4] in computer

http://dx.doi.org/10.1007/978-0-387-31439-6_189
http://dx.doi.org/10.1007/978-0-387-31439-6_539
http://dx.doi.org/10.1007/978-0-387-31439-6_651
http://dx.doi.org/10.1007/978-0-387-31439-6_296
http://dx.doi.org/10.1007/978-0-387-31439-6
http://dx.doi.org/10.1007/978-0-387-31439-6_100185
http://dx.doi.org/10.1007/978-0-387-31439-6_100186
http://dx.doi.org/10.1007/978-0-387-31439-6_263
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graphics regard only the distribution of orientations
and ignore differences in height. Indeed much of the
image structure generated by 3D texture is due to
the fact that surface microfacets differ in orientation
and thus receive different illuminances according to
Lambert’s law [5]. The bidirectional texture contrast
function (BTCF [9]) provides robust guesstimates of
the attitude distribution. However, the height distribu-
tion is also important because it causes such important
effects as vignetting, shadowing and occlusion on the
microscale.

The field of surface metrology is concerned with
surface roughness measurements and descriptions.
Using profilometers, surface profiles of real surfaces
can be measured, from which roughness parameters
can be derived. Roughness parameters usually are sta-
tistical measures over lines or areas of the height
profile. Many different parameters are in use and
can easily be found in engineering literature and via
the Internet [11]. Photometric surface metrology from
single images suffers from the bas-relief ambiguity [1]
and is in computer vision usually referred to as texture
analysis [6].

Open Problems

3D texture provides information which is additional
to shading; shading is often primarily dependent on
the normal component of the illumination, while 3D
texture is primarily dependent on the tangential com-
ponent of the illumination. The spatial structure of 3D
texture gradients, e.g., the “illuminance flow,” allows
inferences about shape and illumination. Formal solu-
tions to the question how exactly shading and 3D
texture combine and interact might further the field of
shape from shading.

Experimental Results

Several databases of images of rough surfaces can be
found on the Internet [2, 8, 10].
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Surface Scattering
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�Surface Roughness
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SWCut
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Swendsen-Wang Algorithm

Adrian Barbu
Department of Statistics, Florida State University,
Tallahassee, FL, USA

Synonyms

Cluster sampling

Related Concepts

�Swendsen-Wang Cut Algorithm

Definition

The Swendsen-Wang (SW) algorithm [1] is an efficient
Markov chain Monte Carlo algorithm for sampling
from the Ising/Potts model:

�Potts.X/ D 1

Z
expf

X
<i;j>2E

ˇij ıXiDXj g; (1)

where ıA is a Boolean function, equal to 1 if condi-
tion A is true and 0 otherwise. The Ising/Potts model
is defined for a graph GD<V;E> and a labeling
X W V ! f1; : : : ; Lg. The obtained model is called
Ising model [2] when L D 2 and Potts model [3] when
L � 3.

Most computer vision applications use ˇij D
ˇ>0, also named the ferro-magnetic model, preferring
similar colors for neighboring vertices. The Potts mod-
els and its extensions are used as prior probabilities in
some Bayesian inference tasks.

Background

The SW algorithm was developed in [1] to overcome
some of the limitations of the Gibbs sampler [4] in
obtaining samples from the Ising/Potts model (1). If
one sets ˇij D 1=kT where T is a parameter called
temperature and k is a constant, the Gibbs sampler was
observed to slow down, obtaining highly correlated

consecutive samples, around a certain temperature
named the critical temperature.

In contrast, consecutive samples obtained by the
SW algorithm exhibit much smaller correlation at the
critical temperature.

Theory

As opposed to the Gibbs sampler [4] that relabels one
node at a time, the SW algorithm changes the label of
a cluster of nodes in a single move.

The SW algorithm is illustrated in Fig. 1. At each
step, the SW method constructs a new set F � E of
graph edges, also called the active or “on” edges. This
is done by initializing F D ; and adding to F any
edge <i; j> 2 E such that Xi D Xj with probability
1 � e�ˇij . A connected component of the new graph
G0 D .V; F / is selected at random, a new label l is
chosen at random among the possible labels f1; : : : ; Lg,
and all nodes in C are relabeled to l . For more details,
see Algorithm 1 below.

Alternatively, the labels of all connected compo-
nents C of the graph G0D<V;F> can be flipped
independently.

The SW algorithm is run for many iterations, and
after a burn-in period that depends on the number of
nodes and the coefficients ˇij , the labeling states X

will follow the posterior probability Eq. (1).
In a modified version by Wolff [5], one may choose

a vertex v 2 V and grow a connected component C
starting at C D fvg and following Bernoulli trials on
edges adjacent to C that have not been visited yet.
This saves some computation in the clustering step,

Algorithm 1 The Swendsen-Wang Algorithm
Given: Graph GD<V;E>, V D .V1; : : : ; Vn/ and the
Ising/Potts model from Eq. (1).
Input: Current labeling state X D .X1; : : : ; Xn/.
Output: New labeling state X 0.
Set F D ;
for all edges eD<i; j> 2 E with Xi D Xj do

Sample uij � Bernoulli.pij / with pij D 1� e�ˇij

if uij D 1 then
F  F [ f<i; j>g

end if
end for
Pick a connected component C of G0 D .V; F / at random.
Sample l � Uniff1; : : : ; Lg
Set X 0

i D l;8i 2 C; X 0

i D Xi ;8i 62 C

http://dx.doi.org/10.1007/978-0-387-31439-6_100271
http://dx.doi.org/10.1007/978-0-387-31439-6_722
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State X State X

c c

State X�

Swendsen-Wang Algorithm, Fig. 1 The Swendsen-Wang
method. Left: In the current labeling state X (left), the graph
edges (shown with thin lines) between same label nodes are
turned “on” with probability pij D 1 � e�ˇij . Middle: A

connected component C of the graph of “on” edges is ran-
domly selected, and a new label l is randomly chosen. Right: All
nodes in C are relabeled with label l , obtaining the new labeling
state X 0

and bigger components have a higher chance to be
selected.

The SW method described above is different from
what was presented in the original paper [1]. This
description follows the interpretation of Edward and
Sokal [6], where the variables uij j<i;j>2E are collected
into the vector U and the set of active edges is F.U / D
f<i;j>2 E; uij D 1g. The SW algorithm is explained
as an auxiliary variable method that samples from the
joint model

pES.X; U / /
Y

<i;j>2E
Œ.1 � pij /ıuijD0Cpij ıuijD1 � ıxiDxj �

/ .1� pij /
jEnF.U /j � pjF.U /j

ij �
Y

<i;j>2F.U /

ıxiDxj :

The SW algorithm samples from the above joint
model pES.X;U/ by alternatively sampling pES.UjX/
and pES.XjU/. Note that the sampling of pES.UjX/ is
exactly the part of the SW algorithm that constructs
the random edges F , while the sampling of pES.XjU/

is the part that flips the labels of one or all the con-
nected components C of the graph G0 D<V;F>. By
sampling .X;U/ from the joint model pES.X;U/, the
labelings X will follow the marginal pES.X/ which is
exactly the Potts model pPotts.X/. On the other hand,
the random edges U follow the marginal pES.U/ which
is the random cluster model.

Another explanation of the SW algorithm is due to
Higdon [7] through the perspective of slice sampling
and decoupling. He also introduces partial decoupling,
which gives a data-driven clustering step.

The SW algorithm was generalized to arbi-
trary probabilities in [8], by interpreting it as
a Metropolis-Hastings [9, 10] step. This gen-
eralization is named the Swendsen-Wang cut
algorithm.

An exact sampling method for the Potts model using
the SW algorithm was developed by Huber [11], based
on coupling from the past [12]. This method eliminates
the need for the burn-in period for obtaining samples;
however, it is quite conservative and can only be used
in practice for small graphs.

Application

Due to being restricted to the Ising/Potts model, there
are only a few applications of the SW algorithm to
computer vision.

Higdon [7] introduced partial decoupling and pre-
sented an application of SW to image reconstruction
from positronic emission tomography (PET) data. The
SW algorithm with partial decoupling was also used
in [13] for texture segmentation using a model with
Potts prior and a data term. The SW algorithm was
compared with the Gibbs sampler and SW with partial
decoupling in [14].
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Morris [15] introduced a higher-order prior model
named the “chien” model that is not based on pairwise
interactions, but on 3 � 3 cliques. He used the SW
algorithm with partial decoupling for obtaining sam-
ples from this model.

The SW cut algorithm, a SW generalization to arbi-
trary probabilities and edge weights, has seen many
applications to image, motion, and object segmenta-
tion as well as stereo matching and curve grouping, to
name only a few. For more details, see the SW cut entry
of the encyclopedia.
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Swendsen-Wang Cut Algorithm

Adrian Barbu
Department of Statistics, Florida State University,
Tallahassee, FL, USA

Synonyms

SW cut

Related Concepts

�Simulated Annealing; �Swendsen-Wang Algorithm

Definition

The Swendsen-Wang Cut algorithm is an efficient
Markov chain Monte Carlo (MCMC) algorithm for
sampling arbitrary distributions p.X/ defined on par-
titions X of a graph G D <V;E>. It uses a set of
weights on the graph edges to form data-driven clus-
ters and change the label of an entire cluster in one
move.

Background

Many computer vision problems can be formulated
as the optimization of an energy or probability func-
tion defined over the space of partitions or labelings
of a graph. Efficient algorithms such as graph cuts [1],
belief propagation [2], or dual decomposition [3] can
be used for certain types of energy functions.

However, for general forms of the energy or prob-
ability functions, many times one has to resort to
stochastic relaxation (Gibbs sampler) [4] methods that
relabel one node at a time. Such algorithms can be very
slow in practice, especially when strong regularization
is imposed on the partitions.

For Ising/Potts models [5, 6], the Swendsen-Wang
(SW) algorithm [7, 8] was designed to overcome some
of the limitations of the stochastic relaxation. The SW
algorithm achieves speedup by relabeling a cluster of
adjacent nodes of the graph in a single move.

http://dx.doi.org/10.1007/978-0-387-31439-6_100272
http://dx.doi.org/10.1007/978-0-387-31439-6_680
http://dx.doi.org/10.1007/978-0-387-31439-6_721
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Theory

The Swendsen-Wang cuts algorithm is a general-
ization of the Swendsen-Wang algorithm to arbi-
trary distributions by adding an acceptance step for
the proposed MCMC cluster relabeling move. The
acceptance probability can be computed efficiently
using Eq. (3).

Let G D <V;E> be a graph , qe 2 Œ0; 1�;8e 2
E a set of weights on the graph edges, and p.X/ a
probability defined for any partition or labeling X D
.X1; : : : ; Xn/ of the graph nodes V D .V1; : : : ; Vn/.
The probability p.X/ can be defined up to a con-
stant. Assume also given a probability mass function
q.ljC;X/ defined over the set possible labels l , given
a labeling state X and a set of nodes C � V . The
function q.ljC;X/ could be as simple as a uniform
distribution or can be driven by the image data.

For any labeling X of the graph nodes and any label
l , define Vl.X/ to be the set of nodes with label l:

Vl .X/ D fi 2 V;Xi D lg: (1)

For any two subsets C;D � V , define the cut from
C to D as the set of edges:

C.C;D/ D fe D< i; j >2 E; i 2 C; j 2 Dg: (2)

With these notations, one move of the SW cut algo-
rithm proceeds as follows, also illustrated in Fig. 1.

The acceptance probability ˛.X ! X 0/ has a fac-
tor defined in terms of the cuts C.C; Vl .X/ n C/ and
C.C; Vl 0 .X/ nC/ that contain the edges from C toward
the nodes with the old label l and the proposed new
label l 0, respectively. These cuts are shown with dotted
lines in Fig. 1.

The algorithm was observed to be hundreds of times
faster than the Gibbs sampler when the edge weights
qe were chosen appropriately. The edge weights
should approximate the probability that the two adja-
cent nodes belong to the same label. This can be
achieved using the image information available at
the graph nodes and could be learned in a dis-
criminative way, for example, using boosting or
regression.

The SW cut algorithm can be used for maxi-
mum a posteriori (MAP) estimation using a simu-
lated annealing schedule, in which the probability

p.X/ is raised to increasingly larger powers, forcing
the sampling to focus on the labelings X of highest
probability.

A Wolff [9] version of the SW cut algorithm has
also been proposed [10, 11], which grows a connected
component from a seed node. This version reduces the
amount of computation required for the clustering step,
and larger connected components have a higher chance
to be selected.

Application

The SWC algorithm has many applications in com-
puter vision. One application was image segmentation
[10, 12], where the graph had image superpixels as
nodes and edges based on the superpixel adjacency.
The edge weights qe were based on the similarity
between the intensity histograms of the correspond-
ing superpixels. The probability p.X/ was a Bayesian

Algorithm 1 The Swendsen-Wang Cut Algorithm
Given: Weighted graph G D< V;E >, V D .V1; : : : ; Vn/ and
a probability p.X/.
Input: Current labeling state X D .X1; : : : ; Xn/.
Output: New labeling state X 0.
Set F D ;
for all edges e D< i; j >2 E with Xi D Xj do

Sample u � Bernoulli.qe/
if u D 1 then

F  F [ f< i; j >g
end if

end for
Pick a connected component C of G0 D .V; F / at random, with
some label XC D l .
Sample a new label l 0 � q.l 0jC;X/

Sample u � Bernoulli.˛.X ! X 0// where X 0

i D
l 0;8i 2 C; X 0

i D Xi ;8i 62 C and

˛.X ! X 0/D min

0
BBB@1;

Y
e2C.C;Vl0 .X/nC/

.1� qe/

Y
e2C.C;Vl .X/nC/

.1� qe/
�

q.ljC;X 0/

q.l 0jC;X/
� p.X

0/

p.X/

1
CCCA : (3)

if uD 0 then
Reject the move i.e. make X 0 D X .

end if
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Swendsen-Wang Cut Algorithm, Fig. 1 Illustration of the
SW cut algorithm. Left: A graph GD<V;E> with a labeling
X . Middle: At each step, a new graph G0D<V; F> is formed by
going through all edges between same label nodes and keeping

an edge e with probability given by its weight qe . Right: Then a
connected component C of G0 is selected at random, a new label
l 0 is chosen for C , and if the move is accepted, the new labeling
state has XC D l 0

model with a prior based on connected components
and was maximized by SW cut with simulated anneal-
ing. Experiments showed that the SW cut algorithm
was two orders or magnitude faster in total CPU time
when compared to the Gibbs sampler tuned to obtain
the same optimal result.

Other applications of the SW cut algorithm include
curve grouping [12], dense stereo matching [10, 13],
motion segmentation [11, 14] and estimation [15],
object segmentation [16], and task allocation [17] in
robotics. Furthermore, the SW cut algorithm was used
for discovering composite features for object detection
[18] and for graph matching [19].

Open Problems

In problems, higher-level objects can Sometimes be
detected only when at least three components are con-
sidered simultaneously. For such cases, it is an open
question how to generalize the SW cut algorithm to
use higher-order cliques instead of graph edges to
construct the clusters.

For example, finding lines in point clouds can be
seen as the problem of labeling the points that belong
to each line and the remaining points as background.
But since nontrivial colinearity exists only between at
least three points, it is difficult to define edge weights
directly between the points. A generalization of the
SW cut algorithm could use triplets of collinear points
instead of graph edges to form point clusters that are
likely to be on the same line. It is not known how
exactly to form the clusters from such higher-order
cliques and what is the acceptance probability for
relabeling such a cluster.
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