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ARTICLE INFO ABSTRACT

Keywords: People are able to rapidly categorize briefly flashed images of real-world environments, even when they are
Scene perception reduced to line drawings. This setting allows for the study of time-limited perceptual grouping processes in the
Symmetry human visual system that are applicable to line drawings. Previous work (Wilder, Dickinson, Jepson, & Walther,

Perceptual grouping

Yupr 2018) showed that standard local features of individual contours, or junctions between contours, do not account
Scene categorization

for this rapid classification ability but, rather, the relative placement of these contours appeared to be important.
Here we provide strong support for this observation by demonstrating that local ribbon symmetry between
neighboring pairs of contours facilitates the categorization of complex real-world environments. To this end, we
introduce a novel computational approach, based on the medial axis transform, for measuring the degree of local
ribbon symmetry in a line drawing. We use this measure to separate the contour pixels for a given scene into the
most ribbon symmetric half and the least ribbon symmetric half. We then show human observers the resulting
half-images in a rapid-categorization experiment. Our results demonstrate that local ribbon symmetry facilitates
the categorization of complex real-world environments. This is the first study of the role of local symmetry in
inter-contour grouping for human scene classification. We conclude that local ribbon symmetry appears to play
an important role in jump-starting the grouping of image content into meaningful units, even in flashed pre-

sentations.

Vision feels natural and effortless: light hits our eyes, and we appear
to understand our real-world environment almost instantly. Yet, the
neural computations underlying visual perception are not yet fully
understood. Great progress has been made in identifying the basic vi-
sual features that are extracted from the visual input, such as oriented
edges (Hubel & Wiesel, 1963), corners (Link & Zucker, 1988), spatial
frequency content (Oliva & Torralba, 2001; Sachs, Nachmias, & Robson,
1971), and disparity (Blakemore & Hague, 1972). At the other end of
the processing pipeline, brain areas have been identified that are
dedicated to the processing of objects (Malach et al., 1995), faces
(Kanwisher, McDermott, & Chun, 1997), or places (Epstein &
Kanwisher, 1998). The processes involved in the intermediate-level
grouping of visual features is less well understood. Gestalt grouping
rules, such as good continuation, symmetry, or similarity, were pro-
posed as a qualitative account for how edge segments or shape parts are
grouped into larger structures (Koffka, 1922, 1935; Kohler, 1947,
Wertheimer, 1938). However, there is so far no mechanistic, quanti-
tative model of how Gestalt rules are implemented and used to fa-
cilitated visual perception of complex real-world scenes.
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Following its postulation as one of the Gestalt laws of perceptual
organization, symmetry has been investigated as a grouping principle in
both human and computer vision (Feldman & Singh, 2006; Kanizsa and
Gerbino, 1976; Koffka, 1935; Liu, Hel-Or, Kaplan, & Van Gool, 2010;
Pizlo, 2014; Stahl & Wang, 2008; Wagemans, 1993; Wagemans et al.,
2012). We define symmetry as a redundancy in the shape of an object or
its projection onto the image plane due to a similarity between sub-
pieces of a larger part. In the context of an image, this can include
mirror symmetry, where part of the image is reflected across an axis,
rotational symmetry, where a section of the image is a copy of another
section but at a different orientation, as well as translational symmetry,
where a section of an image is a translated copy of another section.
These forms of symmetry can either apply to part of an image (local
symmetries) or to the entire image (global symmetry). Local symme-
tries do not need to apply to an entire object. In fact, a single part of an
object may be locally symmetric. For example, consider a building with
Greek columns. If the building is viewed from an oblique angle, the
projection of the building onto the image plane does not necessarily
result in a symmetric image. However, the projection of a single pillar
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in this view may still be locally symmetric.

We can consider many different types of local symmetry. Medial
symmetry applies to those types of local symmetry that are the result of
a reflection across a curved axis. This is a type of mirror symmetry on a
local scale. The medial axis transform provides a way to capture medial
symmetry (Blum, 1973). The intuitive idea behind medial symmetry is
that the boundary of a shape can be formed by sweeping a disk along a
suitable path (the medial axis)." As a special case of medial symmetry,
ribbon symmetry occurs when the radii of the medial disks remain
constant along the axis. Parallel lines are one example of ribbon sym-
metry. Another example is a river of constant width, which winds
through a field. In this paper we constrain our discussion to ribbon
symmetry.

Since first theorized as a grouping principle by the Gestalt psy-
chologists, there has been a long history of research on global symmetry
and its influence on human vision (for reviews, see Wagemans (1997)
and Wagemans et al. (2012)). In addition to global symmetry, local
symmetry influences several aspects of human vision (Burbeck & Pizer,
1995; Chan, Stevenson, Li, & Pizlo, 2006; Feldman & Singh, 2006;
Firestone & Scholl, 2014; Li & Pizlo, 2008; Kovacs & Julesz, 1994; Marr
& Nishihara, 1978). Machilsen, Pauwels, and Wagemans (2009) showed
that mirror symmetric shapes are easier to detect than asymmetric
shapes when embedded in a noise field. Wilder, Feldman, and Singh
(2016) showed that medial symmetry also plays a role in object de-
tection, where shapes with a simpler medial axis structure were more
easily detected. The medial axis also helps explain human shape cate-
gorization (Wilder, Feldman, & Singh, 2011). This work is important for
the current study as it demonstrates that symmetry has an influence on
visual processing both prior to object detection and post detection
during classification. As images of real-world scenes are rarely globally
symmetric, we will focus on local symmetry in the current study. Spe-
cifically we will base our approach on the medial axis. In addition to the
behavioral studies mentioned previously, there is also neural evidence
of the importance of the medial axis for human vision. Some neurons in
visual cortex have been found that respond highly when their receptive
fields are centered on a medial axis (Lee, 1996). Additionally, the axial
structure of a shape is represented in visual cortex (Lescroart &
Biederman, 2013).

While some previous work computes medial axes only on closed
object silhouettes, we here apply our consideration of local symmetry
beyond individual objects through a computational approach which is
applicable to entire scenes. We took inspiration from work that com-
puted medial axes for entire images (Lee, Fidler, & Dickinson, 2013;
Levinshtein, Sminchisescu, & Dickinson, 2013; Narayanan & Kimia,
2012; Tamrakar & Kimia, 2004). These methods are influenced by color
and texture. Since we wish to focus on shape properties, namely local
symmetry, we describe a method for measuring symmetry in line
drawings of natural scenes. Other previous work that computes medial
axes for entire images, specifically focusing on shape properties, is re-
viewed in Leymarie and Kimia (2008). Some of this work even directly
analyzed scene layout (Bruck, Gao, & Jiang, 2007; Van Tonder, Lyons,
& Ejima, 2002), however, using scenes from an overhead view, as op-
posed to frontally viewed scenes in our work. We restrict our attention
to ribbon symmetry, which, recall, when a pair of contours has constant
separation. As perfect symmetry in real-world images is rare, especially
when discritized in a pixel grid, we develop a measure of the degree to
which two contours have roughly constant separation. Specifically, we
investigate whether or not pairs of contours that are ribbon symmetric
play a significant role in human scene classification in the challenging
context of briefly flashed presentations.

Humans have the ability to classify a photograph of a natural scene
after a brief exposure (Potter & Levy, 1969; Thorpe, Fize, & Marlot,

1 A closely related representation in 3-D is Binford’s generalized cylinder which
sweeps a 2-D cross section along a 3-D space curve (Binford, 1971).
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1996; VanRullen & Thorpe, 2001). In spite of a sizable literature
studying this phenomenon (Delorme, Richard, & Fabre-Thorpe, 2000;
Oliva & Schyns, 2000; Torralba & Oliva, 2003; Wichmann, Drewes,
Rosas, & Gegenfurtner, 2010), there is no consensus on what accounts
for this ability. Rapid scene perception does not require color photo-
graphs; observers can rapidly classify line drawings of real-world scenes
(Biederman, Mezzanotte, & Rabinowitz, 1982; Walther & Shen, 2014).
Furthermore, recent work demonstrates that scene content is carried
primarily in the high spatial frequencies (Berman, Golomb, & Walther,
2017). In fact, the high-pass images used in the latter study closely
resemble line drawings. Additionally, Walther, Chai, Caddigan, Beck,
and Fei-Fei (2011) found that photographs and line drawings result in
similar neural patterns, showing that the underlying category-specific
representations are similar. Thus, we choose to use line drawings,
without fear of loss of generality of our results, in order to allow us to
study the influence of shape alone, without the confounds introduced
by color and texture.

Various properties of the contours that are preserved in line draw-
ings have been assessed for their role in scene perception. Walther et al.
(2011) identified contour length as a critical feature, while Walther and
Shen (2014) showed that curvature and contour junctions underlie
categorization of line drawings and photographs of scenes. Indeed,
contour junctions have been shown to play an important role in object
recognition (Attneave, 1954; Biederman, 1987). In a recent study, using
an experimental design similar to the present study, we directly tested
the role of contour junctions in rapid scene classification (Wilder,
Dickinson, Jepson, & Walther, 2018). The results showed that scenes
from which the junctions were removed were more easily classified
than scenes form which the middle sections, between junctions, were
removed. The local relationships between elongated sections play at
least as important of a role in scene perception, as opposed to inter-
section between contours, hinting at the importance of local symmetry
relationships. Since we did not directly measure or manipulate sym-
metry in Wilder et al. (2018), we were unable to draw any conclusions
about its importance for scene classification. Here we explicitly mea-
sure local ribbon symmetry in complex, real-world scenes and test for
its importance for scene categorization.

We measure local ribbon symmetry by extracting the symmetric
axes from line drawings of entire real-world scenes. Symmetric axis
representations are often defined mainly for individual object silhou-
ettes (Blum, 1973; Siddiqi, Shokoufandeh, Dickinson, & Zucker, 1999,
for example). Here we apply the concept of a symmetric axis to entire
scenes. We use the symmetric axis to assign a symmetry score to each
contour pixel in an image. We then split the image into two half-images,
one containing the high- and one the low-symmetry half of the pixels.
The two half-images have no contour pixels in common and, when
combined, result in the original, intact line drawing. We use both ver-
sions, along with the intact line drawings, in a categorization experi-
ment. If symmetry is indeed a strong cue for scene processing, then the
symmetric half-images should be more easily classified than the
asymmetric half-images.

1. Methods

1.1. Scoring symmetry

In order to measure the degree of ribbon symmetry present along
individual contours in a line drawing of a scene, we have devised a
measure of symmetry based upon a modern formulation of the medial
axis (Siddiqi, Bouix, Tannenbaum, & Zucker, 2002). Details of the
geometry of the medial axis are reviewed in Appendix A. The code for
computing the skeletons is available at https://github.com/
mrezanejad/AOFSkeletons.

To begin, we describe a method for computing a flux-based ske-
leton. Our examples will all be based upon the line drawing in Fig. 1
(top right). We consider the line drawing of a scene as a binary image
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Fig. 1. A photograph of an office scene (A), along with its artist-traced line drawing (B), outward distance transform (C), average outward flux (AOF) map (D), flux
skeletons (E), and symmetry score at each contour pixel (F). In C, color represents distance to nearest contour: blue is a small distance, and red is a large distance. In
E, color simply denotes skeletons for different closed regions. In F, blue represents a weaker symmetry score and red represents a stronger symmetry score. Note that
pairs of long smooth parallel contours, such as down the side of the chair, receive a large symmetry score. Non-parallel regions receive low scores. Square regions also
receive low scores, because the medial axis is influenced by all four sides of the region, not just two parallel sides. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 2. (A) Using a portion of the office
scene in Fig. 1, around the back of the chair,

with contour (black) pixels and non-contour (white) pixels. Each non-
contour point in the scene is assigned its Euclidean distance to the
closest contour point (see Fig. 1, middle left). Once we have the Eu-
clidean distance function, we compute its gradient. We then compute
the outward flux of the gradient, through a shrinking disk placed at
each non-contour point, and normalized by the perimeter of the disk.
This construction of the average outward flux (AOF) is presented in
greater detail in the appendix. Next, the AOF at each point is thre-
sholded (Fig. 1, middle right). The result is a set of skeletal branches for
each region in the image (Fig. 1, bottom left).

The next step is to assign a score of symmetry to each point on the
line drawing. This is done by first scoring points on the medial axes, and
then transferring these scores to the line pixels. A medial axis point is
given a symmetry score related to the degree of local parallelism be-
tween the contours on either side of the medial point. The specific score
we use is equal to the fraction of medial points in a local neighborhood
for which the derivative of the radius function is below a set threshold.
This process is illustrated for the medial point Q shown in Fig. 2, where
neighboring medial points are illustrated with lightly shaded circles.
The radii of these circles are a slowly varying function of the position
along this medial branch and therefore (depending on the threshold
used for the derivative) we might expect Q to have a high symmetry
score.

Once the scores have been computed for all medial axis points, we
then map these scores to points on the boundary contours by noting
that each point on the boundary is associated with two skeletal points,
one on each side of the contour. This is illustrated at the boundary point
P in Fig. 2, which is associated with the two medial axis points Q and R
on either side (that is, the boundary point P provides an active con-
straint on the size of the disks centered on the medial axis points Q and
R). The score at P is then defined to be the maximum of the scores at the
two associated medial axis points Q and R. Taking the maximum makes
intuitive sense because the boundaries belonging to an object are non-
accidentally related and are more likely to be in a ribbon symmetric
relationship than are the boundaries of that object with other struc-
tures. An object boundary and a boundary in the background (or the
boundary of a different object) are only parallel if they are accidentally
aligned. In our example, we would expect the score at Q to be larger
than the score at R, since the radius function at R is changing more
rapidly, and this process would assign the symmetry score at Q to the
boundary point P. This provides a measure of the local parallelism of
the boundary in the neighborhood of P with neighboring boundary
points on one or the other side of that contour fragment. This procedure
is detailed in Algorithm 1.
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(B) we illustrate the manner in which a
contour point P is given a symmetry rating.
The boundary point is associated with two
skeletal points on either side, Q and R. In the
vicinity of each such skeletal point, the
variation of the radius function is used to
assign a symmetry score, as described in
Algorithm 1. The grey circles depict the
maximal inscribed disks along the interval
under consideration around Q. The point P
receives the larger of its two symmetry
scores.

Algorithm 1. Scoring Symmetry

1: procedure SymMMETRYSCOREFORSKELETALPOINT(Skeletal Point Q)

2: Consider a window of 2K + 1 skeletal points centered at Q.
3: Let us assume these 2K + 1 points are Q_g, ...,Qg, where
Q=0Q
4: Assign the score of symmetry as:
#{Qi | Vi={k, .., k—1} Where 1#(Q) - #(Qi+ D) <=1}

max(R(Q;), R(Qi+1))

7Q) = -
where #(Q;) represents the radius value of the maximal

1nscr1bed disk centered at Q; and 7 is a marginal threshold.
Intuitively, this represents the fraction of differences between of
adjacent disk radii that are small, i.e., their boundaries on either
side are close to parallel.

7: return . (Q)

8: Procedure SYMMETRYSCOREFORALLLINEDRAWINGPOINTS

9: for each line drawing point P do

10: Find the centers of the inscribed disks that touch point
14

11: Let us assume these centers are called R and Q

12: 7 (P) = max(.(Q), < (R))

13: [>In the generic case two maximal disks touch

point P, one disk from each side of P, however there are cases in
which more than two disks touch P. In those cases, take the max
score over all disks.

14: return . (P)

Having designed a method for scoring symmetry of line drawings,
we can apply it to our database of lines drawings. The line drawings we
used were first described in Walther et al. (2011). Each line drawing
was obtained by having a photograph traced by an artist, who was
given the instruction: “For every image, please annotate all important
and salient lines, including closed loops (e.g., boundary of a monitor)
and open lines (e.g., boundaries of a road). Our requirement is that, by
looking only at the annotated line drawings, a human observer can
recognize the scene and salient objects within the image.” We used 72
images from each of the six categories (beaches, forests, mountains, city
streets, highways, and offices). After scoring the symmetry in each
image, we analyzed the distribution of symmetry scores by category.
For each category the distribution is skewed toward low-symmetry
pixels. Some categories (e.g., beaches) have relatively more low
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Fig. 3. Distributions of average symmetry scores. Each distribution is composed
of the mean symmetry score for each of the 72 images in that category. The
distributions shown are fit using a log-normal distribution. The means are
shown as the “*” symbol. Two distributions, Mountain and Highway, overlap,
which is why it may appear as if there are only five distributions in the figure.
To assess which distributions are different, we performed two-sample
Kolmogorov-Smirnoff tests on each pair, using Bonferroni correction for mul-
tiple comparisons, resulting in an alpha level of 0.0033. Cities are significantly
different from all other distributions (all p < 0.00001). Offices are significantly
different from all others (all p < 0.001) except for forests (p = 0.048). The re-
maining pairs are not significantly different from one another (all p > 0.07).

symmetry scores than others (e.g., mountains), which have few low
symmetry scores. Category differences are most easily apparent in the
distributions of mean symmetry scores, see Fig. 3. Here, we compute
the average symmetry score for an image and record the distributions of
averages for each category. These distributions reveal that the sym-
metry ratings do differ by category, and thus the symmetry values could
be potentially used in the categorization of a scene. Cities and offices
have the lowest average mean symmetry score (0.0725 and 0.102).
Next are forests, with an average of 0.129. Then, mountains and
highways both have means of 0.141. Finally, beaches have the highest
average symmetry (0.166). This may seem surprising, given that we
think of human-made buildings and objects to be symmetric, but recall
that we are specifically measuring ribbon symmetry. Our measure gives
high scores to elongated regions. For example, in a beach scene, as
waves roll in they tend to create pairs of ribbon symmetric lines. Many
objects in an office or city, while symmetric in the real world, are not
ribbon symmetric in a 2D image due to perspective foreshortening.

1.2. Stimuli

Having established a new method for scoring ribbon symmetry, we
selectively removed either the most or the least symmetric contour
pixels of line drawings of natural scenes. The line drawings were the
same drawings used in the study by Walther et al. (2011), who obtained
them by having artists trace photographs. We either showed the ori-
ginal line drawing (the intact condition), a line drawing with the most
symmetric 50% of the contour pixels retained (the symmetric condi-
tion), or a line drawing with the least symmetric 50% of the contour
pixels retained (the asymmetric condition). Example stimuli are shown
in Fig. 4. If ribbon symmetry is influential in scene processing, then we
should expect performance to be better in the symmetric than the
asymmetric condition.
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1.3. Participants

Twenty-six undergraduate students in an introductory psychology
course at the University of Toronto (19 female, 7 male, mean age 18.3)
participated in the experiment for course credit. Five participants’ data
was excluded from the analysis due to floor performance. The number
of participants was chosen based upon a previous study with a similar
stimulus set and design (Walther & Shen, 2014). All participants gave
written informed consent prior to the experiment, and all procedures
were approved by the University of Toronto Research Ethics Board and
adhere to the tenets of the Declaration of Helsinki.

1.4. Design and procedure

Participants were seated approximately 57 cm away from the
monitor. The head position was not constrained. The experiment room
was dark for the duration of the experiment. The experiment had three
phases: Training, Ramping, and Testing.

On each trial, regardless of phase, participants were shown a line
drawing of a scene. They were asked to respond with the category of the
scene. The key mapping was randomized for each participant. At the
start of each phase, participants were shown which key was mapped to
which category. The possible keys were s, d, f, j, k, and 1. The mapping
was identical in the three phases, but was shown at the beginning of
each phase as a reminder.

Each trial started with the presentation of a scene image; the
duration was dependent upon the current phase (see below).
Immediately following the scene, a perceptual mask was displayed for
500 ms. The mask was a line drawing image composed of contour
segments which are randomly drawn from the pool of all contours, from
all scenes, from all categories. After the mask disappeared, the screen
was blank until the participant responded with a key-press. After the
response, the next trial began.

The training phase lasted until the participant responded correctly
in 17 of the last 18 trials or 72 trials in total, whichever came first.
Scene images were presented for 233 ms. On an incorrect trial, a low
tone was played to provide feedback. All stimuli were intact line
drawings.

The ramping phase (54 trials) started with four trials of 200 ms,
followed by a linear decrease in stimulus duration from 200 ms to
33ms. As in the training phase, participants received feedback, and
only intact line drawings were shown.

The testing phase lasted for 360 trials (20 line drawings per cate-
gory X 3 conditions X 6 categories). No feedback was given after the
participant’s response. The stimulus duration was fixed to 53 ms, which
led to a performance of 70% for intact line drawings in a pilot experi-
ment with a different set of participants. This would result in some
errors in the intact case, which allows for a comparison of the error
patterns between intact and the other conditions. Each scene was only
shown in one condition, and none of the test scenes were used in the
previous phases, so that scenes were novel on each presentation.
Participants could pause between trials if they needed a break. A
schematic of the test phase of the experiment can be seen in Fig. 5.

2. Results

Participants most easily classified the intact line drawings (76.6
percent correct). Symmetric scenes were classified at 60.9 percent
correct, and asymmetric scenes were classified at 53.3 percent correct.
All conditions were well above chance performance of 16.7 percent
(Fig. 6 A). Removing any image content clearly hindered performance;
performance in the symmetric condition was significantly worse than in
the intact condition (paired-sample t-test,
£(20) = 13.80, p = 1.10 x 10~!1). Categorization of the intact scenes was
also significantly better than asymmetric scenes (paired-sample t-test,
£(20) = 22.13, p = 1.56 X 107%%).  Crucially, the performance for
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Fig. 4. Examples for each category and condition. Rows denote category (Beaches, Forests, Mountains, Cities, Highways, and Offices), and columns denote image
condition (Intact, Symmetric, Asymmetric). Note that for scenes with many contour pixels participating in strong local symmetries (e.g., the forest scene in the second

row above), even the least symmetric 50% of the contour pixels can include pixels with relatively large symmetry scores.
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Fig. 5. A schematic of the experiment. Stimuli (intact, symmetric, or asym-
metric versions of a line drawing) were presented for 53 ms, followed by a
perceptual mask for 500 ms. A blank screen was displayed until the participant
responded. A total of 360 trials were presented in the testing phase.
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Fig. 6. Proportion correct for each image condition. The boxplots are centered
at the mean, with a line at the median. The box extends to the 25th and 75th
percentiles. The lines extending from the box show the extent of all the data
points. Intact categorization performance was better than either symmetric or
asymmetric categorization performance (p < 0.001). Symmetric scenes were
categorized more easily than asymmetric scenes (p < 0.001).
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symmetric scenes was significantly better than for asymmetric scenes,
even though both versions of the stimuli contained the same number of
contour pixels (paired-sample t-test, t(20) = 6.21, p = 4.56 X 107°).

We further break down performance into the different categories
(see the confusion matrices in Fig. 7). The row labels of the confusion
matrix denote the ground truth response, and the column labels denote
the response of the observers. Each cell shows the proportion of ob-
server responses for the given ground truth category, and each row
sums to 1. The diagonal elements are correct answers, and off-diagonal
elements are errors. We computed correlations between the off-diag-
onal elements of the confusion matrices (only off-diagonal elements
were used so that the overall proportion correct does not affect the
correlation). The confusion matrices do not show any obvious differ-
ence in the pattern of errors in the different image conditions; all cor-
relations between error patterns were significant: intact vs symmetric
(r = 0.57, p < 0.018), intact vs asymmetric (r = 0.74, p < 1.0 X 1075),
and symmetric vs asymmetric (r = 0.65, p < 1.0 X 107°).

Comparing performance separately by category reveals variations in
the performance for symmetric and asymmetric images. Four of the six
categories showed better performance in the symmetric condition than
in the asymmetric condition, leading to better average performance
across all conditions. For office scenes, for instance, participants per-
formed considerably better when seeing symmetric than asymmetric
images (repeated-measures t-test, £(20) = 4.21, p = 4.08 X 107*). For
mountain scenes, on the other hand, performance is equal in the sym-
metric and asymmetric conditions (¢£(20) = —0.08, p = 0.93).

Presumably this is due to different types of contour relationships
present in the mountain scenes than in other scenes where the sym-
metry effect is present. For example, some objects tend to be symmetric,
but very few are present in our mountain scenes. Additionally, sym-
metries between scene elements, such as the symmetry present between
neighboring tree trunks (in a forest) or between the windows in a
building (in a city) are not present in a mountain scene. Since mountain
scenes lack these sorts of symmetries, removing symmetric contours
leads to different distortions in mountain scenes than for other cate-
gories. Highway scenes also showed a significant performance differ-
ence (t(20) = 4.28, p = 3.6 X 107*). Forest scenes showed a large per-
formance difference  between symmetric and asymmetric
(t(20) = 3.86, p = 9.78 x 107*). Tree trunks, with their high degree of
ribbon symmetry, are prone to being distorted disproportionately when
symmetric content is removed, whereas the highly irregular foliage will
be present, but less recognizable, in the asymmetric images. Beach
scenes also showed a modest effect (t(20) = 2.86, p = 0.0097), slightly
smaller than that present in human-made scenes.

While there was a large effect in all human-made scenes, the

Symmetric Asymmetric

0.4
Beaches Gyl .05 (.10 [.08 |.11 |.03 W .04 |.18 | .08 |.08 |.06 "Ll 08 (.19 |.15 |.07 |.05
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Fig. 7. Confusion matrices for the different conditions. Rows are the true category labels, and the columns are the subject responses. Correct answers lie on the

diagonal, so a strong diagonal represents good performance.
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direction of the effect was reversed for city scenes, relative to the di-
rection found for all other scene categories (t(20) = —3.31, p = 0.004).
With build environments exhibiting a high degree of structural sym-
metry, smaller, isolated objects, such as people and cars, frequently
show comparably weaker 2D ribbon symmetry than buildings, even
thought they are 3D symmetric. As a result, such objects are almost
entirely contained in the asymmetric image and may be a strong cue to
scene category. Finally, the scale of symmetry we measure may not
match the scale of the symmetry that exists in a city. For example,
neighboring contours may not be object boundaries but instead
boundaries of regions/parts inside a single object. We will consider this
in more detail when we discuss possible limitations of our symmetry
scoring method.

3. Discussion

What drives the large difference in performance between the ribbon
symmetric and ribbon asymmetric scenes? One possibility is that par-
ticipants use local symmetry content as a summary statistic, either
computing a single symmetry summary score for each scene or the
entire distribution of symmetry content. Wilder et al. (2018) demon-
strated that contour cotermination at junctions had a weaker influence
on scene perception than what appeared to be a longer-ranged re-
lationship. Here we concretely measure and control parallelism in the
image, and we demonstrate that local ribbon symmetry does indeed
influence scene perception. Even though the symmetry measured here
represents a relationship between contours, once the symmetry is
measured, this information could be ignored and only the distribution
of symmetry in the image used for classification. We believe this is
unlikely. The distributions for a given scene category are very different
in the three different conditions. Thus, participants would need to learn
the distribution for each condition without prior experience with these
manipulations and in the absence of feedback. Moreover, a participant’s
visual system would need to know which condition they are seeing in
order to accurately use this information. If this were the case, we would
expect different error patterns in the asymmetric condition (without
strong symmetry content) than in either the intact or symmetric con-
ditions (with strong symmetry content), but the confusion matrices
show no obvious difference in error patterns (Fig. 7). We hypothesize
that the visual system uses symmetry to jump-start the grouping of
image information into meaningful units. Performance was lower in the
asymmetric condition because the process could not be jump-started to
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Fig. 8. Histogram showing the length of contours in the symmetric and asym-
metric images for all line-drawings in the data-set. Note that the x-axis is on a
log scale.
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the same extent, resulting in poorer grouping.

Walther et al. (2011) suggested that longer contours are more useful
for scene classification. When selecting the most/least symmetric con-
tour pixels we did not control the length of contiguous sets of contour
pixels. Thus, the average length of a contiguous contour segments is not
necessarily equal in the two half-images. While this could play a role in
performance, we argue that it is not responsible for our large perfor-
mance difference.

In order to estimate the length of each segment, we selected a set of
connected black pixels, and counted the number of pixels in that set.
Fig. 8 shows histograms of contour length for the symmetric (turquoise)
and asymmetric (red) images combined across all categories. The
average length is shorter in asymmetric than symmetric images. Note,
however, that the variance in contour length is larger for asymmetric
images, as they also tend to contain many of the longest contours. If, as
Walther et al. (2011) showed, longest contours convey the most in-
formation about scene content, the asymmetric condition should ben-
efit, as these most informative contours live in the asymmetric images.
Thus, contour length does not appear to drive the behavioral difference
between symmetric and asymmetric images in our data.

Additionally, Walther et al. (2011) only found a performance dif-
ference between long and short contours when 75% of the pixels were
removed. When they removed 50% of the pixels, on the same line
drawing used here, performance for the long and short contour versions
was statistically equal. Therefore, we should not expect a performance
difference here based on line length alone.

Previous work, where portions of contours were deleted, has argued
that the important contour pieces were junctions (Biederman, 1987), or
the straight portions between junctions (Kennedy & Domander, 1985).
Our previous work (Wilder et al., 2018) found that for scenes, middle
segments between junctions were more useful for determining scene
category than were junctions. The current study finds that scene per-
ception is aided by segments participating in a symmetry relationship
with another segment rather than by middle segments in general.

How does ribbon symmetry facilitate grouping image content into
meaningful surface or object parts? Most objects are not mirror sym-
metric in the image plane, and many objects that are locally symmetric
will have low symmetry scores assigned to portions of their boundary
contours. As a consequence, pixels from a single object can be assigned
to different half-images, splitting the object into pieces. Additionally,
some objects entirely fall into the asymmetric image. Many objects that
are 3D mirror symmetric in the real world are not 2D mirror symmetric
when projected onto the image plane. However, local symmetry be-
tween the boundaries of a part of an object can persist, and we con-
jecture that this property is used by the visual system to help group
these image elements into surfaces and objects. Symmetry has been the
basis of many prominent parts-based representations (Biederman,
1987; Hoffman & Richards, 1984), and symmetry has been shown to be
involved in image segmentation (Machilsen et al., 2009). Symmetry
may assist in perceptual grouping, as ribbon symmetry has been shown
to attract attention during scene viewing (Damiano, Wilder, & Walther,
2018). Our data suggests that when ribbon symmetric contours are
removed, the image is much harder to understand. We hypothesize this
is because the observers are unable to segment the scene into mean-
ingful objects and parts. In the asymmetric image, the symmetric con-
tour portions required for grouping contours into objects and object
parts are missing. Thus, scene categorization performance will dete-
riorate, if it relies on object classification.

There are limitations to our results. Our symmetry score measures
the extent to which there is a constant distance between a pair of
contours (i.e., ribbon symmetry). Consider a rectangle; the contours
along the main axis score highly, but due to the nature of the medial
axis, a lower score is assigned to the contours on the short sides.
Additionally, our score is based upon the medial axis, which captures
the relationship between contours that bound the same region in the
scene, and will not capture the symmetry relationships between
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contours separated by intervening contours. Comparing all possible
symmetry relationships between all contours in the image is intractable,
but some consideration of longer range symmetries is worth pursuing.

We are not claiming that the visual system relies only on symmetry
when rapidly classifying a scene. Here we have only considered local
ribbon symmetry in order to understand its power in isolation. Other
features, such as contour junctions, may also contribute to scene cate-
gorization (Walther & Shen, 2014). Combining these features with local
symmetry and other longer-range symmetry relationships could provide
a more complete explanation of human scene categorization.

Asymmetric images of cities were more easily categorized, which is
the reverse effect of the other categories. This demonstrates the afore-
mentioned limitations, and makes apparent another. The city scenes in
our data-set contain many windows, and the two longer edges of a
window will appear in the symmetric image if and only if they are
sufficiently elongated; the opposing parallel sides are missed. Also, the
scale of symmetry in our current measure may not be optimal for a city
scene. While the symmetry of a single window may be important, the
symmetry between the sides of a single building is also important, and
our method does not look at symmetry relationships at larger spatial
scales. In other categories, such as forests, long-range symmetry may be
less important, since the symmetric pairs tend to be the boundaries of
single objects (i.e., tree trunks), which is one reason why our manip-
ulation resulted in much better performance for symmetric forest scenes
than asymmetric ones.

4. Conclusions

The non-accidental relation of symmetry was noted by the Gestalt
psychologists almost a century ago (Koffka, 1922; Kohler, 1947;
Wertheimer, 1938) and reflects the ubiquity of symmetry in both our
natural and human-made world. Given this regularity, it was not sur-
prising that symmetry became a powerful basis for parts-based object
representations in both human and computer vision (Agin & Binford,
1973; Biederman, 1987; Blum, 1973; Pentland, 1986). Symmetry has
been carefully studied for object recognition in images containing
single objects. Less attention has been paid to the role of symmetry in
the perception of complex scenes which contain many objects and
surfaces. The complexity of a cluttered scene has encouraged ap-
proaches that are global in nature, focusing on global scenes statistics

Appendix A. Geometry of medial representations
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which, in turn, avoids the challenging problem of perceptual grouping.
This study represents the first attempt to study the role of a quantitative
measure of local ribbon symmetry in the categorization of line drawings
of complex, natural scenes. We focused on the non-accidental property
of symmetry, arguably the most powerful form of perceptual grouping
for relating elements at a distance, and we introduced a novel scene
statistic based on the medial axis. We demonstrated that in two subsets
of a stimulus, each with the exact same number of black pixels, the
subset with the stronger symmetry leads to significantly better scene
perception.

The obvious question raised by our findings is “why does symmetry
offer an advantage to scene perception?” Our hypothesis is that the
importance of correct contour grouping is even more critical in a
cluttered scene, in which any given contour may be proximal to many
contours belonging to other objects. Under such conditions, where
proximity leads to highly ambiguous groupings, adding symmetry cues
can reduce ambiguity and lead to better grouping of contours into
surfaces that comprise object parts and, in turn, the objects that make
up a scene.

Our work shows that local ribbon symmetry is a key feature that
allows for the rapid analysis of complex real-world scenes. This finding
lends further support to our previous work on the importance of local
details of the structure of a scene for rapid scene perception (Choo &
Walther, 2016; Walther et al.,, 2011; Walther & Shen, 2014). In-
corporating principles of perceptual organization originally proposed
by the Gestalt psychologists in a computationally rigorous way is a
promising avenue toward a more complete understanding of the com-
putational processes that make vision appear so natural and effortless.

Supplementary material

Participant data is publicly available in the Open Science
Framework data repository at: https://osf.io/cwbyq/.
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Visual shape analysis is a fundamental problem in perception by man and by computer and allows for inferences about properties of objects and
scenes in the physical world. If a 3-D real world object or a scene is projected onto an image plane, the resulting image could be simplified by a set of
contours that separate the silhouette of that object from the background or look like the line drawing of a scene. One of the ways to perform visual
analysis on such a set of contours is to find good representations for them. Medial representations are among the popular choices for problems of
shape analysis and they have been used for different tasks of representations and recognition in the literature. In this report, we used medial axes to
analyze the boundary contours of regions within natural scenes. In the following, we review the geometry of medial representations for shapes of
objects and their boundary, and we utilize the same geometry which applies to the boundary contours of regions within natural scene.

Fig. A.1. LEFT: Iterations of the grassfire process. RIGHT: The resulting skeleton.
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Medial axis based representations were first introduced by Blum (1967), along with the process for generating them based on a grassfire analogy.
Here the boundary is set on fire and the front advances inward at a constant speed, and as fire fronts meet, skeletal points are created. (see Fig. A.1).

The application of the grassfire process to reveal its quench points along with their radius values is called the Medial Axis Transform (MAT). Since
the grassfire process is applicable to all bounded shapes, as well as the regions outside of closed shapes, the MAT gives a comprehensive re-
presentation in visual shape problems. The geometry and methods of computing the medial axis based on a notion of average outward flux of an
Euclidean distance function are discussed below.

The medial axis consists of a set of medial curves about which a contour, or pair of contours, is locally mirror symmetric. Generically, each point
on the skeleton inbetween contours is the result of a collision of two distinct boundary points.

Definition. Assume an n-dimensional open object Q, with its boundary given by 6Q € R” such that O = Q U Q. A closed disk D € R" is a maximal
inscribed disk in Q if D C Q but for any disk D’ such that D C D', the relationship D’ C Q does not hold.

Definition. The Blum interior medial locus or skeleton, denoted by Sk (), is the locus of centers of all maximal inscribed disks in 0Q.

Topologically Sk (Q) consists of a set of branches that join at branch points to form the complete skeleton. A skeletal branch, denoted by y, is a set
of contiguous regular points from the skeleton that lie between a pair of junction points, a pair of end points or an end point and a junction point. As
shown by Dimitrov, Damon, and Siddiqi (2003) these three classes of points can be analyzed by considering the behavior of the average outward flux
Sor(@, N

ds

(AOF) of the gradient of the Euclidean distance function to the boundary of a 2D object, given by *, through a shrinking disk, where g = VD

(Dimitrov et al., 2003), with D the Euclidean distance function to the object’s boundary. In the folla(l)ewing, we review this computation.

The Euclidean distance between two n-dimensional points P = (p,, p,, ....p,) and Q = (q;, q,, -..,q,,) is the length of the line segment that connects
these two points, and the Euclidean metric d(P,Q):R"XR"—->R is a function that represents this distance:
d(P, Q) =d(Q, P) =1Q-PIl = ,/Z[.":l (g—p;)*. For each point P, and a given object Q, a distance metric, do(P), can be defined as follows:
dq(P) = infgesd (P, Q). The distance transform of an object Q is a signed distance function that specifies how close a given point P is to the boundary
of that object 0Q: Z,(P) = do(P) if P is inside Q, Zo(P) = 0 if P € dQ which is the boundary of Q, and Z,(P) = —dq(P) if P is outside Q. In this
paper, we consider the interior of regions, thus we can assume an unsigned distance function per each region.

Let us define the projection IT(p) as the set of closest points on the boundary 3Q to p, i.e., II(p) £ {p’ € 0Q: llp—p’ll = min{lip—p’ll V p’ € 3Q}}.
Assume that on the boundary 3Q, there exists only one point Q of minimum distance to P (Ilo(P) = {Q}). We then define the distance function gradient
vector for point P as: q,(P) = ”g:i”. In the case of IIIg(P)| > 1, one cannot define the closest boundary point uniquely, and therefore the distance
function gradient vector is multivalued. Except for at skeletal points, q is continuous everywhere on its domain and it satisfies the equation: Iql = 1.
Exploiting the relationship of the integral of the divergence of a vector field within a simply-connected region to the outward flux of that vector field
through the boundary of that region, using the divergence theorem, leads to characterization of skeletal points. Let R be a region where its boundary
OR is a simple closed curve, and N be the outward normal at each point on the boundary oR.

Ji$a. N)ds
Jogds "
Using the divergence theorem, Dimitrov et al. Dimitrov et al. (2003) categorized points in the image into classes by considering the behavior of
the average outward flux (AOF) through a shrinking disk of the gradient of the Euclidean distance function to the boundary of a 2D object. In
particular, the limiting AOF value of all points not located on the skeleton is equal to zero.
Moreover, as discussed in Siddiqi and Pizer (2008), there are three classes of generic points that are located on the skeleton, where by generic we
mean stable under arbitrarily small pertubations of the boundary. These are regular skeleton points, end points, and junction points. For any point p:

Definition. The outward flux of q through dR is defined as f3R (q, N)ds, and the average outward flux of q through oR is defined as AOF =

1. p is a regular point if the maximal inscribed disk at p touches the boundary at two corresponding boundary points such that IIIg(p)| = 2 (The
projection TI(p) is the set of the closest points on the boundary 4Q to p, i.e., II(p) 2 {q € 3Q: llp—qll = min{llp—qll V q € 3Q}}). The computed
AOF at a regular point p is given by limgaoiil’é) = —%

2. p is an end point if there exists § (0 < § < r) such that for any € (0 < € < §) the circle centered at p with radius € intersects Sk (Q) just at a single

sinb.

point (r is the radius of the maximal inscribed disk at p). The computed AOF at an end point p is given by lim._,o F;:;) = —%(Sinep—ep).
3. p is a junction point if I1o (p) has three or more corresponding closest boundary points. Generically a junction point has degree 3. All other branch
. . . . L. . Fe(P) 1 .
points are unstable. The computed AOF at a junction point p is given by lime_o~ = = —— Z:;l sing;.
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