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Abstract

We combine ideas from shock graph theory with more re-
cent appearance-based methods for medial axis extraction
from complex natural scenes, improving upon the present
best unsupervised method, in terms of efficiency and perfor-
mance. We make the following specific contributions: i) we
extend the shock graph representation to the domain of real
images, by generalizing the shock type definitions using lo-
cal, appearance-based criteria; ii) we then use the rules of a
Shock Grammar to guide our search for medial points, dras-
tically reducing run time when compared to other methods,
which exhaustively consider all points in the input image;
iii) we remove the need for typical post-processing steps in-
cluding thinning, non-maximum suppression, and grouping,
by adhering to the Shock Grammar rules while deriving
the medial axis solution; iv) finally, we raise some funda-
mental concerns with the evaluation scheme used in previ-
ous work and propose a more appropriate alternative for
assessing the performance of medial axis extraction from
scenes. Our experiments on the BMAX500 and SK-LARGE
datasets demonstrate the effectiveness of our approach. We
outperform the present state-of-the-art, excelling particu-
larly in the high-precision regime, while running an order
of magnitude faster and requiring no post-processing.

1. Introduction

Object shape has a fundamental role in visual percep-
tion theory. Shape defines a basic level of abstraction that
determines the spatial extent of structures in the physical
world, and drives object recognition. A popular representa-
tion of 2D shape is the Medial Axis Transform (MAT) [4].

⇤Sven Dickinson and Stavros Tsogkas contributed to this article in their per-
sonal capacity as Professor and Adjunct Professor, respectively, at the University of
Toronto. The views expressed (or the conclusions reached) are their own and do not
necessarily represent the views of Samsung Research America, Inc.

The medial axis has been of particular interest in both hu-
man and computer vision because of its direct relationship
to local symmetries of objects. Local symmetries effec-
tively decompose a shape into salient parts, aiding recog-
nition and pose estimation, while being robust to viewpoint
changes. At the same time, symmetry in general has been
proven to be instrumental in the analysis of complex scenes
[26, 32], facilitating the encoding of shape and their dis-
crimination and recall from memory [3, 23, 39]. The im-
portance of symmetry for scene categorization has been re-
cently re-confirmed in [21, 41].

There are many algorithms that compute the MAT of 2D
binary shapes. This problem was first discussed by Blum
in his seminal work [4, 5], followed by several extensions
and variants, including smooth local symmetries [6], shock
graphs [25, 31], bone graphs [15, 16, 17] Hamilton-Jacobi
skeletons [29], augmented fast-marching [34], hierarchical
skeletons [33], and the scale axis transform [10].

In an effort to broaden the application of such methods,
interest in the problem of skeleton extraction from natural
images has been recently revived, with a focus on using su-
pervised learning. The first such approach is that of Tsogkas
and Kokkinos [37], which was later followed by other meth-
ods, including the deployment of random forests [35], or
convolutional neural networks [8, 11, 13, 14, 27, 40, 43].
Departing from this trend, Tsogkas and Dickinson defined
the first complete MAT for color images, formulating me-
dial axis extraction as a set cover problem [36]. However,
all these recent approaches have an important limitation:
medial points are extracted in isolation, without explicit
consideration of the local context, i.e., the structural con-
straints imposed by the fact that they must lie on skeletal
segments within regions bounded by curves, with the asso-
ciated generic classification of the medial axis point types
[9]. As a result, one has to consider medial proposals at
multiple scales for each point, resulting in a very large space
of medial point proposals to search. To make things worse,

1



C(x, r = 28)

C(x, r = 10)

C(x, r = 2)

1. Disk cost computation

2. Seed proposals

4. Final output

...

R scales

3. Branch growth

- local maxima of r
- local minima of C(x, r)

ASG (this work)

AMAT

N pixels

x = (x , x )
1

2

Figure 1: Our ASG algorithm consists of the following steps: (1) Disk cost computation associates each valid medial
disk proposal with a cost C(x, r). Low costs (blue) represent high “medialness”, whereas high costs (yellow) denote disks
that span heterogeneous image regions. (2) Seed proposals are selected as local scale maxima and local disk cost minima
(example seeds and the respective disks are shown). (3) Branch growth of the selected seed into a medial branch. By
following the rules of the SG grammar, the ASG only needs to examine a small, fixed number of proposals in a scale-space
neighborhood around a medial point (shown in yellow), making it orders of magnitude faster than the AMAT [36], which
naively considers O(NR) medial disk proposals at each step. (4) Final output after growing all seeds. The SG grammar rules
automatically enforce connectivity and single-pixel width constraints, producing a sparse, piecewise smooth scene medial
axis. In comparison, the AMAT produces much noisier results, that require further post-processing.

post-processing steps, such as non-maximum suppression,
are required to ensure 1-pixel width results, or to group me-
dial points into meaningful segments.

In this paper we propose a method that reduces search
space redundancies and mitigates the need for post-
processing in appearance-based medial point extraction
from natural scenes, by combining ideas from shock graph
(SG) theory [24, 30, 31] and the AMAT [36]. Specifically,
we use the notion of medial disk costs introduced in [36]
to come up with new definitions for shock types, tailored to
the domain of RGB images. Our new shock type definitions
have all the properties of their binary counterparts, unlock-
ing the use of the SG grammar defined in [31]. The gram-
mar allows us to view medial point generation and group-
ing from natural images as a generative process, in the same
spirit as the synthesis of binary shapes via a combination of
birth, growth, and death rules, first proposed in [30]. The
explicit use of the grammar drastically reduces the size and
complexity of the search space and imposes structural reg-
ularities in detection, improving performance and computa-
tional efficiency. This is visually illustrated in Figure 1.

The benefits of our technique are noteworthy: our ap-
pearance shock grammar (ASG) results in a 11⇥ speed-

up with respect to the original AMAT algorithm, without
the need for postprocessing; the use of the ASG ensures
that all resulting medial points are connected to form sin-
gle pixel-wide medial branches. We also raise concerns
with the standard evaluation benchmarks that involve multi-

ple scene skeleton ground truths, such as SYMMAX300 [37]
and BMAX500 [36]. We propose an alternative evaluation
protocol that addresses these issues, and also takes into ac-
count the relative importance of individual medial points
with regard to boundary reconstruction. On this improved
protocol, the ASG outperforms the state-of-the-art in unsu-
pervised medial axis extraction by 7.6%, with a sparser and
piecewise smoother output.

2. Related Work

Shock-based medial axis extraction. Blum defined me-
dial axes as the loci of the centers of all disks that can be
maximally inscribed in the interior of the shape [4, 5]. An
equivalent definition involves shocks [12], the points where
“grassfire” wavefronts, starting from the boundaries of the
shape, meet. Siddiqi et al. [30, 31] assume that the shocks
composing the medial axis of a bounding contour are first
computed and then introduce the concept of shock graphs.
They “color” shocks into different types according to the lo-
cal variation of the medial axis radius function, and then de-
fine a shock grammar that determines how shocks of differ-
ent types are connected with one another. The shock gram-
mar can be used to convert a skeleton into a directed acyclic
graph, for use by graph matching algorithms to perform
shape matching. Shock graphs have also been successfully
used in recognition [25] and database indexing [24]. Bone
graphs [15, 16, 17] build on shock graphs by decompos-
ing medial axes into object parts, leading to related graphs



for object recognition applications. Medial branches corre-
sponding to salient object parts are tagged as bones, while
ligature segments [2] connect the bones together.

Medial axis extraction in natural images. Most recent
work on skeleton extraction from natural images relies on
supervised learning. Tsogkas and Kokkinos [37] propose
a multiple instance learning approach combined with hand-
crafted features, tailored specifically to local reflective sym-
metries. Teo et al. [35] improve on this approach by using a
more powerful random forest classifier, and by encouraging
global symmetric consistency through an MRF representa-
tion. Shen et al. [27] introduced the first deep-learning ap-
proach to solving this problem, where a fully convolutional
neural network (CNN) extracts the locations of the skele-
ton points, while estimating the local medial disk radii, by
combining deep features at multiple scales. Ke et al. [11]
propose a similar framework that stacks Residual Units in
its side outputs, improving performance and robustness. In
contrast to works that simply fuse (concatenate) side-output
responses, Zhao et al. [43] create an explicit hierarchy of
skeleton features at different scales. This allows for the
refinement of responses at finer scales using high-level se-
mantic context, but also of coarser scale responses by using
high-detail local responses from early layers of the CNN.
Finally, Wang et al. [40] frame the skeleton extraction prob-
lem as a 2D vector field generation problem using a CNN,
where each vector maps an image point to a skeleton point,
similar to the Hamilton-Jacobi skeleton algorithm [7, 29].

A completely different, unsupervised approach, the
AMAT, was proposed by Tsogkas and Dickinson [36]. The
AMAT frames medial axis extraction in color images as a
geometric set cover problem and solves it using a greedy ap-
proximate solution [38]. The cost assigned to each potential
covering element (disk) is provided by a function that prior-
itizes the selection of maximal disks, leading to a solution
approximating the medial axes of structures in the scene.

In the present paper, we use the same concept of disk
costs to generalize the definitions of shocks [31] and, in
turn, exploit the shock graph theory in the RGB domain.
Unlike [31], we do not assume the medial axis is given.
Rather, we use the rules of the SG grammar to constrain
the number of eligible medial disks that are considered at
every step. This allows us to be much more efficient than
the AMAT [36], where disks at all possible locations and
scales are valid candidates for the greedy algorithm.

3. Shock Theory

A shock graph (SG) [30, 31] is a directed acyclic graph
(DAG) built from a skeleton. Its nodes correspond to con-
nected components of shocks of the same type, and its edges
represent connections between these components. The di-
rection of an edge indicates the direction of the medial axis

radius derivative between the coarser scale and the finer
scale shock. The root of the graph is called the birth shock.

Shocks represent a colouring for medial points with spe-
cific scale (medial axis radius) gradients. A type 4 shock
(blob) corresponds to a single medial point that is a local
maximum in scale. Its counterpart, the type 2 shock (neck),
represents a single medial point that is a local minimum in
scale and splits its medial branch into separate parts when
removed. Type 3 shocks (ribbons or bends) are sets of con-
nected medial points of equal scales. Finally, type 1 shocks
(protrusion) are sets of connected medial points with mono-
tonically decreasing scales in one direction.

Formally, the shocks can be defined as follows. For a
given closed shape X , let M(X) be its medial axis rep-
resentation. M(X) consists of medial points x of scales
R(x) ⌘ Rx. For a medial point x 2 M(X) and an
open disk D(x, ✏) of radius ✏ centered at x, let N(x, ✏) =
M(X) \D(x, ✏) \ {x} represent its ✏-neighbourhood. x is

type 4 if 9✏ > 0 s.t. Rx > Ry, 8y 2 N(x, ✏);

type 3 if 9✏ > 0 s.t. Rx = Ry, 8y 2 N(x, ✏) 6= ;;

type 2 if 9✏ > 0 s.t. Rx < Ry, 8y 2 N(x, ✏) 6= ;
and N(x, ✏) is not connected;

type 1 otherwise.

While the shock graph represents the relations between con-
nected medial points in terms of their radii, the shock graph
grammar reverses the underlying grassfire flow in time. The
successive application of its rules defines a generative pro-
cess that grows parts of an object. The birth rule dictates
that birth shocks can only be types 3 or 4, while the death
rules allow the shock graph to terminate at any shock type.
The protrusion rules define how an interval of medial points,
with a monotonically changing radius value, can attach at
junctions. Finally, the union rules define the conditions un-
der which distinct branches can be connected together.

3.1. Defining Shocks for Natural Images

The ideas presented in Section 3 assume that M(X)
has already been extracted using some skeletonization algo-
rithm. In this work we turn the problem on its head: rather
than using the shock grammar to define a graph on a pre-
existing skeleton, we use the rules imposed by the grammar
to constrain the search space for medial points. To do that,
first we have to formally extend the shock type definitions to
the domain of natural images. We employ the same notation
as in Section 3, introducing new notation when needed.

The key component for determining the coloring of a
shock in the binary domain is the computation of R(x), the
radius of the largest disk, centered at x, that remains con-
tained in the open interior X of a closed 2D shape. The
contour of such disks is tangent to the shape’s boundary at



(a) 1-shocks (protrusion). (b) 2-shocks (neck).

(c) 3-shocks (ribbon). (d) 4-shocks (blob).

Figure 2: Appearance based shock type examples from
BMAX500 [36]. Medial axes are shown in red, contour
in blue and selected shocks in yellow.

2 points, at least. Exact computation of R(x) is feasible
because the boundary of a 2D shape is well defined (i.e.,
the points where the image values change from “0” to “1”
or vice-versa). This is not the case in the natural image
domain, where extracting object boundaries is an ill-posed
problem that typically admits a probabilistic solution.

To deal with this ambiguity, we follow the region-based
approach of [36] and assign a cost C(x, r) to each disk pro-
posal D(x, r) = Dx,r . This cost acts as a “soft maximality”
indicator: if r is close to the ideal (maximal) value, C(x, r)
is low, whereas disks that are not maximal or cross image
boundaries, are severely penalized.

More concretely, let x 2 R2
,y 2 N(x, ✏) be medial

points, and Rx, Ry 2 R denote the radii of the respec-
tive maximal disks centered at x and y. Also, let a small
quantity �r > 0 denote an acceptable “cost margin” for
determining disk maximality, and ✏r > 0. Intuitively, if
C(x, r + ✏r)� C(x, r) < �r, then Dx,r+✏r is a better can-
didate for being the maximal disk centered at x than Dx,r .
We formalize the scale maximality criterion as follows:

C(x, Rx) + �r < C(x, Rx + ✏r). (1)

This condition should be satisfied for all disk proposals that
are added to our solution. We also define a “cost smooth-
ness” criterion, expressing the fact that the costs of neigh-
boring medial points should not vary significantly. This is
another direct analogy to the shock theory for binary shapes,
which dictates that the radii of neighboring medial points
are bound to vary slowly. This is due to the fact that shocks
coincide with singularities of a continuous Euclidean dis-
tance function from the boundary [5]. Letting �c > 0, we
define the cost smoothness criterion as

kC(x, Rx)� C(y, Ry)k < �c. (2)

By combining these two criteria with the binary shock type
definitions, we redefine shock coloring rules in the RGB do-

main. These rules are agnostic to the exact nature of the cost
function – we discuss potential choices for C in Section 4.1.
Note, however, that, contrary to the binary case, we must
consider all possible locations and scale candidates (x, rx),
since we know neither the centers x 2 M(X) nor the radii
R of the true medial disks. Finally, our shock coloring def-
initions are adapted to accommodate a discrete pixel grid.
For instance, the neighbourhood of a point N(x, 1) corre-
sponds to its immediate 8-connected neighbours, while radii
only take positive integer values.

4. Constrained Medial Point Search Using the

Shock Graph Grammar

The formal definition for RGB shocks described in Sec-
tion 3.1 allows one to use the SG grammar to progressively
build an object skeleton while constraining the search space
of candidate medial points. We summarize the steps of such
an approach in Algorithm 1.

Algorithm 1: Overview of algorithm
Input: RGB image I

Output: Medial points M
1 Initialization: M  ;
2 D  generateProposals(I);
3 Qs  extractSeeds(D);
4 while notEmpty(Qs) do

5 (xs, rs) selectSeed(Qs);
6 M  growSeed((xs, rs),D);
7 Qs  pruneSeeds(Qs,M );

8 M  growEndPoints(D,M ):

First, we generate medial disk (point) proposals Dx,r

at multiple scales r. Second, we extract birth seeds
(xs, rs) from the pool of proposals and store them in a
queue Qs. We grow each seed into a medial axis, by it-
eratively attaching low-cost medial points1. Every time we
attach a new point to the axis, we make sure this attach-
ment is consistent with the rules of the SG grammar, and
that the medial axis remains connected and one-pixel wide.
We greedily continue growing an axis until no points can
be added without violating one of these constraints, and
then pick the next seed in Qs to grow. Note that, because
birth seeds can only be type 3 or 4 shocks, which corre-
spond to local scale maxima, the medial axis is constructed
in a coarse-to-fine manner. After Qs has been exhausted,
we relax �c and grow branch end points that may have
been cut short due to the cost constraint. This step allows
the algorithm to extend branch growths into more expen-
sive/ambiguous image regions for completeness. We now

1In fact, we add medial fragments rather than individual points. See the
paragraph on “Seed growth” in this Section.



describe each one of these steps in more detail.

Proposal generation. Each medial disk candidate Dx,r

is associated with a cost C(x, r) that represents how close
Dx,r is to being “maximal”. In the domain of real images,
a low value for C is equivalent to a perceptually homoge-
neous appearance within the disk-shaped region D

I
x,r ⇢ I .

In Section 4.1 we describe in detail two options for C based
on: i) RGB encodings [36]; and ii) image intensity his-
tograms. We compute C(x, r) for all points x in the image,
at all potential scales r 2 [rmin, rmax]. Proposals corre-
sponding to disks that are not fully enclosed in the image
are ignored.

Seed extraction should only return type 3 or type 4
shocks. To extract 4-shock seed candidates, we scan the
space of positions and scales, and check whether the type
4 criterion holds. For 3-shock seed candidates, we check if
there is at least one valid neighbour sharing the same scale,
as per the shock type 3 definition. Finally, we impose an
additional requirement: a type 3/4 shock xs qualifies as a
seed iff it corresponds to a local cost minimum, i.e.,

C(xs, rxs)  C(y, ry), 8y 2 N(xs, 1). (3)

All seed candidates are added into a queue Qs. Because a 4-
seed can eventually grow into a nearby 3-seed as the medial
axis is formed (provided that both seeds are part of the same
object), once a seed has stopped growing, we also remove
any other seeds in Qs that have been added to M .

Seed selection follows a coarse-to-fine strategy. We pri-
oritize the selection of seeds with larger radii and lower
costs C because we expect their cost computation to be less
sensitive to noise, resulting in more robust axis growth.

Seed growth involves attaching medial point proposals to
a selected seed (xs, rs), following the shock grammar. At
each step, the least expensive valid proposal (x, rx) in the
neighborhood of the axis is added to M . Proposals whose
regions D

I
x,r are subsumed by M

I , the union of disk re-
gions centered at points in M , are ignored, as they offer
no new information about the object’s shape. The growth
process ends when no more valid proposals can be added.
To emulate the cost constraint in the RGB shock coloring
definitions, we introduce a cost upper bound

Ctol = C(xs, rs)(1 + ↵c) > 0, (4)

where ↵c is a small arbitrary positive constant. We ignore
proposals with costs larger than Ctol to ensure that the qual-
ity of attached points does not degrade during growth.

Single points do not provide sufficient spatial context for
determining robust axis growth directions. To resolve these

ambiguities we grow a seed by attaching fragments of valid
connected medial points, F , instead. For simplicity, we
model medial axis fragments F as linear segments of length
lF  lmax, producing a piecewise-linear approximation of
the true medial axis. To rank the quality of candidate frag-
ments we define a fragment cost

C̄F =
↵(lF )

lF

lFX

j=1

C(xj , rj), (5)

which is proportional to the mean cost of its constituent
points. The more expensive a fragment, the less likely it
is to be part of the medial axis. To prioritize longer frag-
ments, which provide more context, C̄F is weighted by a
length-dependent parameter ↵(lF ), i.e., between two frag-
ments with equal mean cost, the longer one will be selected.

At each iteration, we generate multiple candidate frag-
ments and add the one with the lowest C̄F to M . Growth
then continues from the endpoint of the last added fragment.
This step is repeated until no more valid fragments, i.e.,
fragments that follow the SG grammar and whose regions
are not subsumed by M

I , can be attached to the current
medial branch. In practice this can happen either because
the branch is fully grown or because the remaining frag-
ment candidates are too expensive. Then, additional medial
branches can be grown from the seed (xs, rs).

A medial branch may also terminate at a junction point:
a medial point from which multiple branches emerge2. In
this case, new branches can also be grown from that point,
as shown in Figure 2d. To identify a junction point, we
check if multiple fragments can be attached to it without
violating the SG grammar’s protrusion rules.

End point growth. Restricting the growth of medial
branches using a cost-based threshold for medial fragments
promotes robustness and avoids committing to potentially
erroneous growth paths. However, the resulting medial axes
may not be fully fleshed out: branches corresponding to the
fine image details are grown last, and do not always survive
this pruning step. To recover these lost medial branches,
we perform a final refinement step: we revisit each medial
end point and allow it to grow further by relaxing the tol-
erance constraint Ctol, thus allowing less salient fragments
to be added. The algorithm terminates when no more valid
fragments can be added to any medial end point.

4.1. Cost functions

Color homogeneity. We use the default cost function C

of the AMAT [36], after smoothing the input image I us-
ing [42]. The cost of a disk region D

I
x,r with area Ar is

Ccolor(x, r) =
c(x, r)

Ar
+

ws

r
, (6)

2Formally, a junction point is a medial point with at least 3 neighbours.



where c(x, r) represents a measure of homogeneity based
on fx,r , the average CIELAB space value within D

I
x,r :

c(x, r)=
X

k

X

l

||fx,r�fxk,rl ||22 8k, l : DI
xk,rl⇢D

I
x,r . (7)

Intensity histogram. While straightforward to com-
pute, Equation (6) is sensitive to gradual changes in inten-
sity. We consider a more powerful cost function that is
based on local histograms of image intensity and is more
appropriate for applications to regions with texture. We first
smooth the image using [42]. Then, we precompute a tiling
of the image using 6 ⇥ 6 squares. For each tile we com-
pute an average intensity value per color channel. We then
construct a local histogram H for each channel, by placing
these averages into one of 10 bins. To compute c(x, r), we
replace the l

2 -norm in Equation (7) with a standard Bhat-
tacharyya distance between normalized histograms H1,H2

dBhatt.(H1,H2) =

s

1�
P

i

p
H1(i) ·H2(i)pP

i H1(i) ·
pP

i H2(i)
, (8)

averaged over the 3 color channels, as used for unsuper-
vised texture segmentation in region-based active contours
[20]. For each disk under consideration, the histograms are
computed using only the enclosed tiles. We also rescale,
and add a scale-dependent constant to obtain

Chist(x, r) =
c(x, r)

r
+

ws

r
. (9)

5. Experiments

We conduct experiments on scene and object skeleton
detection, on two representative datasets: BMAX500 [36]
and SK-LARGE [27]. BMAX500 is built by automati-
cally extracting skeletons of human-annotated region seg-
ments from the BSDS500 dataset [1]; each image typically
comes with 5-7 such annotations. We use the downsam-
pled version of BMAX500 as in [36], but we also evaluate
on the full resolution dataset, to more effectively highlight
the computational gains of our approach. SK-LARGE, on
the other hand, focuses on object-centric skeleton detection:
each image contains a centered object and the ground truth
is only the foreground object skeleton. Note that this is a
different problem than the one the ASG (and the AMAT)
aim to solve, making comparison on the SK-LARGE unfair
to our algorithm, but we still include it for completeness.

5.1. Evaluation Protocol and Criticisms

Traditionally, the evaluation of skeleton extraction meth-
ods has followed the protocol originally introduced for
the task of boundary detection on the BSDS500 bench-
mark [8][18, 19]. According to that protocol, the extracted

Figure 3: Boundary (middle) and skeleton (right) annota-
tions on the BSDS/BMAX500. Different colors denote an-
notations extracted from different segmentations. Whereas
boundaries for the same scene form a natural hierarchy,
skeletons actually conflict with one another, making the
evaluation protocol used in [36] unsuitable.

Figure 4: Segmentation (left), binary GT skeletons (mid-
dle), and their weighted version based on uniqueness of me-
dial disk area (right) [22]. The most salient skeleton parts
are retained (yellow), while skeletal points with low bound-
ary support have low weights (blue).

(boundary/skeleton) map is binarized, and then matched to
each one of the available annotations for a given image, us-
ing a bipartite graph matching routine that allows for small
localization errors. To compute precision (P), a detected
point can be matched to any of its ground truth (GT) coun-
terparts, while, for perfect recall (R), all ground truth points
must be matched with a point in the output.

We argue that this benchmarking approach can be mis-
leading for the task of skeleton detection. To better under-
stand why, see Figure 3. The boundary annotations for the
same scene form a natural hierarchy: fine-grained interpre-
tations of a scene complement the coarser ones, resulting in
modest variation in the recall scores. Skeleton annotations,
on the other hand, not only change significantly when the
source segmentation changes, but actually conflict with one
another. Even if a predicted skeleton perfectly matches one
of the ground truths, it may be at complete odds with the
rest, hurting the associated recall and F-score.

Although we employ the same evaluation scheme used
in previous work for consistency, we propose the following
alternative: for each image, we consider each annotation in-
dividually and report scores for the one with the maximum
F-score. This is a much more reasonable expectation – we
require the output to match at least one of the acceptable



Resolution 161⇥ 241 pixels (half) 321⇥ 481 pixels (full)
Method (C(x, r)) AMAT (Color) ASG (Color) AMAT (Hist) ASG (Hist) AMAT (Hist) ASG (Hist)

P .393 .237 .396 .246 .431 .268 .506 .343 .471 .295 .641 .474

R .640 .665 .452 .485 .623 .658 .541 .595 .769 .794 .503 .546
F1 .487 .350 .422 .326 .509 .380 .522 .435 .584 .431 .564 .507

*R gains +.043 +.047 +.032 +.039 +.016 +.020 +.035 +.040 +.018 +.020 +.036 +.040

*F1 gains +.012 +.006 +.014 +.008 +.006 +.004 +.016 +.011 +.005 +.003 +.022 +.015

t (s) 57.4 7.0 (# 8.2⇥) 33.7 6.5 (# 5.2⇥) 393.2 34.7 (# 11.3⇥)

Table 1: Results on the BMAX500 using standard evaluation (black) and our proposed single-annotation protocol (blue).
Gains for the ligature-weighted version of BMAX500 are denoted by *. Timings are averages over the BMAX500 test set.
Cost function computation times are excluded from the runtime measurements to compare the two algorithms head to head.

scene interpretations, rather than all of them jointly.
Another observation we make is that large portions of

the medial axis may have little to do with boundary recon-
struction, but are due to the ligature or the “glue” that holds
parts of the object together [5]. Curiously, all studies bench-
marked on BMAX500 or SK-LARGE, have ignored this
fact. With this in mind, we use a uniqueness of medial disk
area-based ligature measure proposed by Rezanejad [22], to
weight the contribution of each medial axis point on a scale
from [0, 1]. Figure 4 shows a typical example, where the
lower weights near the branch points signal the ligature.

Parameters are optimized on the BMAX500 validation
set. We use ↵c = 0.75, lmax = 10. ↵(lF ) is set to decrease
linearly from ↵(1) = 1 to ↵(lmax) = 0.85. We fix these
values for all experiments, including those on SK-LARGE.

We use the same values as in [36] for the color cost
function, namely ws = 1e � 4 and the default values for
the smoothing operation [42]. For the histogram based cost
function, we use ws = 2e � 8. Finally, we set r 2 [2, 41]
for the half-resolution images and r 2 [2, 82] for the full
resolution images. During evaluation, any detected medial
point within distance equal to 1% of the image diagonal (in
pixels) from the ground truth can be a true positive.

5.2. Results

We report quantitative results for scene skeleton extrac-
tion, on the half- and full-resolution BMAX500 dataset,
in Table 1. We compare the AMAT [36] with post-
processing (i.e., grouping and thinning) and the ASG, using
the two cost functions described in Section 4.1. We include
results for both the standard and our proposed evaluation
protocol, as well as the gains due to our ligature weighting.

The cost function matters. Using the histogram-based
cost increases performance noticeably for both the AMAT
and the ASG (+2% and +10% F-score respectively). This
result confirms our hypothesis that a powerful cost function
that is robust to texture and other local appearance varia-
tions is crucial in order to obtain good quality medial axes.

Performance analysis. We focus on the results for the
intensity-histogram cost function. The standard evaluation
protocol rewards the AMAT’s dense yet imprecise output:
predicted points have multiple “shots” at matching with one
of the multiple GT annotations, and, conversely, a GT point
is more likely to match a detected point. This increases re-
call, making the AMAT perform on par with our method,
which produces a much sparser (59% fewer points at full
resolution), but precise output. Using one of the GT per
image (blue) calibrates P/R, yielding +5.5% and +7.6% F-
score for half and full resolution, respectively, and aligns
quantitative results to what we witness qualitatively in Fig-
ure 5: a clear advantage of obeying the rules of a shock
grammar in skeleton detection. The ASG skeletons are
smoother, as singularity theory dictates [9], and less sen-
sitive to boundary artefacts, while maintaining agreement
with the ground truth. On the contrary, the AMAT skele-
tons, where medial hypotheses are evaluated in isolation,
contain spurious points and invalid branching topology.

Finally, using a ligature-weighted version of BMAX in-
creases recall for both algorithms, with a net advantage for
the ASG, suggesting that branches missed by our method
tend to be less important for boundary reconstruction.

ASG dramatically reduces runtime. Comparison of the
histogram variants of AMAT and ASG in Table 1 show a
speedup of 5⇥ for the latter at half-resolution and 11⇥ at
full-resolution. Our approach not only is faster by an order
of magnitude, it also scales much better with the input im-
age size and the number of scales considered. A detailed
breakdown of the algorithm is shown in Table 2.

Comparison with supervised methods. In Table 3 we
compare to supervised learning methods. SK-LARGE con-
tains annotations only for the foreground object skeletons,
so we ignore medial axes outside the object during evalu-
ation. Both the AMAT and ASG produce lower F-scores
than Hi-Fi [43] and DeepFlux [40], but this is expected be-
cause they are not solving the same problem: the former
rely solely on bottom-up features to extract medial axes



Figure 5: Qualitative results. Left to right: Ground truth (single annotation), ASG (this work), AMAT [36] (after post-
processing). Our method produces sparser, cleaner, and more accurate medial axes, without any post-processing.

Resolution 161⇥ 241 321⇥ 481
Proposal Generation 3.63s 36.0% 63.51s 64.7%

Seed Growth 4.60s 45.6% 18.28s 18.6%
End Point Growth 1.85s 18.3% 15.71s 15.9%

Other 0.01s 0.1% 0.73s 0.8%
Total 10.09s 100% 98.23s 100%

Table 2: Runtime breakdown of the ASG. Timings are aver-
ages over the 200 images in the BMAX500 test set. Other
includes the seed extraction, selection, and pruning steps.

AMAT [36] ASG Hi-Fi [43] DeepFlux [40]
F1 .509 .511 .724 .732

t (s) 511.9 63.2 0.030 (GPU) 0.019 (GPU)

Table 3: Results on SK-LARGE [27]. Runtimes are aver-
ages over the SK-LARGE test images.

of homogeneous image regions, whereas the latter incor-
porate high-level, object-specific information to detect se-
mantic object skeletons. Taking these numbers at face value
also ignores many “hidden costs” of supervised learning: 1)
training deep CNNs for skeleton extraction requires GPUs
and segmentations, which are costly and time consuming to
collect; 2) these models do not generalize on other datasets:
[36] showed that FSDS [28], trained on SK-LARGE, fails
to generalize on BMAX500; and 3) they do not easily scale
to new classes or granularities; e.g., if a new class is added
to the dataset, the model must be retrained.

6. Discussion

Our new approach for the efficient extraction of medial
axes from cluttered natural scenes uses elements from the
shock graph theory of shape. In particular, we have gener-
alized the concept of shocks to the RGB domain by consid-
ering region-based cost functions, and have devised an al-
gorithm that leverages the rules of the shock graph grammar
to guide the search for medial points. Our approach has sev-
eral merits: 1) it is fully unsupervised and thus can gener-
alize to new datasets without any training; 2) it outperforms
the state-of-the-art in unsupervised approaches and is an or-
der of magnitude faster and much more efficient in the num-
ber of skeletal pixels generated; and 3) it requires no post-
processing, such as thinning or grouping of medial points.
In our experiments, we have also raised a concern regard-
ing the way scene skeleton detection frameworks are typi-
cally evaluated in our community. To address this, we have
proposed an alternative, ligature-based weighted evaluation
scheme, that takes into account the relative importance of
each medial point for boundary reconstruction, and better
reflects performance on benchmarks with multiple ground
truth annotations per scene.
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