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Abstract

Computing object skeletons in natural images is chal-

lenging, owing to large variations in object appearance

and scale, and the complexity of handling background clut-

ter. Many recent methods frame object skeleton detection

as a binary pixel classification problem, which is similar

in spirit to learning-based edge detection, as well as to se-

mantic segmentation methods. In the present article, we de-

part from this strategy by training a CNN to predict a two-

dimensional vector field, which maps each scene point to

a candidate skeleton pixel, in the spirit of flux-based skele-

tonization algorithms. This “image context flux” represen-

tation has two major advantages over previous approaches.

First, it explicitly encodes the relative position of skeletal

pixels to semantically meaningful entities, such as the im-

age points in their spatial context, and hence also the im-

plied object boundaries. Second, since the skeleton detec-

tion context is a region-based vector field, it is better able

to cope with object parts of large width. We evaluate the

proposed method on three benchmark datasets for skeleton

detection and two for symmetry detection, achieving con-

sistently superior performance over state-of-the-art meth-

ods. The code is available at https://github.com/
YukangWang/DeepFlux.

1. Introduction
The shape skeleton, or medial axis [3], is a structure-

based object descriptor that reveals local symmetry as well
as connectivity between object parts [31, 10]. Model-
ing objects via their axes of symmetry, and in particu-
lar, using skeletons, has a long history in computer vi-
sion. Skeletonization algorithms provide a concise and ef-
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(a) Previous CNN-based skeleton detections rely on NMS.

(b) Flux provides an alternative way for accurately detecting skeletons.

Figure 1. (a) Previous CNN-based methods treat skeleton detection
as binary pixel classification, followed by non-maximum suppres-
sion (NMS). This can result in poor localization as well as poor
connectedness. (b) The proposed DeepFlux method models skele-
ton context via a novel flux representation (left). The flux vector
field encodes skeleton position in the context of the associated im-
age pixels, and hence also the implied object boundaries. This
allows one to associate skeletal pixels with sinks, where flux is
absorbed, in the spirit of flux-based skeletonization methods [39].
Red: ground truth skeleton; Green: detected skeleton.

fective representation of deformable objects, while support-
ing many applications, including object recognition and re-
trieval [54, 14, 2, 45], pose estimation [15, 38, 48], hand
gesture recognition [34], shape matching [41], scene text
detection [52], and road detection in aerial scenes [44].

Early algorithms for computing skeletons directly from



images [22, 25, 16, 50, 33, 51, 23] yield a gradient inten-
sity map, driven by geometric constraints between skele-
tal pixels and edge fragments. Such methods cannot eas-
ily handle complex image data without prior information
about object shape and location. Learning-based meth-
ods [21, 42, 47, 35, 44] have an improved ability for object
skeleton detection in natural images, but such methods are
still unable to cope with complex backgrounds or clutter.

The recent surge of work in convolutional neural net-
works (CNNs) has lead to vast improvements in the perfor-
mance of object skeleton detection algorithms [37, 36, 19,
26, 53, 24]. These existing CNN-based methods usually de-
rive from Holistically-Nested Edge Detection (HED) [49],
and frame the problem as binary pixel classification. Most
such approaches focus on designing an appropriate net-
work and leveraging better multi-level features for captur-
ing skeletons across a range of spatial scales.

Object skeleton computation using CNNs from natural
images is inherently different from the problem of edge de-
tection. As illustrated in Figure 1(a), edges associated with
object boundaries can typically be detected locally, due to a
local appearance change or a change in texture. Thus, the
shallow convolutional layers, with accurate spatial informa-
tion, can capture potential edge locations. Object skeletons,
though, have to do with medial properties and high-level
semantics. In particular, skeletons are situated at regions
within object parts, where there is a local symmetry, since
the medial axis bisects the object angle [40]. Capturing this
purely from local image information (e.g., the green box
numbered 3 in Figure 1(a)) is not feasible, since this re-
quires a larger spatial extent, in this case the width of the
torso of the horse. Since shallow layers do not allow skele-
tal points to be captured, deeper layers of CNNs, with as-
sociated coarser features, are required. But this presents a
confound – such coarse features may not provide accurate
spatial localization of the object skeleton.

In this paper, we propose a novel notion of image con-
text flux, to accurately detect object skeletons within a CNN
framework. More precisely, we make use of skeleton con-
text by using a two-dimensional vector field to capture a flux
representation. For each skeleton context pixel, the flux is
defined by the two-dimensional unit vector pointing to its
nearest skeleton pixel. Within this flux representation, the
object skeleton corresponds to pixels where the net inward
flux is positive, following the motivation behind past flux-
based methods for skeletonizing binary objects [39, 11]. We
then develop a simple network to learn the image context
flux, via a pixel-wise regression task in place of binary clas-
sification. Guided by the learned context flux encoding the
relative location between context pixels and the skeleton,
we can easily and accurately recover the object skeleton.
In addition, the skeleton context provides a larger receptive
field size for estimation, which is potentially helpful for de-

tecting skeletons associated with larger spatial scales.
The main contributions of this paper are three-fold: 1)

We propose a novel context flux to represent the object
skeleton. This concept explicitly encodes the relationship
between image pixels and their closest skeletal points. 2)
Based on the context flux, we develop a method which we
dub DeepFlux, that accurately and efficiently detects object
skeletons in an image. 3) DeepFlux consistently outper-
forms state-of-the-art methods on five public benchmarks.
To our knowledge this is the first application of flux con-
cepts, which have been successfully used for skeletoniza-
tion of binary objects, to the detection of object skeletons in
natural images. It is also the first attempt at learning such
flux-based representations directly from natural images.

The rest of this paper is organized as follows. We re-
view related work in Section 2. We develop the DeepFlux
method in Section 3 and carry out an extensive experimental
evaluation in Section 4. We then conclude with a discussion
of our results in Section 5.

2. Related Work
Object skeletonization has been widely studied in recent

decades. In our review, we contrast traditional methods with
those based on deep learning.

Traditional methods: Many early skeleton detection al-
gorithms [22, 25, 16, 50, 33, 51, 23] are based on gradi-
ent intensity maps. In [39], the authors study the limit-
ing average outward flux of the gradient of a Euclidean
distance function to a 2D or 3D object boundary. The
skeleton is associated with those locations where an en-
ergy principle is violated, where there is a net inward flux.
Other researchers have constructed the skeleton by merg-
ing local skeleton segments with a learned segment-linking
model. Levinshtein et al. [21] propose a method to work di-
rectly on images, which uses multi-scale super-pixels and
a learned affinity between adjacent super-pixels to group
proximal medial points. A graph-based clustering algo-
rithm is then applied to form the complete skeleton. Lee et

al. [42] improve the approach in [21] by using a deformable
disc model, which can detect curved and tapered symmetric
parts. A novel definition of an appearance medial axis trans-
form (AMAT) has been proposed in [46], to detect symme-
try in the wild in a purely bottom up, unsupervised fashion.
In [17], the authors present an unconventional method based
on joint co-skeletonization and co-segmentation.

In other literature [47, 35, 44], object skeleton detection
is treated as a pixel-wise classification or regression prob-
lem. Tsogkas and Kokkinos [47] extract hand-designed fea-
tures at each pixel and train a classifier for symmetry de-
tection. They employ a multiple instance learning (MIL)
framework to accommodate for the unknown scale and ori-
entation of symmetry axes. Shen et al. [35] extend the ap-
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Figure 2. The DeepFlux pipeline. Given an input image, the network computes a two-dimensional vector field of skeleton context flux
(visualizations of magnitude and direction on the right). The object skeleton is then recovered by localizing “ending points” where the net
inward flux is high, followed by a morphological closing operation.

proach in [47] by training a group of MIL classifiers to cap-
ture the diversity of symmetry patterns. Sironi et al. [44]
propose a regression-based approach to improve the accu-
racy of skeleton locations. They train regressors which learn
the distances to the closest skeleton in scale-space and iden-
tify the skeleton by finding the local maxima.

Deep learning-based methods: With the popularization of
CNNs, deep learning-based methods [37, 36, 19, 26, 53, 24]
have had a tremendous impact on object skeleton detection.
Shen et al. [37] fuse scale-associated deep side-outputs
(FSDS) based on the architecture of HED [49]. Given that
the skeleton of different scales can be captured in different
stages, they supervise the side outputs with scale-associated
ground-truth data. Shen et al. [36] then extend their orig-
inal method by learning multi-task scale-associated deep
side outputs (LMSDS). This leads to improved skeleton lo-
calization, scale prediction, and better overall performance.
Ke et al. [19] present a side-output residual network (SRN),
which leverages the output residual units to fit the errors
between the ground-truth and the side-outputs. By cascad-
ing residual units in a deep-to-shallow manner, SRN can
effectively detect the skeleton at different scales. Liu et

at. [26] develop a two-stream network that combines image
and segmentation cues to capture complementary informa-
tion for skeleton localization. In [53], the authors introduce
a hierarchical feature integration (Hi-Fi) mechanism. By
hierarchically integrating multi-scale features with bidirec-
tional guidance, high-level semantics and low-level details

can benefit from each other. Liu et al. [24] propose a lin-
ear span network (LSN) that uses linear span units to in-
crease the independence of convolutional features and the
efficiency of feature integration.

Though the method we propose in the present paper ben-
efits from CNN-based learning, it differs from the methods
in [37, 36, 19, 26, 53, 24] in a fundamental way, due to
its different learning objective. Instead of treating object
skeleton detection in natural images as a binary classifica-
tion problem, DeepFlux focuses on learning the context flux
of skeletons, and as such includes more informative non-
local cues, such as the relative position of skeleton points to
image points in their vicinity, and thus also, implicitly, the
associated object boundaries. A direct consequence of this
powerful image context flux representation is that a simple
post-processing step can recover the skeleton directly from
the learned flux, avoiding inaccurate localizations of skele-
tal points caused by non-maximum suppression in previ-
ous deep learning methods. In addition, DeepFlux enlarges
the spatial extent used by the CNN to detect the skeleton,
through the use of skeleton context flux. This region-based
flux representation allows our approach to capture larger ob-
ject parts.

We note that the proposed DeepFlux is in spirit similar
with the original notion of flux [39, 11] that is defined based
on an object boundary, for skeletonization of 2D/3D binary
objects. As such, DeepFlux inherits its mathematical prop-
erties including the unique mapping of skeletal points to
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Figure 3. For each context (non-skeleton) pixel p in the dilated
skeleton mask, we find its nearest skeleton pixel Np. The flux
F (p) is defined as the two-dimensional unit vector that points
away from p to Np. For skeleton points, the flux is set to (0, 0).
On the right, we visualize the direction of the flux field.

boundary points. However, we are the first to extend this no-
tion of flux to skeleton detection in natural images, by com-
puting the flux on dilated skeletons for supervised learning.
Our work is also related to the approaches in [1, 30, 5, 8]
which learn the direction cues for edge detection and in-
stance segmentation. In the present article, this direction
information is encoded in the flux representation, and is im-
plicitly learned for skeleton recovery.

3. Method
Many recent CNN-based skeleton detection approaches

build on some variant of the HED architecture [49]. The
combination of a powerful classifier (CNN) and the use
of side outputs to extract and combine features at multiple
scales has enabled these systems to accurately localize me-
dial points of objects in natural images. However, while
state-of-the-art skeleton detection systems are quite effec-
tive at extracting medial axes of elongated structures, they
still struggle when reasoning about ligature areas. This is
expected: contrary to the skeletal branches they connect,
ligature areas exhibit much less structural regularity, mak-
ing their exact localization ambiguous. As a result, most
methods result in poor localization of ligature points, or
poor connectedness between medial axes of object parts.

We propose to remedy this issue by casting skeleton de-
tection as the problem of predicting a two-dimensional flux
field from scene points to nearby skeleton points, within a
fixed-size neighborhood. We then define skeleton points as
the local flux minima, or, alternatively, as sinks “absorb-
ing” flux from nearby points. We argue –and prove empir-
ically in our experiments– that this approach leads to more
robust localization and better connectivity between skeletal
branches. We also argue that considering a small neighbor-
hood around the true skeleton points is sufficient, consistent
with past approaches to binary object skeletonization [11].
Whereas predicting the flux for the entire object would al-
low us to also infer the medial radius function, in this work
we focus on improving medial point localization. The over-
all pipeline of the proposed method, aptly named DeepFlux,
is depicted in Figure 2.

3.1. Skeleton context flux
We represent F (x, y) = (Fx, Fy) as a two-channel map

with continuous values corresponding to the x and y coor-
dinates of the flux vector respectively. An intuitive visual-
ization is shown in Figure 3. When skeleton detection is
framed as a binary classification task, ground truth is a 1-
pixel wide binary skeleton map; for our regression problem
the ground truth must be modified appropriately.

We divide a binary skeleton map into three non-
overlapping regions: 1) skeleton context, Rc, which is a the
vicinity of the skeleton; 2) skeleton pixels, denoted by Rs;
and 3) background pixels, Rb. In practice, Rc is obtained by
dilating the binary skeleton map with a disk of radius r, and
subtracting skeleton pixels Rs. Then, for each context pixel
p 2 Rc, we find its nearest (L2 distance) skeleton pixel
Np 2 Rs. A unit direction vector that points away from p
to Np is then computed as the flux on the context pixel p.
This can be efficiently computed with the aid of a distance
transform algorithm.⇤ For the remaining pixels composed
of Rs and Rb, we set the flux to (0, 0). Formally, we have:

F (p) =

8
><

>:

��!
pNp/

���
��!
pNp

��� , p 2 Rc

(0, 0), p 2 Rs [Rb,

(1)

where
���
��!
pNp

��� denotes the length of the vector from p to Np.
As a representation of the spatial context associated with

each skeletal pixel, our proposed image context flux pos-
sesses a few distinct advantages when used to detect object
skeletons in the wild. Unlike most learning approaches that
predict skeleton probabilities individually for each pixel,
our DeepFlux method leverages consistency between flux
predictions within a neighborhood around each candidate
pixel. Conversely, if the true skeleton location changes, the
surrounding flux field will also change noticeably. A ben-
eficial side-effect is that our method does not rely directly
on the coarse responses produced by deeper CNN layers for
localizing skeletons at larger scales, which further reduces
localization errors. As we show in our experiments, these
properties make our method more robust to the localization
of skeleton points, especially around ligature regions, and
less prone to gaps, discontinuities, and irregularities caused
by local mispredictions. Finally, it is easy to accurately re-
cover a binary object skeleton using the magnitude and di-
rection of the predicted flux, as explained in Section 3.4.

3.2. Network architecture
The network for learning the skeleton context flux fol-

lows closely the fully convolutional architecture of [28], and

⇤In fact, in the context of skeletonization of binary objects [40], this flux vector
would be in the direction opposite to that of the spoke vector from a skeletal pixel to
its associated boundary pixel.
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Figure 4. Network architecture. We adopt the pre-trained
VGG16 [43] with the ASPP module [6] as the backbone network
and with multi-level feature fusion via concatenation. The net-
work is trained to predict the proposed context flux F , which is an
image representing a two-dimensional vector field.

is shown in Figure 4. It consists of three modules: 1) a
backbone network used to extract 3D feature maps; 2) an
“atrous” spatial pyramid pooling (ASPP) module [6] to en-
large the receptive field while avoiding excessive downsam-
pling; and 3) a multi-stage feature fusion module.

To ensure a fair comparison with previous work, we also
adopt VGG16 [43] as the backbone network. As in [49], we
discard the last pooling layer and the fully connected layers
that follow. The use of the atrous module is motivated by
the need for a wide receptive field: when extracting skele-
tons we have to guarantee that the receptive field of the net-
work is wider than the largest medial radius of an object
part in the input image. The receptive field of the VGG16
backbone is 196, which is not wide enough for large ob-
jects. Furthermore, it has been demonstrated in [29] that
the effective receptive field only takes up a fraction of the
full theoretical receptive field. Thus, we employ ASPP to
capture multi-scale information. Specifically, four parallel
atrous convolutional layers with 3 ⇥ 3 kernels but different
atrous rates (2, 4, 8, 16) are added to the last layer of the
backbone, followed by a concatenation along the channel
dimension. In this way, we obtain feature maps with a the-
oretical receptive field size of 708 which we have found to
be large enough for the images we have experimented on.

To construct a multi-scale representation of the input im-
age, we fuse the feature maps from side outputs at conv3,
conv4, conv5, and ASPP layers, after convolving them with
a 1 ⇥ 1 kernel. Since feature maps at different levels have
different spatial resolutions, we resize them all to the di-
mensions of conv3 before concatenating them. Prediction
is then performed on the fused feature map, and then up-
sampled to the dimensions of the input image. For up-

sampling we use bilinear interpolation. The final output of
the network is a 2-channel response map containing predic-
tions of the x and y coordinates of the image content flux
field F̂ (p) for every pixel p in the image.

3.3. Training objective
We choose the L2 loss function as our training objec-

tive. Due to a severe imbalance in the number of context
and background pixels, we adopt a class-balancing strategy
similar to the one in [49]. Our balanced loss function is

L =
X

p2⌦

w(p) ⇤
���F (p)� F̂ (p)

���
2
, (2)

where ⌦ is the image domain, F̂ (p) is the predicted flux,
and w(p) denotes the weight coefficient of pixel p. The
weight w(p) is calculated as follows:

w(p) =

8
><

>:

|Rb|
|Rc|+|Rb|+|Rs| , p 2 Rc [Rs

|Rc|+|Rs|
|Rc|+|Rb|+|Rs| , p 2 Rb,

(3)

where |Rc|, |Rb| and |Rs| denote the number of context,
background, and skeleton pixels, respectively.

3.4. From flux to skeleton points
We propose a simple post-processing procedure to re-

cover an object skeleton from the predicted context flux. As
described in Equation (1), pixels around the skeleton are
labeled with unit two-dimensional vectors while the others
are set to (0, 0). Thus, thresholding the magnitude of the
vector field reveals the context pixels while computing the
flux direction reveals the location of context pixels relative
to the skeleton. We refer the reader to Figure 2 for a visual-
ization of the post-processing steps, listed in Algorithm 1.

Let |F̂ | and \F̂ be the magnitude and direction of the
predicted context flux F̂ , respectively. For a given pixel p,
\F̂ (p) is binned into one of 8 directions, pointing to one of
the 8 neighbors, denoted by N\F̂ (p)(p). Having computed
these two quantities, extracting the skeleton is straightfor-
ward: pixels close to the real object skeleton should have
a high inward flux, due to a singularity in the vector field
F̂ , as analyzed in [11]. These pixels are defined as “ending
points”. Finally, we apply a morphological dilation with a
disk structuring element of radius k1, followed by a mor-
phological erosion with a disk of radius k2, to group ending
points together and produce the object skeleton.

4. Experiments
We conduct experiments on five well-known, challeng-

ing datasets, including three for skeleton detection (SK-
LARGE [36], SK506 [37], WH-SYMMAX [35]) and two



Algorithm 1: Algorithm for skeleton recovery from
learned context flux F̂ . |F̂ |: magnitude; \F̂ : direc-
tion; N\F̂ (p)(p): neighbor of p at direction \ ˆF (p).

Input: Predicted context flux F̂ , threshold �
Output: Binary skeleton map S

1 function Skeleton recovery(F̂ ,�)
2 // initialization
3 S  False
4 // find ending points near skeleton
5 foreach p 2 ⌦ do
6 if |F̂ (p)| > � and |F̂ (N\F̂ (p)(p))|  � then
7 S(p) True

8 // apply morphological closing
9 S  "k2(�k1(S))

10 return S

for local symmetry detection (SYM-PASCAL [19], SYM-
MAX300 [47]). We distinguish between the two tasks by
associating skeletons with a foreground object, and local
symmetry detection with any symmetric structure, be it a
foreground object or background clutter.

4.1. Dataset and evaluation protocol
SK-LARGE [36] is a benchmark dataset for object skeleton
detection, built on the MS COCO dataset [7]. It contains
1491 images, 746 for training and 745 for testing.

SK506 [37] (aka SK-SMALL), is an earlier version of SK-
LARGE containing 300 train images and 206 test images.

WH-SYMMAX [35] contains 328 cropped images from
the Weizmann Horse dataset [4], with skeleton annotations.
It is split into 228 train images and 100 test images.

SYM-PASCAL [19] is derived from the PASCAL-VOC-
2011 segmentation dataset [13] and targets object symmetry
detection in the wild. It consists of 648 train images and 787
test images.

SYMMAX300 [47] is built on the Berkeley Segmentation
Dataset (BSDS300) [32], which contains 200 train images
and 100 test images. Both foreground and background sym-
metries are considered.

Evaluation protocol We use precision-recall (PR) curves
and the F-measure metric to evaluate skeleton detection
performance in our experiments. For methods that out-
put a skeleton probability map, a standard non-maximal
suppression (NMS) algorithm [12] is first applied and the
thinned skeleton map is obtained. This map is then thresh-
olded into a binary map and matched with the groundtruth
skeleton map, allowing small localization errors. Since

DeepFlux does not directly output skeleton probabilities,
we use the inverse magnitude of predicted context flux on
the recovered skeleton as a surrogate for a “skeleton con-
fidence”. Thresholding at different values gives rise to a
PR curve and the optimal threshold is selected as the one
producing the highest F-measure according to the formula
F = 2PR/(P +R). F-measure is commonly reported as a
single scalar performance index.

4.2. Implementation details
Our implementation involves the following hyperparam-

eters (values in parentheses denote the default values used in
our experiments): the width of the skeleton context neigh-
borhood r = 7; the threshold used to recover skeleton
points from the predicted flux field, � = 0.4; the sizes of
the structuring elements involved in the morphological op-
erations for skeleton recovery, k1 = 3 and k2 = 4.

For training, we adopt standard data augmentation strate-
gies [37, 36, 53]. We resize training images to 3 different
scales (0.8, 1, 1.2) and then rotate them to 4 angles (0�,
90�, 180�, 270�). Finally, we flip them with respect to dif-
ferent axes (up-down, left-right, no flip). The proposed net-
work is initialized with the VGG16 model pretrained on Im-
ageNet [9] and optimized using ADAM [20]. The learning
rate is set to 10�4 for the first 100k iterations, then reduced
to 10�5 for the remaining 40k iterations.

We use the Caffe [18] platform to train DeepFlux. All
experiments are carried out on a workstation with an Intel
Xeon 16-core CPU (3.5GHz), 64GB RAM, and a single Ti-
tan Xp GPU. Training on SK-LARGE using a batch size of
1 takes about 2 hours.

4.3. Results
PR-curves for all methods are shown in Figure 5. Deep-

Flux performance excels particularly in the high-precision
regime, where it clearly surpasses competing methods. This
is indicative of the contribution of local context to more ro-
bust and accurate localization of skeleton points.

Table 1 lists the optimal F-measure score for all methods.
DeepFlux consistently outperforms all other approaches us-
ing the VGG16 backbone [43]. Specifically, it improves
over the recent Hi-Fi [53] by 0.8%, 1.4%, and 3.5% on SK-
LARGE, SK506, and WH-SYMMAX, respectively, despite
the fact that Hi-Fi uses stronger supervision during training
(skeleton position and scale). DeepFlux also outperforms
LSN [24], another recent method, by 6.4%, 6.2%, and 4.3%
on SK-LARGE, SK506, and WH-SYMMAX, respectively.

Similar results are observed for the symmetry detection
task. DeepFlux significantly outperforms state-of-the-art
methods on the SYM-PASCAL dataset, recording an im-
provement of 4.8% and 7.7% compared to Hi-Fi [53] and
LSN [24], respectively. On SYMMAX300, DeepFlux also
improves over LSN by 1.1%. Some qualitative results are



Methods SK-LARGE SK506 WH-SYMMAX SYM-PASCAL SYMMAX300
MIL [47] 0.353 0.392 0.365 0.174 0.362
HED [49] 0.497 0.541 0.732 0.369 0.427
RCF [27] 0.626 0.613 0.751 0.392 -
FSDS* [37] 0.633 0.623 0.769 0.418 0.467
LMSDS* [36] 0.649 0.621 0.779 - -
SRN [19] 0.678 0.632 0.780 0.443 0.446
LSN [24] 0.668 0.633 0.797 0.425 0.480
Hi-Fi* [53] 0.724 0.681 0.805 0.454 -
DeepFlux (Ours) 0.732 0.695 0.840 0.502 0.491

Table 1. F-measure comparison. * indicates scale supervision was also used. Results for competing methods are from the respective papers.
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Figure 5. PR curves on four datasets. DeepFlux offers high preci-
sion, especially in the high-recall regime.

shown in Figure 6, including failure cases.

4.4. Runtime analysis
We decompose runtime analysis into two stages: net-

work inference and post-processing. Inference on the GPU
using VGG16 takes on average 14 ms for a 300 ⇥ 200 im-
age and the post-processing stage requires on average 3 ms
on the CPU. As shown in Table 2, DeepFlux is as fast as
competing methods while achieving superior performance.

4.5. Ablation study
We study the contribution of the two main modules

(ASPP module and flux representation) to skeleton detec-
tion on SK-LARGE and SYM-PASCAL. We first remove
the ASPP module and study the effect of the proposed con-
text flux representation compared to a baseline model with

Method F-measure Runtime (in sec)
HED [49] 0.497 0.014
FSDS [37] 0.633 0.017
LMSDS [36] 0.649 0.019
LSN [24] 0.668 0.021
SRN [19] 0.678 0.016
Hi-Fi [53] 0.724 0.030
DeepFlux (ours) 0.732 0.017

Table 2. Runtime and performance on SK-LARGE. For DeeFlux
we list the total inference (GPU) + post-processing (CPU) time.

the same architecture, but trained for binary classification.
As shown in Table 3, employing a flux representation re-
sults in a 2.0% improvement on SK-LARGE and 4.9% on
SYM-PASCAL. We then conduct experiments without us-
ing context flux, and study the effect of the increased re-
ceptive field offered by the ASPP module. The ASPP mod-
ule alone leads to a 1.6% improvement on SK-LARGE and
1.7% on SYM-PASCAL. This demonstrates that the gains
from ASPP and context flux are orthogonal; indeed, com-
bining both improves the baseline model by ⇠ 4% on SK-
LARGE and and ⇠ 10% on SYM-PASCAL.

We also study the effect of the size of the neighborhood
within which context flux is defined. We conduct experi-
ments with different radii, ranging from r = 3 to r = 11, on
the SK-LARGE and SYM-PASCAL datasets. Best results
are obtained for r = 7, and using smaller or larger values
seems to slightly decrease performance. Our understanding
is that a narrower context neighborhood provides less con-
textual information to predict the final skeleton map. On
the other hand, using a wider neighborhood may increase
the chance for mistakes in flux prediction around areas of
severe discontinuities, such as the areas around boundaries
of thin objects that are fully contained in the context neigh-
borhood. The good news, however, is that DeepFlux is not
sensitive to the value of r.

Finally, one may argue that simply using a dilated skele-
ton ground truth is sufficient to make a baseline model more
robust in accurately localizing skeleton points. To examine
if this is the case, we retrained our baseline model using bi-
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Figure 6. Qualitative results on SK-LARGE, WH-SYMMAX, and SYM-PASCAL (a-c), SK506 (d), SYMMAX300 (e), and two failure
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Dataset Context flux ASPP F-measure

SK-LARGE

0.696
X 0.712

X 0.716
X X 0.732

SYM-PASCAL

0.409
X 0.426

X 0.458
X X 0.502

Table 3. The effect of the context flux representation and the ASPP
module on performance.

Dataset r = 3 r = 5 r = 7 r = 9 r = 11

SK-LARGE 0.721 0.727 0.732 0.726 0.724
SYM-PASCAL 0.481 0.498 0.502 0.500 0.501

Table 4. Influence of the context size r on the F-measure.

nary cross-entropy on the same dilated ground truth we used
for DeepFlux. Without context flux, performance drops
to F = 0.673 (�6%) on SK-LARGE and to F = 0.425
(�8%) on SYM-PASCAL, validating the importance of our
proposed representation for accurate localization.

5. Conclusion
We have proposed DeepFlux, a novel approach for ac-

curate detection of object skeletons in the wild. Departing

from the usual view of learning-based skeleton detection as
a binary classification problem, we have recast it as the re-
gression problem of predicting a 2D vector field of “con-
text flux”. We have developed a simple convolutional neu-
ral network to compute such a flux, followed by a simple
post-processing scheme that can accurately recover object
skeletons in ⇠ 20ms. Our approach steers clear of many
limitations related to poor localization, commonly shared
by previous methods, and particularly shines in handling
ligature points, and skeletons at large scales.

Experimental results on five popular and challenging
benchmarks demonstrate that DeepFlux systematically im-
proves the state-of-the-art, both quantitatively and qualita-
tively. Furthermore, DeepFlux goes beyond object skeleton
detection, and achieves state-of-the-art results in detecting
generic symmetry in the wild. In the future, we would like
to explore replacing the post-processing step used to recover
the skeleton with an appropriate NN module, making the
entire pipeline trainable in an end-to-end fashion.
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