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Abstract

We address the problem of automatically learning the recurring associations
between the visual structures in images and the words in their associated cap-
tions, yielding a set of named object models that can be used for subsequent
image annotation. In previous work, we used language to drive the percep-
tual grouping of local features into configurations that capture small parts
(patches) of an object. However, model scope was poor, leading to poor ob-
ject localization during detection (annotation), and ambiguity was high when
part detections were weak. We extend and significantly revise our previous
framework by using language to drive the perceptual grouping of parts, each a
configuration in the previous framework, into hierarchical configurations that
offer greater spatial extent and flexibility. The resulting hierarchical multi-
part models remain scale, translation and rotation invariant, but are more
reliable detectors and provide better localization. Moreover, unlike typical
frameworks for learning object models, our approach requires no bounding
boxes around the objects to be learned, can handle heavily cluttered training
scenes, and is robust in the face of noisy captions, i.e., where objects in an
image may not be named in the caption, and objects named in the caption
may not appear in the image. We demonstrate improved precision and recall
in annotation over the non-hierarchical technique and also show extended
spatial coverage of detected objects.
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1. Introduction

The automatic learning of visual object models from training images has
become a common component of today’s object recognition systems. How-
ever, such automatic model learning has previously required a high degree
of supervision. For example, bounding boxes or bounding contours are typ-
ically used to locate the object in a cluttered training image in order to
strongly constrain the search for recurring (nonaccidental) features [1, 2].
Alternatively, if the objects are composed of parts, the number of parts is
typically specified [3]. In other approaches, the image may be canonically
located, oriented, and scaled in the image, and cropped to avoid significant
clutter or occlusion [4]. The proposed methods for learning object models
thus depend on strong explicit or implicit supervision, in the form of bound-
ing boxes, part constraints, image cropping, or constrained position, scale, or
orientation. Such methods are unable to scale to the problem of discovering
recurring models from entirely unstructured image collections that contain
multiple occluded objects appearing in cluttered scenes.

In contrast, a naturally-occurring form of supervision exists in image
captions, which often identify objects of interest in the images. Captions
may be keywords intended to name objects in the image, as in the case of
an annotated photo collection, or full-sentence captions, in the case of a
document containing images, which typically contain nouns referring to the
depicted objects. However, neither of such captions are explicit, noise-free
supervisory signals. For example, some caption words may correspond to
objects that do not appear in the image, or, conversely, one or more objects
in an image may not be mentioned in the caption. Even if a named object in
the caption does appear in the image, the object may appear at any position,
orientation, and scale; it may be occluded by other objects; or it may be a
small part of a heavily cluttered scene. Still, if a particular image object
co-occurs sufficiently often with an appropriate caption word, we can exploit
this recurring correspondence to learn both a visual object model as well as
its name.

A number of researchers have exploited this observation in work on auto-
matic image annotation [5, 6, 7, 8, 9, 10]. Given cluttered images of multiple
objects paired with noisy captions, such systems can learn meaningful cor-
respondences between caption words and appearance models. The learned
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visual models and their associated learned names can then be used to an-
notate uncaptioned scenes by adding a model’s name as a keyword to any
image containing the model. However, automatic annotation systems have
generally been limited in their ability to capture structured object models,
instead using appearance models based on colors or textures that are best
for structureless materials (e.g., [5]), or appearance models that capture part
structure but without spatial information (e.g., [6, 7, 9, 10]).

By contrast, in our previous work [8], we introduced the first framework
that used language to drive the iterative grouping of image features into
structured appearance models. Given images of cluttered scenes, associated
with potentially noisy captions, our previous method can discover spatial
configurations of local features that strongly correspond to particular caption
words. However, the framework suffered from a number of limitations. First,
a learned model tended to capture the structured appearance of only a small
patch on an object. While such individual learned parts were often sufficient
to indicate the presence of particular exemplar objects, they had limited
spatial extent, and the system could not distinguish whether a collection
of part detections in an image arose from multiple objects or were multiple
parts of a single object. Moreover, the limited scope of the parts also led
to poor object localization, since the center of the object would be located
at the center of a single patch, which typically was not the center of the
actual object. Finally, the small size and scope of the models increased
their ambiguity, leading to poor annotation precision when patches were
only weakly detected.

One effective strategy for creating more useful representations is to learn
a hierarchy of parts in which parts at each level are grouped together into
meaningful configurations to form the next higher level [11, 12, 13, 14]. The
hierarchical representations are inspired by and intended to reflect the com-
positional appearance of natural objects and artifacts. For instance, each
level of the Leaning Tower of Pisa (Figure 1) appears as a ring of arches
while the tower as a whole is composed of a nearly vertical stack of such
rings. The broader object recognition literature contains many methods
for grouping individual features into meaningful spatial configurations (e.g.,
[15, 16]), and even for arranging features into hierarchies of parts (e.g.,
[17, 18, 19, 20, 21, 22]). Some of these methods can learn an appearance
model from training images with cluttered backgrounds, sometimes with-
out relying on bounding boxes. However, unlike most automatic annotation
work, they are not designed for images containing multiple objects and mul-
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(a) pixels (b) local features (c) parts (d) multipart models

Figure 1: Object model detection and learning progresses in stages. Gradient patterns
in the original image (a) are grouped into local features (b). Configurations of local
features with strong word correspondence are captured as part models (c). Finally, we
form multipart models (d) that represent meaningful configurations of part models (shown
in yellow) having nonaccidental spatial relationships among them (shown in green).

tiple annotation words.
Here we have integrated this strategy of hierarchical part models into our

earlier work on language-driven perceptual grouping [8], producing a system
with more accurate image annotation, as well as improved object scope and
localization. The new system has two important enhancements over the
previous method. Foremost, our new system constructs spatially-configured
multipart models, or MPMs, by grouping the local configurations built by
our previous method. The local configurations in our previous method thus
become the input parts that are grouped by our current method to form
higher-level structures. The creation of MPMs, as with the creation of the
parts, is driven by the correspondence with the words in the captions. We
have also developed a new initialization process that improves the overall
distribution of the initially discovered local configurations, optimizing the
overall correspondence of each with its associated word. This has benefits
both for the initial approach using only local appearance models, as well
as for the new MPMs. The resulting MPMs are more robust to occlusion,
articulation and changes in perspective than our earlier appearance models.
The use of MPMs further reduces false annotations resulting from weak part
detections, and provides a better indication of the location and extent of a
detected object. Figure 1 illustrates how low-level features are assembled in
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stages to form a multipart model for the Leaning Tower of Pisa.1

The paper is organized as follows. In Section 2, we review our part rep-
resentation from [8] and introduce our multipart model representation as a
hierarchy of such parts. Section 3 describes our improved strategy for dis-
covering recurring part–noun correspondences in a set of captioned training
images. Next, in Section 4, we present our method for building multipart
models out of these detected parts. Given a set of named multipart models,
we then describe in Section 5 how the models are detected in new images,
allowing an uncaptioned image to be annotated with the models present in
the image. In Section 6, we evaluate the approach on three different datasets,
discussing improvements in performance as well as remaining limitations of
the method. We close in Section 7 with our conclusions and future work.

2. Images, Parts and Multipart Models (MPMs)

Our system learns multipart models (MPMs) by detecting recurring con-
figurations of lower-level parts that together appear to have a strong corre-
spondence with a particular caption word. The parts are themselves config-
urations of image features. Though our overall approach is compatible with
a variety of image feature representations, in the system here we use interest
points as in [8]. The description below of local features and part models is
taken from that work.

An image is represented as a set of local interest points, I = {pm|m =
1 . . . |I|}. These points are detected using [23], which defines each point’s
spatial coordinates xm, scale λm, and orientation θm. A PCA-SIFT [24] fea-
ture vector (fm) describes the portion of the image around each point. In
addition, a vector of scale-, translation-, and rotation-invariant spatial rela-
tionships rmn is defined between each pair of points, pm and pn. This includes
the relative distance between the two points (∆xmn) normalized by the scale
of the finer point, the relative scale difference (∆λmn) and the relative bear-
ings in each direction (∆φmn, ∆φnm). That is, rmn = (∆xmn, ∆λmn, ∆φmn,
∆φnm).

A part appearance model describes the distinctive appearance of an object
part as a graph G = (V,E). Each vertex vi ∈ V is composed of a continuous

1Note that while the system as implemented here uses exemplar-specific SIFT features,
the framework we have developed could employ categorical features, such as contours of
higher-order shape parts [1].
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Figure 2: A multipart model H is a graph with parts uj ∈ U and spatial relationships
djk ∈ D, where each part is a graph G with local features vi ∈ V and spatial relationships
esi ∈ E.

feature vector fi (describing an interest point), and each edge eij ∈ E encodes
the expected spatial relationship between two vertices, vi and vj. Model
detections have a confidence score, Confdetect(O,G) ∈ [0, 1], based on the
relative likelihood that the part model G generates the observed set of points
O and the associated spatial relations, as opposed to them being part of the
unstructured background.

We represent multipart models using a similar graph structure, but one in
which the vertices are the parts just described (rather than image features),
and the edges are spatial relations among those parts. That is, a multipart
model is a graph H = (U,D) where vertices uj, uk ∈ U are part appearance
model detections, and each edge djk ∈ D encodes the spatial relationships
between them. We use the same spatial relations as in the part model:
djk = (∆xjk, ∆λjk, ∆φjk, ∆φkj). Thus the vertices of the MPM represent a
set of local appearances that tend to co-occur in a loose spatial configuration
encoded in the graph edges. Figure 2 shows an example MPM and one of its
parts.

3. Discovering Parts

Our MPMs use as their parts the same type of individual appearance
models as in our earlier work. However, the means for discovering such parts
requires some modification, since models trained to maximize stand-alone
detection performance are generally not ideal as parts of a larger appearance
model. In particular, single-part appearance models, as we used before, need
to act as high-precision detectors. In contrast, when used as components
of an MPM, the parts need to be more individually ambiguous to allow
sharing of such representations across a variety of MPMs. We then rely on
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the structure of the MPMs to reduce false-positive detections by imposing
co-occurrence and spatial constraints on the parts. Thus when learning parts
for use in an MPM, we accept some loss of precision in exchange for better
recall and better spatial coverage of the object of interest. We implement
this shift toward weaker parts with better coverage by replacing the part
initialization process in [8] with an improved approach that makes earlier
use of language information, as described below. We also limit the size of
learned part models to eight vertices, to avoid the creation of parts that are
overly specific.

3.1. Part Model Initialization through Image Pair Sampling

In performing part model initialization, we need to efficiently identify (al-
beit noisily) recurring structure that is larger than a single local feature, in
order to begin building configurations of such points. Our previous system
summarized the visual information within each local area of all the images
in a dataset as a quantized bag-of-features descriptor called a neighborhood
pattern. The system then clustered similar neighborhood patterns in order
to focus the search for recurring structure within areas of high similarity
across images. Next, the system checked for promising co-occurrence pat-
terns between each neighborhood cluster and each word. Finally, the system
extracted initial two-vertex appearance models from those clusters with the
best correspondences for each word.

This clustering approach to initializing part models has serious limita-
tions. Because the neighborhood patterns are noisy, due to feature quantiza-
tion and detector errors, a low similarity threshold is needed to reliably group
similar appearances. However, the low threshold also incorrectly allows dis-
similar neighborhoods to join in a cluster. Especially on large image sets, this
can add substantial noise in determining the cluster–word co-occurrences.
These noise inclusions have a larger effect on correspondence when the true
appearance cluster is small. Therefore recurring visual structure correspond-
ing to rarer object views is often overlooked.

Our new initialization method avoids feature quantization and uses word
labels early in the process. Instead of using a neighborhood pattern, we com-
pare visual features directly. Rather than coarsely clustering visual structure
across the entire training set, we look for instances of shared appearance be-
tween pairs of images with the same word label. That is, for a given word
w, the system randomly samples pairs of images IA and IB from those with
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captions containing w, and identifies neighborhoods in the two images that
share visual structure.

We identify shared neighborhoods in three steps. First, the system looks
for the best-matching features that are potential anchors for shared neigh-
borhoods. Following [23], we identify matching features that are significantly
closer to each other than to either feature’s second-best match, i.e., features
fm ∈ IA and fn ∈ IB that satisfy equations 1 and 2:

|fm − fn|2 ≤ ψb|fm − fk|2, ∀fk ∈ {IB − fn} (1)

|fm − fn|2 ≤ ψb|fl − fn|2,∀fl ∈ {IA − fm} (2)

where ψb < 1 controls the quality of the best anchor matches. This is illus-
trated in Figure 3(a). For each pair of best-matching features, the system
checks for supporting matches in the surrounding neighborhood, as illus-
trated in Figure 3(b). These supporting matches are not required to be the
best; that is, we use use ψs > 1. For each supporting match pair fi ∈ IA

and fj ∈ IB, the system then verifies that the point-wise spatial relationships
between the best feature and the supporting feature in the two images (rmi

and rnj) are consistent. A shared neighborhood has a pair of best matching
features and at least two spatially consistent pairs of supporting matches.

Given this evidence of shared visual structure, we construct a set of two-
vertex part models, each with one vertex based on the best match and the
other on a strong supporting match, as illustrated in Figure 3(c). These two-
vertex models represent shared visual structure between two images labeled
with word w. To check whether the part models correspond with w, the
system detects each model G across the training image set and compares its
occurrence pattern with that of w. Below, we explain how we sample image
pairs and filter the resulting initial part models to maximize overall coverage
of the object.

3.2. Part Coverage Objective

Our earlier system developed the n neighborhood clusters having the
best correspondence with w into full appearance models. This approach
concentrated parts on the most common views of an object, neglecting less
common views and appearances associated with w. Our new method instead
selects initial part models so that, as a group, they have good coverage of w
throughout the training set, as illustrated in Figure 3(d).

8



  

IA IB

IA IB

(a)

(b)

(c)

I

I

I

rw

G1

G2

(d)

G1

G2

Figure 3: (a) A pair of images, IA and IB , associated with caption word w, have best-
matching features. (b) One of the matches has supporting features that (c) generate
potential initial two-vertex part models G1 and G2 (we select the two best-matching
potential models). (d) G2 passes the correspondence threshold with w.
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The ideal set of models would have multiple, non-overlapping detections
in every training set image annotated with word w, and no detections in
other training images. We evaluate how well a given distribution of model
detections approaches this ideal using a correspondence measure F between a
binary vector rw, indicating images with w in the caption, and a continuous
vector Qw, whose scores assess the detections of parts in the image. We
devise Qw (detailed shortly) to range from 0 to 1, with multiple detections of
the same part having a lower value than many detections of different parts;
good coverage is indicated by Qw having values close to 1.

The part initialization process, shown in Figure 4 (and described in more
detail below), greedily grows and modifies a collection of non-overlapping
two-vertex part models to maximize F (rw,Qw). At each iteration, we draw
a pair of images according to a sampling distribution sw, and use the image
pair to generate potential part models. The algorithm then calculates, for
each potential model, the effects on the correspondence score F of adding the
model to the current part set, of replacing, in turn, each of the models (parts)
in the current part set, and of rejecting the model. The algorithm implements
the option which leads to the greatest improvement in correspondence. The
process stops once no new models have been accepted in the last Npairs image-
pair samples.

Specifically, the initialization process proceeds as follows. Given a set of
training images I, Qw = {Qwi|i = 1 . . . |I|} is a detection vector representing
the distribution of appearance model detections throughout the training set.
Given ni representing the number of distinct models detected in image i,
Qwi = 1 − νni , ν < 1. The vector Qw approaches 1 when there are multiple
detections per image, but each successive detection has a smaller effect on
Qwi. Therefore there is little potential reward (or penalty) for introducing
new part detections in images that already have several different parts. The
detection vector Qw also influences the sample distribution from which we
draw the image pairs: sw ∼ 1− rw ∗Qw (suitably normalized). This focuses
the search for new models on images with word w in the caption that do not
already contain several model detections.

As the overall objective function F (rw,Qw), we use F-measure. For a
positive real value β, F-measure is a weighted average of precision and recall:

Fβ =
(1 + β2) · precision · recall

(β2 · precision) + recall
(3)

Later, during individual model improvement, in which precision is more im-
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Figure 4: (a) The distribution of word w (rw) and the distribution of detections of the
current part set (nw, converted to Qw) determine the image sampling distribution (sw)
for (b) new part detection. (c) For each potential part G, we use the correspondence
between rw and Qw to determine whether G should be added to the current part set,
replace spatially overlapping parts, or be rejected. (d) If the part set changes, the image
sample weights are updated.
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portant, we use the correspondence confidence score, Confcorr(G,w) from [8]
as our objective. To calculate correspondence confidence, we find the pattern
of occurrence of a part model G across the training set using the maximum
detection confidence (Confdetect(O, G)) per image and evaluate whether G
could be a high-precision predictor of the word w. Confcorr(G, w) is the log-
likelihood ratio of this ‘reliable indicator’ hypothesis and the hypothesis that
G and w are independent. Given a per-image detection confidence for multi-
part models, the same method is used to evaluat correspondence confidence
for MPMs.

Besides optimizing the explicit objective function, the initialization sys-
tem also avoids redundant models with many overlapping detections. Two
models are considered to be redundant when their detections overlap nearly
as often as they occur separately. When a new two-vertex model is con-
sidered, if selected it must replace any models that it makes redundant.
Algorithm 1 summarizes the steps of part initialization.

Algorithm 1 Choose initial part models to maximize overall coverage

FindInitialParts(rw)

1. Start with ni = 0, ∀i, indicating no part models detected in the image set; therefore Qw and sw

are uniform.
2. Draw IA and IB (without replacement) from sw.
3. Find shared neighborhoods and construct the set of potential part models, Gpot.
4. Filter Gpot based on F0.25 correspondence with w.
5. For each remaining part model G ∈ Gpot:

• Calculate overlap of G with set of current part models, Gcurr.

• If G overlaps with some elements of Gcurr, calculate Q∗w for G replacing overlapping models.

• Else calculate Q∗w for addition and for replacement of each element of Gcurr by G

• Accept best change Q∗w if F1(rw,Q∗w) > F1(rw,Qw).

• Update Qw according to Q∗w.

6. Update sw and go to step 2.
7. If Npairs samples with no change in model set accepted, return.

4. Building Multipart Models

After learning distinctive part models, but before assembling them into
multipart models, we perform several stages of preprocessing. Algorithm 2
summarizes both the preprocessing steps and the MPM initialization and
assembly process, with reference to the sections of the text that explain the
steps of the algorithm.
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Algorithm 2 Assemble MPMs from parts associated with word w.

ConstructMPMs(w)

1. For each part G associated with w, find the set OG of observations of G in training images.
2. Identify and remove redundant parts (section 4.1).
3. For each G, set the spatial coordinates of each observation OG ∈ OG (section 4.2):

• Choose representative vertex vc to act as the “center” of G (the vertex with minimum
graph eccentricity).

• For each vi ∈ vG, find average spatial relationship, r̄ic, between co-occurrences of (vi, vc) ∈
OG.

• For each OG ∈ OG, and each observed vertex pi ∈ OG calculate expected spatial coordi-
nates (xc) of the central vertex (vc) based on (r̄ic,xi). The spatial coordinates xG of the
overall part are the average of the expected center coordinates x̄c. The scale of xG is the
average of the expected scales multiplied by the spread of part G.

4. Sort all parts G associated with w by Confcorr (G, w).
5. For each G:

• Skip expansion if most OG ∈ OG are already incorported into existing MPMs (section 4.3).

• Initialize a new MPM H using G as the seed part.

• Iteratively expand H using same method as for part models (section 4.4):

– Search for parts and spatial relationships co-occurring with the detections of H.

– Expand MPM H to H∗ by adding new part or spatial relationship.

– Detect H∗ across the training image set (section 5).

– If new MPM–word correspondence, Confcorr (H∗, w) > Confcorr (H, w), H ⇐ H∗.
– Reject H if it cannot be expanded beyond a single part G.

• If at least NMPM multipart models have been created, return.

13



  

4.1. Detecting Duplicate Parts

Our initialization method avoids excessive overlap of initial part models.
However, during model refinement, two distinct part models can converge
to cover the same portion of an object’s appearance. In forming multipart
models, near-duplicate parts could be erroneously interpreted as a pair of
independent parts that are strongly co-occurring. We prune such parts as
follows.

Detecting near-duplicates by searching for partial isomorphisms between
part models would be overly complex. Instead we look for groups of parts
that tend to be detected in the same images at overlapping locations. If a
vertex vAi in model GA maps to the same image point as vertex vBj in model
GB in more than half of detections, then we draw an equivalence between
vAi and vBj. If more than half of the vertices in either part are equivalent,
we remove the part with the weakest model–word correspondence confidence
score Confcorr(G,w).

4.2. Locating Part Detections

Just as a part is comprised of local interest points in certain spatial con-
figurations, so too a multipart model is comprised of parts that have certain
spatial relationships among them. Note that a local interest point detector
provides that point’s scale, orientation and location, which we can use to
encode spatial relationships within our parts (see Section 3). However, the
part detector does not provide such information for the part itself—we must
discover the spatial relationships between the detected parts. We do this by
setting the spatial coordinates for each part detection based on the underly-
ing image points in a way that is robust to occlusion and errors in feature
detection, as follows.

For each part we select a vertex to serve as the “center” for the part—i.e.,
the vertex that has minimum eccentricity, equal to the graph radius. (Ties are
resolved in favor of vertices that have appeared more often in detections of the
part.) Then, for each vertex in the part, we average the spatial relationship
between it and the central vertex across all of their cooccurrences in the part
detections. Now we can estimate the location of this central vertex even for
part detections in which it is not observed, by using the observed vertices to
predict its expected location. Figure 5 illustrates this approach. We use the
estimated location and orientation of the central vertex as the location and
orientation of the part, and multiply the estimated scale of the central vertex

14
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Figure 5: The spatial coordinates of a part detection are based on a central vertex a. We
estimate a’s coordinates based on observed vertices, even if a itself is not observed.

by a part-specific factor so that the detected part scale reflects the normal
spread of the part’s vertices.

4.3. Choosing Initial Multipart Models

Our system uses the most promising individual part models as seeds for
constructing multipart models. Parts that have good correspondence with a
word are likely to co-occur with other parts in stable patterns from which
large MPMs with good spatial coverage can be constructed. However, if only
the strongest part models are expanded, the resulting MPMs may be overly
clustered around only the most popular views of the object. This would
neglect views with weaker, more ambiguous individual parts. It is precisely
these views where MPMs can be most helpful in improving precision by
adding additional constraints.

Therefore initial model selection proceeds as follows. Part models are
evaluated in the order of their correspondence with a word w. A model
is used as a seed for an MPM if at least half of its ‘good’ detections (in
images labeled with w) have not been incorporated into any of the already-
expanded MPMs. Selective expansion continues until the list of part models
is exhausted or NMPM distinct multipart models have been constructed for
a given word.

4.4. Expansion of Multipart Models

In order to expand the multipart models, we use an approach very sim-
ilar to that used in our earlier work (and described above) to expand part
models—i.e., we use the correspondence strength Confcorr(H, w) between a
multipart model H and a word w to guide its expansion into a larger mul-
tipart model. The correspondence score is calculated in the same way for
parts and MPMs. It reflects the amount of evidence, available in a set of
training images, that a word and a part model are generated from a common
underlying source object, as opposed to appearing independently.
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Figure 6: The system identifies part models that tend to co-occur with a consistent spatial
relationship with current MPM detections and attempts to add them to the MPM. Changes
are accepted if they improve Confcorr (H,w) .

As illustrated in Figure 6, each iteration of the expansion algorithm begins
by detecting all instances of the current multipart model in the training set
(section 5) and identifying additional parts that tend to co-occur with a
particular spatial relationship relative to the multipart model. We expand
the multipart model by adding new vertices (part models) and edges (spatial
relationships) one at a time from among the candidate parts. An expansion
of the multipart model H is accepted if it improves Confcorr(H, w) (starting
a new iteration), and rejected otherwise. The expansion process continues
until potential additions to H have been exhausted.
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Figure 7: A graphical model of the generative process with multipart model indicator h,
part indicators u, part detection confidences o and observed spatial relations z.

5. Detecting Multipart Models

As in part model detection, multipart detection must be robust to changes
in viewpoint, occlusion or lighting that can cause individual part detections
to be somewhat out of place or missing entirely. We use a simple generative
model illustrated in Figure 7 to explain the pattern of part detections both
in images that contain a particular multipart model and those that do not.

Each image i has an independent probability P (hi = 1) of contain-
ing the multipart model H. Given hi, the presence of each model part
is determined independently (P (uij = 1|hi)). The foreground probability,
P (uij = 1|hi = 1), is the likelihood of a model part being present when
the model is present; it is set to a relatively high value (.95). This reflects
our desire for an MPM to represent a recurring configuration of parts rather
than possibly a disjunction of stable part configurations. The background
probability, P (uij = 1|hi = 0), is the likelihood of a model part being present
when the model is not; it is equal to the part’s normalized frequency across
the training image set. If a part is present (uij = 1), it tends to have a higher
observed part detection confidence, oij, than if it is not present (uij = 0).
We therefore set p(oij|uij = 1) ∝ oij, and p(oij|uij = 0) ∝ (1 − oij). If the
multipart model is present (hi = 1) and contains an edge djk, and the parts
uij and uik are present, then the observed spatial relationship zijk between
the two parts has a relatively narrow distribution centered at the spatial
relationships encoded in the edge, djk. Otherwise, all spatial relationships
follow a broad background distribution.

The MPM detection confidence, Confdetect(i,H) is the probability of the
MPM H being present, given its part detection confidences oi and observed
spatial relations zi:
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Confdetect(i,H) = P (hi = 1|oi, zi) (4)

In any given image, there may be many possible assignments between mul-
tipart model vertices and observed part detections. We choose assignments
in a greedy fashion in order to maximize P (hi = 1|oi, zi). First we choose
the best-fit assignment of two linked vertices, then one by one we choose the
vertex assignment that makes the largest improvement in P (hi = 1|oi, zi)
and is consistent with existing assignments.

The prior probability P (hi = 1) depends on the complexity of the MPM,
with more complex multipart models having a lower prior probability. Specif-
ically:

P (hi = 1) = α|U | · β|D| (5)

where α, β < 1 and |U | and |D| are, respectively, the number of vertices
and edges in H. The constants α and β were selected based on detection
experiments on random synthetic MPMs with a wide range of sizes. This
prior is designed to prevent the detection of large, complete models when only
a small subset of vertices is present, helping to ensure that MPMs represent
a single view of the named object, rather than a set of loosely connected
views.

6. Results on Annotation

Once we have discovered a set of individual part models and learned mul-
tipart models from configurations of those parts, we can use these learned
structures to annotate new images. For ease of comparison, we run our sys-
tem on the three image sets used in [8] and described below.2 In all three
cases, the addition of MPM models, in conjunction with our new part ini-
tialization method, improves both the precision and the recall of annotation
on new images compared to our earlier system. The extent of improvement
appears to depend on the scale and degree of articulation of named objects.

2We created each of these benchmarks and have made them available to the community,
as no such benchmarks exist, i.e., benchmarks consisting of cluttered scenes containing
multiple, possibly occluding objects, where objects are not localized by bounding boxes
and captions (labels) are noisy (words may or may not refer to objects in scene and objects
in scene may or may not be named in caption).
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We first describe our annotation method, datasets, and parameter settings,
and in subsequent subsections present detailed results on annotating each
dataset.

6.1. Annotation Method, Datasets, and System Parameters

To annotate an image, we select all words whose annotation confidence is
sufficiently high for that image. We begin by detecting all part models in the
image, including those that are relatively weakly detected or have relatively
low individual correspondence confidence. Based on these part observations,
we then evaluate detection confidence for all learned MPMs, as well as the
correspondence confidence between the detected MPMs and words. As in our
earlier work, the annotation confidence of both parts and multipart models,
for a word and an image, is the product of detection confidence and corre-
spondence confidence; i.e., for MPMs, this is Confdetect(i,H)∗Confcorr(H, w).
Overall annotation confidence for word w in image i is the maximum anno-
tation confidence over w’s detected models in i. A word is included in the
image annotation if its overall annotation confidence reaches a user-defined
threshold. For the results in this paper, we use a threshold of 95%.

We apply this annotation method to three datasets. The toys dataset is a
small collection of images of groups of children’s toys, first introduced in [25].
The much larger hockey dataset was presented in [26] contains images and
full-sentence captions of professional hockey teams in action. Finally, in [8],
we introduced the landmark dataset, composed of thousands of tourist
photos and associated tags of famous structures throughout the world. These
three datasets are described in more detail and with annotation results in
the following three subsections.

Our system has a number of parameters whose values must be determined.
In experimentation on the small toys image set, we find that the particular
values of our system parameters do not have a substantial effect on our
results. The same parameter values chosen based on the toys dataset are
carried over to the two larger, real-world datasets without modification. We
set uniqueness factors ψb = 0.9 and ψs = 1.2 (see Section 4.1). Npairs = 50 (in
Algorithm 1) allows a large number of failed pair samples before ending initial
model search. ν = 0.75 allows Qwi to build gradually (see Section 4.2). We
set the maximum number of MPMs per word, NMPM = 25 (in Algorithm 2),
to be more than the number of distinct views available for individual objects
in these image collections. Finally, we choose MPM detection parameters
α = 0.25 and β = 0.33 (Section 6) based on experiments on synthetic data.
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We compare two versions of our new system to the earlier system pro-
posed in [8], referred to here as Parts. Parts used the old initialization
method and only singleton part models, rather than MPMs. The first version
of our new system uses just the new part initialization along with our earlier
singleton part models; this is referred to in the results figures as Parts+.
The second one uses both the new part initialization and the MPMs in ad-
dition to singletons; this is referred to in the results figures as MPMs+.
Testing both of these versions of the system allows us to evaluate the contri-
bution of each change (initialization and MPMs) to the performance of the
new system.

Annotation results are evaluated primarily in terms of precision and recall
of image labels detected at various confidence levels. Tables and summary
results are given for a 95% annotation confidence threshold while precision-
recall curves display results for the full range of possible confidence thresh-
olds. For each of the three datasets (in Sections 7.2, 7.3, and 7.4 respectively),
we provide a figure comparing the performance of the Parts, Parts+, and
MPMs+ systems. We also give the performance of the MPMs+ system in
a table for each dataset reporting the per-object-name precision and recall.
In each of these three tables, the Frequency column shows the number of
captions within the test set that contain at least one instance of the given
word (the Name). All of the per-object-name precision and recall values we
report are based on the occurrence of the name in the captions of the test
set; if the system does not detect an object for a word that appears in the
caption, that instance is counted as a false negative, even if the named object
does not actually appear in the image.

6.2. Experiments on the TOYS Dataset

This section examines the annotation performance of our new system on
the toys dataset. This dataset contains images of 10 named toys, posed in
groups so that no image contains fewer than 3 toys. There are 128 training
images and results are evaluated on 100 test images.

Figure 8 displays some example images from the test set along with the
highest-confidence MPM for each object and the associated annotations pro-
duced by the MPMs+ system. Each MPM part is displayed as a yellow,
five-sided figure indicating canonical position, orientation and scale. The
underlying interest points for each part are drawn in red and the edges con-
necting MPM parts are drawn in blue. The detections illustrate how MPMs
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(a) Horse, Rocket, Bug (b) Horse, Bus, Drum, Bongos, Cash, Bug

Figure 8: Sample detections of MPMs for objects in the toys test set. In these examples,
all named objects were correctly detected.

are able to integrate many local patches of distinctive appearance into a sin-
gle structure. However, the MPM coverage is uneven, with some areas of the
objects covered with a large number of overlapping parts while coverage in
other areas is relatively sparse.

Although MPMs do integrate local detections, Figure 9 indicates that
they have only a minor effect on overall precision and recall in the toys
dataset. The system with the new initialization only [Parts+] improves
recall by a small amount, with a slight loss of precision at lower recall levels.
Adding the multipart models [MPMs+] corrects the precision while retain-
ing most of the gains in recall. We attribute the relatively small impact of
the changes in our new system to the already good performance of our earlier
system [Parts] on this dataset. Most of the remaining missed object detec-
tions are more difficult cases with a high degree of occlusion. Also, some
of the objects (Bug, Bus, and Dino) are small enough that individual part
models can cover most of the area of distinctive appearance.

Table 1 shows the per-object precision and recall values of the MPMs+
system. Overall, our system achieves about a 3% improvement in recall on
the toys set over our previous approach in the Parts system. As in past
evaluations, the two books (Franklin and Rocket), which have large, detailed
planar surfaces, were easiest to detect. The two most difficult objects (Dino
and Ernie) are notable for their curved surfaces and lack of distinctive fine-
scale texture. That said, most of the recall improvement was due to a roughly
three-fold increase in recall for the Dino object.
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Figure 9: A comparison of precision–recall curves over the toys test set, for three systems:
the new initialization method using singleton models only, Parts+; the new initialization
method with multipart models, MPMs+; and the system described in [8], Parts. The
new initialization method [Parts+] improves recall somewhat over the earlier system
[Parts], while the addition of MPMs [MPMs+] corrects a slight drop in precision shown
by the Parts+ system.

Name Precision Recall Frequency
Franklin 1.00 0.88 33
Rocket 1.00 0.80 44
Drum 1.00 0.69 32
Bus 1.00 0.51 57

Bongos 1.00 0.50 36
Bug 1.00 0.49 51
Dino 1.00 0.38 42
Ernie 1.00 0.28 39
Cash 0.97 0.78 46
Horse 0.96 0.86 28

Table 1: Per-object-name precision and recall of the MPMs+ system on the toys test
set; mean precision = 99%, mean recall = 60%.
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(a) Red Wings and Stars (b) Stars and Canucks (c) Lightning and Panthers

(d) Maple Leafs and Islanders (e) Maple Leafs (f) Stars

Figure 10: Sample detections of objects in the hockey test set.

6.3. Experiments on the HOCKEY Dataset

The hockey set includes 2526 images of National Hockey League (NHL)
players and games, with associated captions, downloaded from a variety of
sports websites. It contains examples of all 30 NHL teams, and is divided
into 2026 training and 500 test image–caption pairs. About two-thirds of the
captions are full sentence descriptions, whereas the remainder simply name
the two teams involved in the game.

Figure 10 shows sample multipart model detections on test-set images and
the associated team names. Compared to MPMs in the toy and landmark
sets, most MPMs in the hockey set are relatively simple. They typically
consist of 2 to 4 parts clustered around the team’s chest logo. Since the chest
logos are already reasonably well covered by individual part models, there
is little reward for developing extensive MPMs. In principle, MPMs could
tie together parts that describe other sections of the uniform (socks, pants,
shoulder insignia) like those shown in Figure 10(e), but this type of MPM
(seen in Figure 10(f)) is quite rare. There may be too much articulation and
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Figure 11: A comparison of precision–recall curves over the hockey test set, for three
systems: the new initialization method using singleton models only, Parts+; the new
initialization method with multipart models, MPMs+; and the system described in [8],
Parts. The new initialization method alone, in Parts+, substantially improves overall
recall. However, the addition of MPMs in MPMs+ has little effect. This is probably
because the distinctive portions of a player’s appearance are of limited size and do not
tend to co-occur in repeating patterns.

(perhaps more importantly) too few instances of co-occurrence of these parts
in the training set to support such MPMs.

Figure 11 indicates that our new approach for initializing part models
leads to an improvement in recall of about 10-12 percentage points. Con-
sidering the barriers to achieving high recall on the hockey set (discussed
in [8]), this represents a substantial gain. Our system with the new initial-
ization [Parts+] is better able to identify regions of distinctive appearance
than the Parts system. For instance, one of the best-recognized NHL teams
using our new method was completely undetected in our earlier work. On the
other hand, the addition of MPMs in the MPMs+ system does not improve
annotation performance at all. This is probably due to the relatively small
size of distinctive regions in the hockey images combined with a degree of
articulation and occlusion that make larger models unreliable.

Table 2 shows the annotation performance of the MPMs+ system with
respect to individual team names. The system has high-confidence detections
for 27 of the 30 teams, 4 more than with the Parts system. At 95% precision,
overall recall is 26%, 12% higher than the previous method. For example,
the Washington Capitals are one of the better-recognized teams whereas the
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Name Precision Recall Frequency
Tampa Bay Lightning 1.00 0.61 49
Pittsburgh Penguins 1.00 0.45 29

Minnesota Wild 1.00 0.37 35
Washington Capitals 1.00 0.35 17
Los Angeles Kings 1.00 0.31 36

Dallas Stars 1.00 0.29 42
Detroit Red Wings 1.00 0.26 42
San Jose Sharks 1.00 0.26 23
Buffalo Sabres 1.00 0.25 32
Calgary Flames 1.00 0.23 26

Columbus Blue Jackets 1.00 0.18 11
Philadelphia Flyers 1.00 0.17 46
Carolina Hurricane 1.00 0.17 30
New York Rangers 1.00 0.14 42
Montreal Canadiens 1.00 0.13 23
Colorado Avalanche 1.00 0.09 23

Anaheim Ducks 1.00 0.08 27
Vancouver Canucks 1.00 0.05 40
New York Islanders 0.96 0.45 60
Toronto Maple Leafs 0.92 0.33 73
New Jersey Devils 0.89 0.29 59
Florida Panthers 0.88 0.28 25
Ottawa Senators 0.88 0.12 58

Chicago Blackhawks 0.86 0.34 35
Nashville Predators 0.83 0.25 20
Atlanta Thrashers 0.80 0.23 35

Boston Bruins 0.75 0.18 17

Table 2: Per-object-name precision and recall of the MPMs+ system on 27 (of 30) team
names detected with high confidence in the hockey test set; mean precision = 95%, mean
recall = 26%.
earlier system had not detected them in the test set at all. This may be
due to the new system’s focus in initialization on images sharing particular
caption words.

6.4. Experiments on the LANDMARK Dataset

The landmark dataset includes images of 27 famous buildings and lo-
cations with some associated tags downloaded from the Flickr website, and
randomly divided into 2172 training and 1086 test image–caption pairs. Like
the NHL logos, each landmark appears in a variety of perspectives and scales.
Compared to the hockey logos, the landmarks usually cover more of the im-
age and have more textured regions in a more stable configuration. On the
other hand, the appearance of the landmarks can vary greatly with viewpoint
and lighting and many of the landmarks feature interior as well as exterior
views.
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Figure 12 provides some sample detections of multipart models in the
landmark test set. In this dataset, MPMs appear in many cases to capture
some of the distinctive overall part structure of the objects. The MPMs can
integrate widely-separated part detections, thereby significantly improving
detection confidence and localization. Taken together, individually uncertain
part detections often form an unambiguous whole.

The detailed results also indicate potential areas for further improvement.
Some of the models display a high degree of part overlap, especially on objects
such as the Arc de Triomphe with a dense underlying array of distinctive
features. With MPMs, coverage of the object is much better than that of
individual parts, but coverage is not always complete. For instance, the
system detects many more parts on the western face of Notre Dame than are
incorporated into the displayed MPM. In the future, we could address this
by modifying the MPM training routine to explicitly reward spatial coverage
improvements. Finally, MPMs often seem to have one or two key parts with
a large number of long-range edges. Changes to encourage a more local
connection structure could further improve robustness to occlusion.

As indicated by Figure 13, MPMs can significantly improve annotation
precision. The new initialization system in Parts+ improves overall recall
by about 10%, and the addition of MPMs in MPMs+ lifts the precision of
the curve towards the 100% boundary. In contrast to the performance on
the other datasets, the MPMs+ system shows a very marked improvement
over the Parts+ system with new initialization alone. We suggest that
this is because a view of a landmark is better represented as a configuration
of parts, rather than independent elements. Architectural elements may be
shared across many buildings, but the ensemble is more distinctive.

Table 3 breaks the results down by landmark. The structures on which
the MPMs+ system achieved the poorest results were St. Peter’s Basilica,
Chichen Itza, and the Sydney Opera House. (All three reach 100% precision
but have very low recall.) The first two of these suffer from a multiplicity
of viewpoints, with training and test sets dominated by a variety of inte-
rior viewpoints and zoomed images of different parts of the structure. The
Sydney Opera House’s expressionist design has relatively little texture and
is therefore harder to recognize using local appearance features.

Figure 14 illustrates the effect of training set size on the ability of the
system to learn landmark appearance. The complete training set has 2172
image–caption pairs, or about 80 images per landmark, distributed among
multiple views. Reducing the training set size to 1400 reduces overall recall
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(a) Notre Dame (b) Christo Redentor (c) Statue of Liberty

(d) US Capitol (e) Tower Bridge (f) Great Sphinx

(g) Taj Mahal (h) Mount Rushmore (i) Arc de Triomphe

Figure 12: Sample detections of objects in the landmarks test set.
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Name Precision Recall Frequency
Leaning Tower 1.00 0.86 43

US Capitol 1.00 0.71 45
Golden Gate Bridge 1.00 0.67 45
Mount Rushmore 1.00 0.66 35

Notre Dame Cathedral 1.00 0.58 40
Great Sphinx 1.00 0.58 40

St. Paul’s Cathedral 1.00 0.56 48
Statue of Liberty 1.00 0.56 36

Reichstag 1.00 0.49 45
Empire State Building 1.00 0.47 38

Burj Al Arab 1.00 0.44 43
Sagrada Familia 1.00 0.29 35

Colosseum 1.00 0.28 39
CN Tower 1.00 0.24 34
Parthenon 1.00 0.23 35

St. Peter’s Basilica 1.00 0.15 41
Sydney Opera House 1.00 0.12 42

Chichen Itza 1.00 0.05 37
Arc de Triomphe 0.97 0.74 42

White House 0.97 0.67 45
Big Ben 0.97 0.64 44

Tower Bridge 0.97 0.55 47
Stonehenge 0.96 0.60 42

St. Basil’s Cathedral 0.96 0.69 35
Taj Mahal 0.95 0.58 33
Eiffel Tower 0.89 0.48 33

Christo Redentor 0.84 0.61 44

Table 3: Per-object-name precision and recall of the MPMs+ system on the 30 structure
names in the landmark test set; mean precision = 98%, mean recall = 51%.
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Figure 13: A comparison of precision–recall curves over the landmarks test set, for
three systems: the new initialization method using singleton models only, Parts+; the
new initialization method with multipart models, MPMs+; and the system described
in [8], Parts. The new initialization method [Parts+] substantially improves overall
recall. In this case, the addition of MPMs [MPMs+] improves the precision of the new
detections. Distinctive portions of landmarks sometimes have stable relationships between
one another.

by about 5%. Further reducing training size to 700 image–caption pairs
(about 26 images per landmark) reduces recall by an additional 10%. This
indicates that at this level, there are many landmark views that have too
little representation in the training set to be effectively learned. On the
other hand, a larger training set would provide enough examples of even
relatively rare views, increasing overall recall.

Though the images of the landmark dataset exhibit a large variation
in viewpoint and time of day, the associated captions contain relatively little
noise. Figures 15 and 16 indicate that the performance of the system decays
gracefully when random caption noise is added. Adding 30% false captions
or removing 30% of the true captions reduces recall by 5 − 8%. The MPM
learning stage is not dependent on reliable labels.

7. Conclusions

Our initialization method and multipart models are designed to work
together to improve annotation accuracy and object localization over our
earlier approach in [8]. Our initialization mechanism boosts recall and part
coverage by detecting potential parts that would have been overlooked by the
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Figure 14: A comparison of precision–recall curves over the landmarks test set, for three
different training set sizes: the ‘full’ set of 2172 training image–caption pairs, a ‘medium’
subset of 1400 pairs and a ‘small’ set of 700 pairs.
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Figure 15: A comparison of precision–recall curves over the landmarks test set, for
four different levels of false positive caption noise. The ‘baseline’ results on trained on
captions with relatively few, naturally-occurring false positive labels. The ‘FP10’, ‘FP20’
and ‘FP30’ results are trained on data where respectively 10, 20 and 30% of the captions
have an extra random false-positive label inserted.
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Figure 16: A comparison of precision–recall curves over the landmarks test set, for four
different levels of false negative caption noise. The ‘baseline’ results on trained on captions
without added false negative labels. The ‘FN10’, ‘FN20’ and ‘FN30’ results are trained on
data where respectively 10, 20 and 30% of the captions have the true image label removed.

previous system, thereby identifying more individually ambiguous parts and
providing for a better distribution of parts over the image set. The MPMs
boost precision and localization by integrating parts that may be individually
ambiguous into models that can cover an entire view of an object.

Together, these two enhancements substantially improve annotation ac-
curacy over previous results on the experimental datasets. Our improvements
to part initialization and training have increased recall considerably, though
sometimes at the expense of precision. For objects with recurring patterns
of distinctive parts, the use of MPMs can filter out bad detections, resulting
in a substantially improved precision–recall curve.

The annotation performance improvement due to MPMs depends strongly
on the properties of the dataset. MPMs are most useful for combining mul-
tiple part models that, individually, may be too weak or ambiguous to be
informative, but whose co-occurrence in repeatable spatial configurations
provides strong evidence of some object. We speculate that MPMs do not
improve results on the toys and hockey sets because either the objects (or
a sufficiently distinctive subregion) can be described effectively by a single
part, or parts do not recur often enough in stable configurations (e.g., hockey
chest, shoulder and sock patterns). Landmarks, being larger and often with
more ambiguous local structure, benefit more from MPMs. We expect that
the use of MPMs will be even more important as individual parts are more
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ambiguous (such as parts for describing object classes).
Our new initialization mechanism and the development of multipart mod-

els also improve object localization. The initialization approach ensures
that parts have less spatial overlap than before, cover portions of the ob-
ject that are less individually distinctive, and are better distributed across
object views. The MPMs tie together recurring patterns of these parts, al-
lowing us to distinguish between the presence of multiple parts and multiple
objects. Future work could further improve localization by ensuring that
MPMs use more of the available parts to maximize spatial coverage and are
themselves well-distributed across object views.

References

[1] V. Ferrari, L. Fevrier, F. Jurie, C. Schmid, Groups of adjacent contour
segments for object detection, IEEE Transactions on Pattern Analysis
and Machine Intelligence 30 (2008) 36–51.

[2] M. Stark, M. Goesele, B. Schiele, A shape-based object class model
for knowledge transfer, in: Twelfth IEEE International Conference on
Computer Vision (ICCV), Kyoto, Japan, 2009.

[3] P. Felzenszwalb, D. McAllester, D. Ramanan, A discriminatively
trained, multiscale, deformable part model, in: CVPR, 2008.

[4] R. Fergus, P. Perona, A. Zisserman, Object class recognition by unsu-
pervised scale-invariant learning, in: CVPR, 2003.

[5] K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D. Blei, M. Jordan,
Matching words and pictures, Journal of Machine Learning Research 3
(2003) 1107–1135.

[6] G. Carneiro, A. Chan, P. Moreno, N. Vasconcelos, Supervised learning of
semantic classes for image annotation and retrieval, IEEE Transactions
on Pattern Analysis and Machine Intelligence 29 (3) (2007) 394–410.

[7] P. Carbonetto, N. de Freitas, K. Barnard, A statistical model for general
contextual object recognition, in: ECCV, 2004.

[8] M. Jamieson, A. Fazly, S. Dickinson, S. Stevenson, S. Wachsmuth, Using
language to learn structured appearance models for image annotation,

32



  

IEEE Transactions on Pattern Analysis and Machine Intelligence 32 (1)
(2010) 148–164.

[9] F. Monay, D. Gatica-Perez, Modeling semantic aspects for cross-media
image indexing, IEEE Trans. Pattern Analysis and Machine Intelligence
29 (10) (2007) 1802–1817.

[10] A. Quattoni, M. Collins, T. Darrell, Learning visual representations
using images with captions, in: CVPR, 2007.

[11] R. Brooks, Model-based 3-D interpretations of 2-D images, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 5 (2) (1983) 140–
150.

[12] S. Dickinson, A. Pentland, A. Rosenfeld, 3-D shape recovery using dis-
tributed aspect matching, IEEE Transactions on Pattern Analysis and
Machine Intelligence 14 (2) (1992) 174–198.

[13] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, S. W. Zucker, Shock
graphs and shape matching, International Journal of Computer Vision
35 (1) (1999) 13–32.

[14] A. Shokoufandeh, L. Bretzner, D. Macrini, M. Demirci, C. Jonsson,
S. Dickinson, The representation and matching of categorical shape,
Computer Vision and Image Understanding 103 (2006) 139–154.

[15] R. Fergus, L. Fei-Fei, P. Perona, A. Zisserman, Learning object cate-
gories from Google’s image search, in: CVPR, 2005.

[16] D. J. Crandall, D. P. Huttenlocher, Weakly supervised learning of part-
based spatial models for visual object recognition, in: ECCV, 2006.

[17] I. Kokkinos, A. Yuille, HOP: Hierarchical object parsing, in: CVPR,
2009.

[18] L. Zhu, C. Lin, H. Huang, Y. Chen, A. Yuille, Unsupervised structure
learning: Hierarchical recursive composition, suspicious coincidence and
competitive exclusion, in: ECCV, 2008.

[19] G. Bouchard, B. Triggs, Hierarchical part-based visual object catego-
rization, in: CVPR, 2005.

33



  

[20] S. Fidler, M. Boben, A. Leonardis, Similarity-based cross-layered hier-
archical representation for object categorization, in: CVPR, 2008.

[21] B. Epshtein, S. Ullman, Feature hierarchies for object classification, in:
ICCV, 2005.

[22] B. Ommer, J. Buhmann, Learning the compositional nature of visual
object categories for recognition, IEEE Transactions on Pattern Analysis
and Machine Intelligence 32 (3) (2010) 501–516.

[23] D. G. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision 60 (2) (2004) 91–110.

[24] Y. Ke, R. Sukthankar, PCA-SIFT: A more distinctive representation for
local image descriptors, in: CVPR, 2004.

[25] M. Jamieson, S. Dickinson, S. Stevenson, S. Wachsmuth, Using language
to drive the perceptual grouping of local image features, in: CVPR,
2006.

[26] M. Jamieson, A. Fazly, S. Dickinson, S. Stevenson, S. Wachsmuth,
Learning structured appearance models from captioned images of clut-
tered scenes, in: ICCV, 2007.

34



  

- We learn to recognize exemplars from unstructured collections of captioned images. 

- Using language, we perceptually grouping local features into meaningful parts. 

- We further group discovered parts into flexible hierarchical configurations. 

- Learned visual structures are scale, translation and rotation invariant. 

- Learning is robust to distractors, clutter, ambiguous and incomplete captions. 


