
Accepted Manuscript

Object Categorization using Bone Graphs

Diego Macrini, Sven Dickinson, David Fleet, Kaleem Siddiqi

PII: S1077-3142(11)00090-7

DOI: 10.1016/j.cviu.2011.03.002

Reference: YCVIU 1760

To appear in: Computer Vision and Image Understanding

Received Date: 1 November 2010

Revised Date: 1 March 2011

Accepted Date: 15 March 2011

Please cite this article as: D. Macrini, S. Dickinson, D. Fleet, K. Siddiqi, Object Categorization using Bone Graphs,

Computer Vision and Image Understanding (2011), doi: 10.1016/j.cviu.2011.03.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cviu.2011.03.002
http://dx.doi.org/10.1016/j.cviu.2011.03.002

ACCEPTED MANUSCRIPT

Object Categorization using Bone Graphs

Diego Macrini, Sven Dickinson, David Fleet, Kaleem Siddiqi

Abstract

The bone graph [23, 25] is a graph-based medial shape abstraction that
offers improved stability over shock graphs and other skeleton-based descrip-
tions that retain unstable ligature structure. Unlike the shock graph, the
bone graph’s edges are attributed, allowing a richer specification of rela-
tional information, including how and where two medial parts meet. In this
paper, we propose a novel shape matching algorithm that exploits this rela-
tional information. Formulating the problem as an inexact directed acyclic
graph matching problem, we extend a leading bipartite graph-based algo-
rithm for matching shock graphs [41]. In addition to accommodating the
relational information, our new algorithm is better able to enforce hierarchi-
cal and sibling constraints between nodes, resulting in a more general and
more powerful matching algorithm. We evaluate our algorithm with respect
to a competing shock graph-based matching algorithm, and show that for
the task of view-based object categorization, our algorithm applied to bone
graphs outperforms the competing algorithm. Moreover, our algorithm ap-
plied to shock graphs also outperforms the competing shock graph matching
algorithm, demonstrating the generality and improved performance of our
matching algorithm.

Key words: Medial Shape Representation, Graph-Based Shape
Representation, Inexact Graph Matching, Object Categorization

1. Introduction

The recognition of 3-D objects from their silhouettes demands a shape
representation which is invariant to minor changes in viewpoint and artic-
ulation. This invariance can be achieved by parsing a silhouette into parts
and relationships that are stable across similar object views. Medial descrip-
tions, such as skeletons and shock graphs, attempt to decompose a shape into

ACCEPTED MANUSCRIPT

Figure 1: Computing a bone graph from an unstable skeleton is a two-pass procedure that’s
based on identifying and rectifying the ligature-induced instability in a shape’s medial
axis: (a) skeletal instability arises from part oversegmentation and undersegmentation.
For example, the medial axis of the dog’s body is given by two skeletal branches (instead
of one) due to the junction point that represents the connection between these branches
and the skeletal segment extending from the shorter rear leg. A similar situation occurs
near the front legs. The vicinity of the part oversegmentation is enlarged in each case,
showing the resulting perturbation of the skeleton. Those skeletal segments shown in green
are ligature regions, and they contribute little to the shape of the object. A purely local
analysis of ligature is problematic in the presence of such oversegmentation, as illustrated
by the non-intuitive labeling of the body part in the vicinity of the oversegmentation
as ligature. (b) Detecting and removing ligature-induced skeletal instability uses a local
ligature analysis to first identify and rectify the medial representations of part protrusions.
(c) A second ligature analysis then yields a set of salient parts, called bones (shown in
black). The bones capture the coarse part structure of the object, as indicated by the
colored parts reconstructed from the bones. (d) The bones give rise to a bone graph,
an intuitive and stable representation whose nodes represent the salient parts and whose
edges, derived from the final ligature analysis, capture part attachment.

parts, but suffer from instabilities that lead to similar shapes being repre-
sented by dissimilar part sets. In response to this ligature-induced instability,
we recently introduced the bone graph [23, 25], a medial parts-based shape
decomposition based on identifying and regularizing the ligature structure of
a given medial axis, and capturing a more intuitive notion of an object’s parts
than a skeleton or a shock graph. An example of the bone graph computed
from an input silhouette is shown in Figure 1.

As shown in Figure 1, the bone graph forms a hierarchy of parts with edges
spanning adjacent parts. Like the shock graph [34, 41], a bone graph node
encodes the geometry of a part. However, unlike the shock graph, a bone
graph edge is attributed, specifying the attachment position (on each part)
and the orientation of the attachment. Therefore, the view-based recognition
of 3-D objects using bone graphs requires a matching algorithm that can
compare the attributes of nodes and edges as well as the structures of two

2

ACCEPTED MANUSCRIPT

graphs in the presence of spurious and missing nodes. Figure 2 illustrates an
example of similar views of two horses, which are represented by similar, but
not isomorphic, bone graphs. One important difference between these two
graphs is that in the graph on the right, the front legs are connected directly
to the body of the horse, while in the graph on the left, there is a small
shape part between the legs and the body. This small part is not noise, as it
represents a true part between the legs and the torso. However, there is no
natural corresponding part on the other shape, and the algorithm must be
able to leave it unassigned, yet still establish correspondences between the
front legs. Figure 3 shows the node correspondences found by the algorithm
introduced in this paper.

The comparison of bone graphs defines an inexact graph matching be-
tween DAGs with high-dimensional node and edge attributes. There is a
large body of work in the area of inexact graph matching, but most of it is
focused on graphs in which either the nodes or the edges are attributed. Our
experience with the inexact graph matching algorithm proposed by Shoko-
ufandeh et al. [24, 37, 38, 41, 44] for DAGs with attributed nodes motivates
our extension of this approach in order to incorporate edge information into
the matching problem. We propose a generalization of this algorithm that
expands the range of constraints that can be accounted for at matching time,
leading to a general framework for representing domain knowledge about the
relevance of structural differences between the graphs. Because the match-
ing problem is intractable, the addition of domain knowledge is especially
important to guide the search for approximate solutions that are relevant to
the task at hand.

We evaluate our graph matching framework for the problem of comparing
bone graphs. This requires the definition of similarity functions for nodes and
edges, and the specification of the domain assumptions about the relative
importance of the structural differences between two graphs. Our proposed
node similarity function is a robust measure that can gracefully account for
the deformations produced by perspective transformations, part articulation,
and within-class deformation. Our proposed edge similarity function is able
to measure the position and orientation of each part attachment in terms of
its local context. The result is a recognition pipeline based on a novel 2-D
medial axis-based shape representation. We evaluate each component of this
pipeline extensively, and compare it to a competing shock graph recognition
framework.

The contributions of the paper are twofold: 1) We introduce a novel

3

ACCEPTED MANUSCRIPT

1

2

6 3

1

2
9

1

1

2

3

1

1

1

3

4

Left horse

Right horse

1 1

1

.2

1

1

1

1
1

1

0

0
1 1

5 9

1

12 15

8 6 7 10 11 13 14 16 174

1

1

1

1

1

0

0

1

1

1

1 1

.8
1

1

12

1110

92

5

6

7 8

1

14 15

16

181713 19

Figure 2: Example of missing non-terminal nodes and natural violations to node adjacency
relations in the bone graph. We show the bone graph representations of two different horse
exemplars as seen from similar viewpoints (only the non-ligature points of the medial axes
are drawn). In this example, the left horse has internal shape parts between its torso and
its front/back legs and between its neck and ears that have no natural correspondence on
the right horse. The representation of these parts in the graph leads to differences in the
parent-child relations of some nodes. For example, the torso (node 1) is the grandparent of
the front legs (nodes 3 and 6) on the top graph, whereas on the bottom graph, the torso is
the parent of the front legs (nodes 2 and 9). In order to find the desired correspondences
between the legs and ears, the graph similarity function that drives the matching process
must favor solutions in which the missing parts are left unassigned. Natural violations to
node adjacency relations pose another challenge to bone graph matching. In this example,
the enforcement of node adjacencies would exclude a node correspondence solution in
which the torsos and front legs of the horses are assigned to one another. This is because
the torso of the left horse (node 1) is not adjacent to the front legs (nodes 6 and 3) due
to the presence of a shape part between them (node 2), but the torso of the right horse is

adjacent to the horse’s front legs.

framework for inexact graph matching, extending our body of previous work
on matching node-attributed graphs [24, 37, 38, 41] to accommodate node-
and edge-attributed graphs, and expanding the range of domain-dependent
topological constraints that can be enforced during matching; and 2) We
apply the matching framework to a powerful new structured shape repre-
sentation, the bone graph [23], yielding the first end-to-end object catego-
rization system based on bone graphs. The improved stability of the node-
and edge-attributed bone graph, combined with our matching algorithm’s
ability to exploit both its edge attributes and its domain-dependent topolog-
ical constraints, yield an object categorization system which outperforms a

4

ACCEPTED MANUSCRIPT

1

1

1

1

1

0

0

1

1

1

1

1

1

1 1

.8
1

1

12

1110

92

3

4 5

6

7 8

1

14 15

16

181713 19

1 1

1

.2

1

1

1

1

1

1
1

1

0

0
1 1

5 9

1

2 12 15

3 4 8 6 7 10 11 13 14 16 17

Left horse

Right horse

Figure 3: Matching result for the horse example. The correspondences found by the
algorithm are shown as arcs connecting shape parts, and as matching node colors in the
graphs. In this case, the four internal shape parts (labeled 2, 11, 15, and 17) in between
the left horse’s torso and legs, and neck and ears are left unassigned (white nodes) at
matching time.

state-of-the-art shape categorization system based on shock graphs.
The remainder of the paper is organized as follows. In Section 2, we

review other approaches to graph-based shape matching. In Section 3, we
present our approach to the inexact matching of hierarchical graph structures,
incorporating both node and edge constraints. We evaluate our matching
framework in Section 4), by applying it to the task of view-based object cat-
egorization using bone graphs. Finally, we discuss limitations and conclusions
in Section 5.

2. Related Work

The problem of matching graph representations of shape has received
considerable attention in the vision research community. The graph matching
task demands an algorithm that combines differences in graph topology and
node and edge attributes into a continuous measure of graph similarity. Since
this problem (subgraph isomorphism) is NP-complete (maximum common
isomorphic subgraph is NP-hard), the choice is either to seek an approximate
solution or to consider graphs that can be matched in polynomial time (e.g.,
rooted trees). In addition, domain-dependent constraints may be assumed
to simplify the matching problem. For example, Umeyama [43] proposes a

5

ACCEPTED MANUSCRIPT

matching algorithm for graphs of equal size using an eigen-decomposition
method to find the permutation matrix that minimizes the difference of the
edge weights. Another example is the work of Gold and Rangarajan [16], who
use a graduated assignment heuristic to find the largest isomorphic subgraph
between two attributed graphs. Unfortunately, these specific constraints are
too limiting for the task of matching shape representations, since the graphs
representing similar shapes might not have the same number of nodes or
large isomorphic subgraphs.

Conte et al. survey the field of exact and inexact graph matching in
pattern recognition in [6] and [7]. In this section, we review the body of
work in the area that is most relevant to the problem of matching graph-
based shape representations. The most popular classes of graphs in this area
are given by trees, directed acyclic graphs (DAG), and attributed relational
graphs (ARG) [12]. The attributed tree- and DAG-based representations
encode hierarchical relations between nodes (i.e., shape parts), which, in
turn, provide structural constraints that simplify the matching problem. On
the other hand, an ARG is a more general structure than a tree or a DAG (it
is an attributed undirected graph that might contain cycles), but provides
weaker constraints to exploit during matching.

Pelillo et al. [29, 30] match node-attributed trees by constructing a max-
imum weight clique problem. This algorithm looks for the set of nodes in
the query and in the model graphs that preserve the hierarchical constraints
imposed by the representation while maximizing the pairwise node similari-
ties among the nodes. Another matching approach for node-attributed trees
is the work of Sebastian et al. [35], which measures the edit distance be-
tween two graphs (this is also known in the literature as error-correcting or
error-tolerant algorithms [6]). The graph edit distance is defined as the min-
imum cost of the deformation path that makes two graphs isomorphic. Four
edit operations are defined to deform a graph representation of one shape
into another. Three of these operations allow for different types of merges
and deletions of nodes, while the fourth operation allows for altering node
attributes. The merge operation allows for assigning many-to-many corre-
spondences between nodes (or one-to-many, if merges are applied only to the
query graph) and can be used to find similarities at higher levels of abstrac-
tion. However, this flexibility comes at high computational cost, as finding
a common graph between largely dissimilar graphs can define an extremely
large space of possible edit operations. This is particularly problematic for
cluttered or occluded scenes, where much of the edit cost may be due to the

6

ACCEPTED MANUSCRIPT

removal of extraneous clutter.
Pelillo et al. [31] also propose a solution to the many-to-many matching

of node-attributed trees by reducing tree isomorphism to the problem of
solving a maximum weight clique in an association graph. Their solution to
the matching problem uses replicator dynamical systems from evolutionary
game theory. In more recent work, Demirci et al. [10] present a framework for
many-to-many matching, where features and their relations are represented
using directed edge-weighted graphs. The method begins by transforming
the graph into a metric tree. Next, using graph embedding techniques, the
tree is embedded into a normed vector space. This two-step transformation
reduces the problem of many-to-many graph matching to a simpler problem
of matching weighted distributions of points in a normed vector space. The
distance between two weighted point distributions is computed using the
Earth Mover’s distance [5, 32].

For the case of node-attributed DAGs, Shokoufandeh et al. [37, 38] pro-
pose a recursive bipartite matching algorithm in which a node similarity
function measures both the attribute similarity of nodes and the topological
similarity of the subgraphs rooted at each node. The result is a one-to-one
assignment of node correspondences that yields a similarity value between
arbitrary DAGs. This approach has been used to match shock graphs [38] as
well as multiscale blob decompositions of shape [37]. In this latter approach,
edge attributes are not accounted for explicitly, but can be embedded in the
node similarity function. For example, in [37] the relative orientation of parts
(i.e., edge attributes) is seen as a parameter of the node similarity function.
However, since edge attributes are not compared explicitly, the ability of the
matcher to independently measure structural and geometrical similarity is
reduced.

All the above matching approaches suffer from one important limitation;
they either ignore edge attributes or allow only for scalar edge weights. A
popular method for matching fully-attributed graphs is to treat the problem
as a tree search with backtracking [18]. The basic mechanism in this family
of approaches is to iteratively grow a solution set (initially empty) by adding
node correspondences that are compatible with the mappings already in the
set. The search is usually guided by the cost (or similarity weight) of the
partial mapping spanned by the solution set and a heuristic that estimates
the cost of matching the remaining nodes. The heuristic allows the matching
algorithm to prune unfruitful search paths (and backtrack the population of
the solution set), and/or to determine the order in which the search tree is

7

ACCEPTED MANUSCRIPT

traversed. The search is usually performed using a depth-first or best-first
strategy.

Our algorithm for matching fully-attributed DAGs is a tree search ap-
proach, and in that respect it is similar to the previous work on ARGs.
However, it differs from such work in the way it treats noisy nodes and edge
attributes. In the case of ARG-based methods, noisy nodes are matched
(with a cost) to a special null node that represents the node deletion op-
eration in a graph edit distance. The addition of null nodes (one for each
graph) increases considerably the number of possible solutions that must be
investigated. In our approach, the hierarchical structure of DAGs is used to
constrain the node correspondences at each iteration of the algorithm, which
allows for solutions with unmatched noisy nodes without adding null nodes.
Another important difference is that the ARG matching approaches seek a
mapping that preserves node adjacency by editing the graphs to create an
isomorphism, while this is not the case in our approach (unless node adja-
cency preservation is specified by the domain constraints). This results in
a different treatment of edge similarity, since in our case there is no strict
one-to-one correspondence between edges if node adjacency is not preserved.

A different family of methods is based on formulating the problem as a
continuous nonlinear optimization. Fischler and Elschlager [13] propose a
relaxation labeling approach that assigns a label to each node in the model
ARG that determines its correspondence to a node in the query ARG. The
algorithm begins by computing the probability of each possible label assign-
ment as a function of the node attributes and any other local information,
such as the attributes of the edges incident on the model and query nodes. In
subsequent iterations, the probabilities are updated by taking into account
the assignment probabilities of neighboring nodes until either convergence or
a maximum number of iterations are reached. A similar approach is proposed
by Kittler and Hancock [20]. Christmas et al. [4] extend the relaxation label-
ing approach to consider edge attribute information at each iteration (i.e.,
not just in the initialization step). In the same spirit, Wilson and Hancock
[45] propose an error-correcting method that exploits structural constraints
by defining a probabilistic dictionary of consistent node mappings for neigh-
borhoods of nodes (augmented with null nodes to represent deletions). The
matching solution in this formulation is given by the maximum a posteri-
ori (MAP) estimate of a Bayesian formulation of the node correspondence
probabilities. Huet and Hancock [19] extend this approach to consider edge
attributes in the probability of node neighborhood transformations encoded

8

ACCEPTED MANUSCRIPT

by the consistency dictionary in [45]. Similar probabilistic error-correcting
approaches based on relaxation labeling are proposed by Myers et al. [28]
and by Torsello and Hancock [42] (for trees). Finally, Luo and Hancock [22]
use the EM algorithm [11] (instead of relaxation labeling) to find the MAP
solution to a probabilistic graph matching problem in which the query graph
is treated as observed data and the model graph acts as hidden random
variables.

The probabilistic methods described above do not enforce a one-to-one
mapping between nodes (they allow for one-to-many correspondences), and
yield matches that are not symmetric (the results depend on whether each
graph takes the role of the model or the query). These properties are ap-
propriate for some domains but are not desirable in others. In contrast, the
matching algorithm that we present in Section 3 yields a one-to-one node
mapping that does not depend on the role of each graph. Our approach does
bear some resemblance to the probabilistic methods in that the similarity
of node attributes may be updated at each iteration of the algorithm as a
function of the current matching information, whereas previous tree search
approaches assume that the node attribute similarities are constant.

It should also be noted that there are graph matching approaches specif-
ically tailored to the problem of matching skeletal-based representations of
object silhouettes. Zhu and Yuille [46] propose an error-correcting graph
matching algorithm in which the relative sizes of shape parts are used to
define the penalty for missing parts. Baseski et al. [2] propose an error-
correcting algorithm for trees based on a coarse skeleton representation of
each shape, and integrate knowledge about object categories into their shape
similarity measure. In contrast to these approaches, Bai and Latecki [1]
propose a framework that abstracts out the structure of the skeleton graph
entirely, and instead computes the similarity of skeletal paths connecting the
terminal points of the skeleton. The similarity of the shortest paths between
each pair of terminal points is used to establish the correspondences between
skeleton graphs.

3. Inexact Graph Matching for Bone Graphs

In this section, we explore the problem of matching graph-based repre-
sentations in which both the nodes and edges of the graphs have arbitrary
sets of attributes. In a recent paper [23], we performed graph matching ex-
periments with bone graphs and shock graphs using the matching algorithm

9

ACCEPTED MANUSCRIPT

for node-attributed (NA) DAGs proposed by Shokoufandeh et al. [37]. Since
this algorithm shows promising results when applied to bone graphs, we pro-
pose a generalization of it for the problem of matching fully-attributed (FA)
DAGs. In addition, our generalization of the algorithm expands the type of
domain knowledge that can be incorporated into the matching process, and
allows us to improve on the results obtained with the previous version of the
algorithm.

The problem of finding node correspondences between graphs that might
not be isomorphic is known as inexact graph matching. In our case, we
are also interested in computing a measurement of graph similarity that can
be used to rank order model graphs with respect to a query graph. Given
two graphs G(V,E) and G′(V ′, E′), our problem is to find the values of node
assignment variables avv′ ∈ {0, 1}, for v ∈ V and v′ ∈ V ′, that maximize
some function of graph similarity, F (G,G′). In the case of attributed graphs,
the graph similarity measure is a function of the attribute similarity of nodes
and/or edges and the structural similarity of the underlying graphs. For
example, in [21, 27, 40] the problem is stated as

F (G,G′) = max
M∈M

1

2

∑

v∈V

∑

v′∈V ′

M(v, v′)Na(v, v
′), (1)

where Na(v, v
′) are constant weights representing measures of node attribute

similarity, andM = {M} is the set of all |V |×|V ′| binary matricesM(v, v′) =
avv′ whose nonzero entries represent node assignments that satisfy some set
of constraints. Frequently, the constraints enforce one-to-one node mappings
that preserve node adjacency, and therefore define a maximum common iso-
morphic subgraph problem, which, for general graphs, is NP-hard [15].

In some domains, requiring the preservation of node adjacency may ex-
clude natural solutions to the node correspondence problem. For example,
Figure 2 shows that a minor shape difference can make a mapping between
salient bone graph nodes invalid if node adjacency constraints are enforced.
As a workaround, inexact graph matching can be defined in terms of edit
operations that add or eliminate nodes with the objective of finding a graph
isomorphism with minimum edit cost [3]. In this case, the similarity weight
between nodes v and v′ is not simply a function of their attributes (like
Na(v, v

′) in Eq. 1), but also accounts for the costs of the edit operations
needed to make v and v′ respect their adjacency to any previously matched
nodes. The minimization of edit costs is usually posed as tree search with

10

ACCEPTED MANUSCRIPT

backtracking, in which a solution set (initially empty) is iteratively grown by
adding node correspondences that are compatible with the mappings already
in the set. We discuss the related work in this area in Section 2.

The tree search approach to graph matching provides a simple mechanism
for measuring the similarity of attributed graphs, but is limited to exploiting
only node adjacency constraints. Our algorithm for graph matching is similar
to the tree search approach in that we: (a) iteratively grow a solution set of
node correspondences, (b) use heuristics to find an approximate solution in
polynomial time, and (c) define the similarity between two nodes as a function
of both their attributes and the set of previously selected correspondences.
However, unlike tree search, we consider constraints beyond adjacency in the
evaluation of node similarity. This allows us to account for edge attribute
similarities and for the hierarchical dependencies between the nodes of a
DAG.

Our matching algorithm seeks to approximate the result of evaluating all
possible ways of populating a solution set of node assignments, and selecting
the set with the maximum sum of assignment weights. One simple way of
expressing this function is to assume that every node in V is mapped to
every node in V ′ with some weight, which is nonzero only if the nodes are
assigned to each other. Then, if we order the set of |V |×|V ′| correspondences
{(v, v′)}v∈V,v′∈V ′ as a list, and let L be the set of all possible permutations of
that list, the graph similarity function can be expressed as

F (G,G′) = max
A∈L

1

N

∑

v∈V

∑

v′∈V ′

w(v, v′, Avv′), (2)

where Avv′ is the set of node correspondences that appear before (v, v′) in
the totally ordered set A ∈ L, and w(v, v′, Avv′) ∈ [0, 1] are node similarity
weights, which are nonzero if and only if v is assigned to v′. N is a normal-
ization constant that penalizes for unmatched nodes (i.e., nodes of a graph
whose similarity weights are zero for every node of the other graph), and is
needed for rank ordering matching results. We let N = max(|V |, |V ′|) for
bone graph and shock graph matching, which is an appropriate normaliza-
tion constant when the nonzero solutions are constrained to be one-to-one
node mappings.

The dependency of node correspondence weights on Avv′ allows for mea-
suring node similarity with respect to structural and attribute constrains
given by the node assignments already in the solution. Generally, these con-
straints render some permutations redundant (e.g., they yield node mappings

11

ACCEPTED MANUSCRIPT

with zero weights), which can be exploited by the matching algorithm. In
Section 3.2, we propose a novel definition of similarity weights that leads
to a general approach for graph matching, which includes the approach of
Shokoufandeh et al. [37] as a special case. Our approach allows us to natu-
rally incorporate domain knowledge that cannot be expressed when the node
correspondence weights are treated as constants. We present an efficient al-
gorithm that exploits the structure of the problem to recompute only a small
set of similarity weights at each iteration of the algorithm. Furthermore, in
Section 3.2.3, we describe a straightforward extension to our algorithm in
order to explore a bounded number of matching solutions. Later, in Section
4, we evaluate empirically the benefit of considering multiple solutions for
the case of bone graphs and shock graphs.

3.1. Notation

We assume that we are given a pair of fully-attributed DAGs of the form
G(V,E, λ, γ), where V is a set of nodes, E is a set of edges e = (u, v) directed
from node u ∈ V to node v ∈ V , λ(v) is a function that maps each node
v ∈ V to a domain-dependent set of node attributes, and γ(e) is a function
that maps each edge e ∈ E to a domain-dependent set of edge attributes.
The given graphs are constant throughout the matching process, and so need
not be passed as arguments to the functions that require access to their node
adjacency matrices, or to the attributes of their node and edges.

We also assume that, in addition to the graphs, we are given a domain-
dependent function of node attribute similarity Na(v, v

′), for v ∈ V, v′ ∈ V ′,
and a domain-dependent function of edge attribute similarity Ea(e, e

′), for
e ∈ E, e′ ∈ E ′. All measures of similarity referred to throughout this section,
whether they involve graphs, nodes, or edges, are assumed to be values in the
interval [0, 1]. A similarity value equal to zero represents total dissimilarity,
while a value of one represents equality.

The algorithms discussed below make frequent references to the prob-
lem of maximum-weight bipartite matching (MWBM) [14]. Then, it is
convenient to define special notation for this problem. To this end, let
M = MWBM(A,B,W) be the solution to the MWBM problem, where A
and B are disjoint sets of elements, and W is an |A| × |B| matrix of similar-
ity weights between each pair of elements spanning A and B. The solution
to this problem is the set M = {(a, b)} of one-to-one correspondences with
nonzero weights between the elements of A and B that yields the maximum

12

ACCEPTED MANUSCRIPT

sum of similarity weights. In the case of ties, we assume that M is any set
with maximum cardinality among all possible sets with maximum weight.

In some cases we are only interested in the value of the weight sum rather
than the set of correspondences, and so we define an appropriate function:

M̄(A,B,W) =
∑

(a,b)∈MWBM(A,B,W)

W(a, b),

where W(a, b) is the weight associated with matching element a ∈ A and
b ∈ B. Finally, it should be assumed that whenever we evaluate M̄ , the set
of correspondences M can also be recovered from the solution if needed.

3.2. The FA-DAG Matcher

We begin by reviewing the matching algorithm of Shokoufandeh et al. [37]
for node-attributed DAGs (NA-DAG), and then motivate our generalization
of this work to the problem of matching fully-attributed DAGs (FA-DAG)
and the exploitation of a wider range of domain knowledge. The NA-DAG
matcher measures the similarity between two DAGs by searching for the node
correspondences that maximize the sum of pairwise node similarities, while
attempting to respect the hierarchy imposed by the edge directions in each
graph. In each iteration of the algorithm, one node correspondence is added
to the solution set in a greedy fashion. The selection of each correspondence
is given by first solving the M = MWBM(V, V ′,W) problem, where the
weights for each possible correspondence (v, v′) are a function of the attribute
similarities of the nodes and a measure of the structural similarity of the sub-
graph rooted at each node. Then, the node correspondence (v, v′) ∈M with
the largest weight is added to the solution set (initially the empty set). Next,
the selected node correspondence is used to split the graphs into two sub-
graphs formed by the descendants of v and v′, and two subgraphs formed by
their respective non-descendants. Finally, the algorithm proceeds recursively
by matching the pairs of descendant and non-descendant subgraphs indepen-
dently until there are no more possible correspondences left to select. This
algorithm is depicted in Figure 4.

The measure of structural similarity encoded in the correspondence weights
is a low-dimensional spectral signature computed from the adjacency matrix
of the subgraph rooted at each node. This measure is an attempt to let the
matcher account for the structure underneath nodes before committing to a
node correspondence. In practice, the signature vectors can be seen as part of

13

ACCEPTED MANUSCRIPT

(a) (b) (c)

(d) (e)

Figure 4: The NA-DAG matcher. (a) Given a pair of directed acyclic graphs G and G′,
(b) form a bipartite graph in which the edge weights are the pairwise node similarities.
Then, (c) compute a maximum weight matching and add the best edge to the solution
set. Finally, (d) split the graphs at the matched nodes and (e) recursively descend.

the node attributes, since they are constant and can be precomputed before
the matching process takes place. We take this view, and assume that the
same technique can be used in our generalization of the algorithm, if desired.

The pairwise node correspondence weights in each iteration of the al-
gorithm remain constant and correspond to a possibly suboptimal solution
to Equation 1 [38]. In [37], variable weights are considered to overcome
the problem that whenever the graphs are split and each pair of subgraphs
is matched, the subgraphs of non-descendants can lead to correspondences
that violate the hierarchical constraints imposed by the DAGs. For example,
a pair of sibling nodes in one graph can be assigned to a pair of parent-child
nodes in the other graph. To prevent this, some of the weights in W are
penalized in each iteration of the algorithm. Unfortunately, the update of
weights can lead to a solution that is not consistent with Equation 1, which
assumes that the correspondence weights are constant.

We generalize the NA-DAG matching algorithm to fully-attributed DAGs

14

ACCEPTED MANUSCRIPT

by considering the objective function given by Equation 2, and defining cor-
respondence weights w(v, v′, At) that are a function of the node and edge
attributes of nodes v and v′, and the solution set, At, at each iteration, t,
of the algorithm. This definition of correspondence weights also allows us
to encode the graph split operation of the NA-DAG matcher as a struc-
tural constraint of the problem. In fact, by encoding structural constraints
as weights, we provide a more general approach for incorporating domain
knowledge into the matching problem. The weights can be used to penalize
correspondences that violate different types of node relations, whereas the
graph split operation of the NA-DAG matcher is restricted to a single type
of node relation (i.e., descendant), and to a binary decision on whether or
not the node correspondences satisfy the relation.

We decompose w(v, v′, At) into four factors, which measure similarity as
a function of

graph structure, such that the violation of a hierarchical relation with
respect to nodes in At is penalized;

edge attributes, where the attribute similarity of all edges incident on
nodes v and v′ is evaluated. This similarity is computed while ac-
counting for the paths that connect nodes in At to both nodes v and
v′;

assignment uniqueness, such that correspondences involving nodes al-
ready in At are assigned a zero weight;

node attributes, where the similarity of node attributes is measured using
a domain-dependent function.

Our objective is to let any of these factors veto a node assignment by yielding
a similarity value equal to zero. This can be expressed as a product over all
the factors. Then, we let the similarity weights be

w(v, v′, At) = S(v, v′, At)E(v, v′, At)U(v, v′, At)Na(v, v
′, At), (3)

where S,E, and U are the structural, edge, and uniqueness similarity func-
tions, and Na is a domain-dependent similarity function for node attributes.
The structural and edge similarity functions deserve special consideration
and are defined in Sections 3.2.1 and 3.2.2, respectively. The uniqueness

15

ACCEPTED MANUSCRIPT

similarity is simple, and can be defined as

U(v, v′, At) =

{

1 if ∀u′∈V ′ (v, u′) /∈ At and ∀u∈V (u, v′) /∈ At,

0 otherwise.
(4)

The matching algorithm is simply given by the successive iteration of two
main steps. In the first step, we create/update a complete bipartite graph
with node sets V and V ′, and edge weights Wt computed as a function of
the current solution set At (initially the empty set). In the second step,
we solve the MWBM problem, M = MWBM(V, V ′,Wt), and add the cor-
respondence (v, v′)∗ ∈ M with largest weight to the solution set, such that
At+1 = At ∪ {(v, v

′)∗}. The algorithm terminates when there are no more
node correspondences to consider, i.e., Wt = 0. In Section 3.2.3, we present
this algorithm and also present a less greedy variation of it.

An example of the first three iterations of the algorithm is shown in Figure
5. In this example, we assume that the structural similarity S(v, v′, At) is
equal to zero if the union of {(v, v′)} and At is a set in which an ancestor-
descendant assignment is inverted. i.e., a set in which a pair of ancestor-
descendant nodes in one graph is assigned to a pair of ancestor-descendant
nodes in the other graph with the ancestors assigned to the descendants.

3.2.1. Measuring Structural Similarity

The structural similarity of a node assignment (v, v′) given a set of pre-
vious assignments At can be thought of as a measure of how much the node
relationships in each graph would differ if node v is assigned to node v′.
For example, Figure 6 shows an example in which an assignment between
an ancestor of node v and a descendant of node v′ has been previously es-
tablished. In this case, if node v is assigned to node v′, the resulting set of
node assignments would not respect the hierarchical ordering imposed by the
DAGs.

There are three types of hierarchical relations in which we are interested
for bone graphs: ancestor, descendant, and sibling. However, we can describe
our approach more generally by assuming a set of node relations R = {rk}

K
k=1

that we are interested in maintaining, and defining predicates rk(a, b) that are
true iff node a and b satisfy relation rk. Briefly, our goal is simply to ensure
that both nodes v and v′ have similar relations with the previously matched
nodes (u, u′) ∈ At. Whenever this is not the case, i.e., rk(u, v) 6= rk(u

′, v′) for
any k = 1, . . . , K, we penalize the assignment (v, v′) according to a domain-
dependent penalty pk ∈ [0, 1] for the relation k. This can be expressed as a

16

ACCEPTED MANUSCRIPT

(a)

1

2

3

1'

2'

3'

7 7'

1

2

3

1'

2'

3'

7 7'

w(1, 1′, A0)

A0 = ∅ A1 = A0 ∪ {(3, 3
′)}

(b)

1

2

3

1'

2'

3'

7 7'

1

2

3

1'

2'

3'

7 7'

4

5

6

4'

5'

6'

4

5

6

4'

5'

6'

w(1, 1′, A1)

A1 = {(3, 3′)} A2 = A1 ∪ {(1, 1
′)}

(c)

1

2

3

1'

2'

3'

7 7'

1

2

3

1'

2'

3'

7 7'

4

5

6

4'

5'

6'

4

5

6

4'

5'

6'

w(2, 2′, A2)

A2 = {(3, 3′), (1, 1′)} A3 = A2 ∪ {(4, 6
′)}

(d)

Figure 5: The generalized DAG matching algorithm. (a) The given pair of DAGs. (b)
In the first iteration of the algorithm, we form a bipartite graph with similarity weights
computed as a function of the empty solution set A0. Then, we solve the MWBM problem
and add the correspondence with largest weight, in this case (3, 3′), to the solution set. (c)
In the next iteration, we recompute the similarity weights as a function of the augmented
solution set A1. Here, all correspondences of the form (3, v′) and (v, 3) have a zero weight
due to the U(v, v′, At) term in Equation 3. Similarly, the S(v, v′, At) term evaluates to zero
for the correspondences that violate structural constraints. For example, the correspon-
dence (1, 4′), if added to A1, would have an ancestor of node 3 assigned to a descendant of
node 3′, and so S(1, 4′, A1) = 0. Only nonzero correspondences need be considered when
solving the MWBM problem. (d) A possible third iteration of the algorithm. The algo-
rithm terminates when all the possible correspondences between unassigned nodes have
zero weights.

product over all relations of interest between nodes v and v′ and the nodes
in the current solution set. Then, we define the structural similarity function
as

S(v, v′, At) =
∏

(u,u′)∈At

∏

rk∈R

p
[rk(u,v)6=rk(u′,v′)]
k , (5)

17

ACCEPTED MANUSCRIPT

v'v

x

G G'

x'

Figure 6: Example of hierarchical similarity. Here we assume that the node correspondence
(x, x′) is in the current solution set At, and want to compute the structural similarity for
the node correspondence (v, v′). Since x is an ancestor of v, but x′ is a descendant of v′,
the addition of (v, v′) to the solution would create a node mapping that does not respect
the hierarchical ordering between the nodes of each DAG. A structural similarity equal to
zero would prevent this assignment from being added to the solution.

where [P] is the square bracket notation, which is equal to one if the predicate
P is true, and zero otherwise.

In our experiments, we specify the penalties for the ancestor, descendant,
and sibling relations as follows. For the ancestor and descendant relations,
we let their penalties be p1 = 0, p2 = 0, so that violations of such relations
are not allowed in the solution. This differs from the NA-DAG matching
approach of Shokoufandeh et al. [37], which does not penalize for violations
to the ancestor relation (see Figure 7). For the sibling relation (see [37]
for a discussion on this relation), we let the penalty be p3 = 0.8, which
encodes the fact that shape parts frequently switch parents when the shapes
are represented by bone graphs or shock graphs.

In summary, our structural similarity function is a general approach to
incorporating assumptions about the importance of preserving certain node
relations when matching two graphs. Our formulation of the problem allows
us to specify arbitrary types of node relations, and to penalize mismatches
according to the importance of each relation.

3.2.2. Measuring Edge Similarity

The edge similarity of a node assignment (v, v′) given a set of previous
assignments At is the normalized sum of pairwise edge attribute similarities
for the inward and outward edges incident on nodes v and v′. We compute
this value by assuming that there is a one-to-one correspondence between
inward edges and between outward edges, and find the set of edge correspon-

18

ACCEPTED MANUSCRIPT

Figure 7: Example of the ancestor relation. Here we assume that the node correspondence
(x, x′) is in the current solution, and want to compute the structural similarity for the
candidate correspondence (v, v′). Since v′ is an ancestor of x′, but v is not an ancestor
of x, the addition of (v, v′) to the solution would create a node mapping that does not
respect the ancestor relation. In this case, we apply a penalty to the weight of the candidate
correspondence (v, v′) to make it less likely to be added to the solution. In contrast, the
NA-DAG matcher does not penalize for the violation of this node relation.

dences that maximizes the sum of pairwise similarities. We account for the
previous node matches (u, u′) ∈ At by ensuring that if both u and u′ are
connected to v and v′ by a directed path, then the edges linking these paths
to nodes v and v′ are assigned to one another when we sum the pairwise edge
similarities. An example of this constraint is illustrated in Figure 8.

We define the problem of measuring edge similarity as that of solving
a MWBM problem for the set of edges incident on nodes v and v′. For
the special case in which both v and v′ have empty sets of incident edges,
we assume that their edge similarity is one. Otherwise, we represent the
pairwise edge attribute similarity between edges, and the constraints on path
information from previously matched nodes as the weights of the MWBM
problem. Thus, the edge similarity function becomes

E(v, v′, At) =
M̄(Ev, Ev′ ,W)

max(|Ev|, |Ev′ |)
, (6)

where Ev = {ek} and Ev′ = {e′
l} are the sets of incident edges on nodes v

and v′, respectively, M̄ is the solution to the MWBM problem (Sec. 3.1), and
W is the |Ev| × |Ev′ | matrix of edge correspondence weights defined below.
The denominator of this equation normalizes the sum of edge correspondence
weights to unity, yielding a similarity measure that penalizes for unmatched
edges.

In order to define the edge correspondence weights, let P (a, b) be the

19

ACCEPTED MANUSCRIPT

(a)

e1

e2

e3

e4

e1'

e2'

e3'

e4'

W(1, 1)

(b)

Figure 8: The edge similarity function. (a) We evaluate E(3, 3′, At) by summing the
pairwise similarities of edges incident on nodes 3 and 3′ as a function of the solution set
At. In this example, we assume that the node correspondence (6, 7′) is the only element
in At. E(3, 3′, At) is equal to the maximal sum of nonzero one-to-one correspondences
between edges. A correspondence (ei, ej) may have a nonzero weight W(i, j) iff: (1)
both edges have equal direction, and (2) they are consistent with the contents of At. For
example, here the only possibly nonzero correspondence for either edge e3 or e4′ is (e3, e4′),
since there is a directed path from nodes 3 to 6 and from nodes 3′ to 7′. In contrast, edges
e4, e2′ , and e3′ have no ancestors or descendants in At, and have more than one possible
correspondence. (b) E(3, 3′, At) is equal to the solution of the MWBM problem shown
here, where the weights of the correspondences that meet conditions (1) and (2) are given
by a domain-dependent measure of edge attribute similarity, Ea(e, e′).

(possibly empty) set of edges along the directed path that connects nodes a
and b (i.e., a non-empty set means that a is either an ancestor or a descendant
of b). Then, we let the edge correspondence weights W(k, l) be equal to zero
if

• the edges ek and e′
l have opposite direction with respect to nodes i

and j (this condition is optional, as it may not be appropriate in some
domains); or

• there exists a node correspondence (u, u′) ∈ At such that the path
P (u, v) includes ek but the path P (u′, v′) does not include e′

l, or con-
versely, that P (u′, v′) includes e′

l but P (u, v) does not include ek.

Otherwise, we let W(k, l) be equal to a domain-dependent function Ea(v, v
′)

that measures the similarity of the edge attributes.

20

ACCEPTED MANUSCRIPT

In conclusion, our edge similarity function incorporates edge attribute
information in a nontrivial way by combining it with the information provided
by the node correspondences in the solution. This measure of similarity
exploits the structural dependencies between nodes to obtain an assignment
of edge correspondences that is consistent with the node assignments that
are in the solution set. As this set grows in each iteration of the algorithm,
so too does the information available for assigning the edge correspondences.
This, in turn, makes the measure of edge attribute similarity less ambiguous,
and strengthens the overall measure of node similarity weights.

3.2.3. Searching the Solution Space

The matching algorithm of Shokoufandeh et al. [37] takes a greedy ap-
proach to establish node correspondence. This is motivated by the assump-
tion that the measures of node attribute similarity should provide a strong
indication of the best correspondences, and make a broad search of the solu-
tion space less necessary. In our generalization of this algorithm, we propose
to relax the greediness of the approach by incorporating a bounded queue to
evaluate more that one possible solution to the problem. We form a queue
of solution sets of size bounded by the maximum number of solutions that
we want to evaluate. In each iteration of the algorithm, we add one node
correspondence to a solution set in the queue. The algorithm terminates
when the queue is empty.

We present the algorithm that considers a single solution first, and later
introduce a queue to consider multiple solutions. The two main steps of the
algorithm are the computation of node similarity and the selection of node
correspondences. In the first iteration of the algorithm, t = 0, the weights of
all possible pairwise node correspondences, Wt, are computed as a function
of the empty solution set, At = ∅, according to Equation 3. Next, the
MWBM problem, M = MWBM(V, V ′,Wt), is solved and correspondence
(v, v′)∗ ∈ M with largest weight is added to the solution set, such that
At+1 = At∪{(v, v

′)∗}. In the subsequent iterations, t ≥ 1, the correspondence
weights are updated to reflect the current contents of the solution set, and
a new correspondence is added to the solution as previously described. The
algorithm terminates when all possible new node correspondences have zero
weight (i.e., they are incompatible).

When considering multiple solutions, we queue the alternate solution sets
that can be obtained in the first few iterations of the algorithm. The mo-
tivation for this is that the first elements added to a solution set condition

21

ACCEPTED MANUSCRIPT

all subsequent correspondences, and so selecting the correct ones early on
is important. We bound the maximum number of solution sets that can be
considered by a given constant K ≥ 1. We also let the maximum number
of solution sets added to the queue in each iteration be a given constant
1 ≤ τ ≤ K. Then, we modify the matching algorithm such that at each
iteration, we pop one solution set A from the queue of active solution sets
Q, and compute the correspondence weights as a function of it. If all corre-
spondences have zero weight, we add A to the set of completed solutions S.
Otherwise, we solve a MWBM problem for the nodes of the graph using the
current weights, and then select the top n = min(τ,K − |Q| − |S| + 1) cor-
respondences (v, v′)∗k ∈ M , for k = 1, . . . , n. Each of these correspondences
is used to create new solution sets Ak = A ∪ {(v, v′)∗k}, which are added to
the back to the queue. The algorithm terminates when the queue of active
solution sets is empty. This algorithm is shown on the next page.

3.2.4. Algorithm Complexity

We focus our complexity analysis on the case in which the maximum
number of solution sets is one, since a greater constant limit does not affect
the algorithm’s complexity. We also assume that the algorithm is efficiently
implemented such that only the weights that may change from one iteration
to the next are updated. For the case of bone graphs, we update only the
weights that involve ancestors, descendants, and siblings of the nodes v and
v′ that are added to the solution set in the previous iteration of the algo-
rithm. In this case, we use appropriate data structures in order to efficiently
visit the required weights, and to evaluate the structural and uniqueness
similarity factor of the weight function. By recursively following the par-
ents and children associated with each node correspondence added to the
solution set, we can visit the weights that must be updated in time O(N),
for N = max(|V |, |V ′|). The ancestor, descendant, and sibling relations can
be evaluated in constant time by precomputing appropriate data structures
for each graph. An efficient representation of the ancestor and descendant
relations can be computed in linear time (they are given by the transitive
closure of a graph [17]), while that of the sibling relation can be computed
in quadratic time (it requires a combination of the transitive closure and the
adjacency matrix of a graph [37]). We also use an appropriate data structure
to evaluate the membership of a node to the solution set in order to compute
the uniqueness similarity factor of the weight function in constant time.

The computation of the edge similarity factor demands more work, as it

22

ACCEPTED MANUSCRIPT

Algorithm 1 The FA-DAG matcher

Require: G(V,E, γ, λ), G′(V ′, E′, γ′, λ′), K ≥ 1, τ ≤ K {for K, τ defined in
Sec. 3.2.3}

1: Q← {∅} {let Q be a queue with an empty solution set in it}
2: S ← ∅ {let S be the empty set of completed solution sets}
3: while |Q| 6= 0 do

4: A← Q.Pop() {retrieve a solution set from the queue}
5: W← f(G,G′, A) {set node correspondence weights according

to Eq. 3}
6: if W 6= 0 then

7: M ← MWBM (V, V ′,W) {solve the MWBM problem (see
Sec. 3.1)}

8: L ← Sort(M) {sort correspondences by decreas-
ing weight}

9: n← Min(τ,K − |Q| − |S|+ 1) {set max number of new solutions}
10: L ← Prune(L, n) {reduce the list to top n candi-

dates}
11: for all (v, v′) in L do

12: A′ ← A∪{(v, v′)} {create a new solution set with A and (v, v′)
in it}

13: Q.Push(A′) {add the new solution set to the queue}
14: end for

15: else

16: S ← S ∪ {A} {add A to the set of completed solution sets}
17: end if

18: end while

19: return argmax
A∈S

∑

v∈V

∑

v′∈V ′

w(v, v′, A) {select the set with maximum

weight sum}

23

ACCEPTED MANUSCRIPT

requires solving a MWBM problem. The complexity of this step isO(e2 log e),
where e is the maximum number of incident edges for any node in either
graph. Then, the complexity of updating the weights in each iteration is
O(Ne2 log e). In addition to updating weights, each iteration of the algo-
rithm must solve a MWBM problem for the nodes, which has complexity
O(N2 logN). The number of iterations of the algorithm can be bounded by
N if only one-to-one correspondences are allowed. Thus, the complexity of
the algorithm is O(N3 logN +N2e2 log e). In the case of hierarchical struc-
tures, such as bone graphs and shock graphs, the number of nodes grows
much faster than the maximum number of incident edges on a node, and e2

is generally smaller than N for DAGs of significant height, which results in
O(N3 logN) complexity. Similarly, the complexity of the NA-DAG matcher
algorithm is O(N3 logN) [37], since the edge similarity term need not be
computed.

3.3. Similarity Functions for Bone Graphs

We present measures of similarity for the attributes of nodes and edges
in the bone graph. These similarity measures are the domain-dependent
components of the matching algorithms described in the previous sections.
Our goal is to compare silhouettes obtained by the perspective projection of
3-D objects onto a plane. Moreover, since we aim to find similarities between
the silhouettes of different exemplars of the same object class, we propose
coarse measures of node and edge similarity that attempt to not overpenalize
the within-class deformations of both shape parts and part relationships.

3.3.1. Node Attribute Similarity

We define the similarity Na(v, v
′) between the attributes of nodes v and v′

as a function of the length and width of the shape part represented by each
node. Our measure of similarity is inspired by that of shock graphs [26],
which compares the radius functions of the skeletal segments encoded as the
attributes of nodes. The radius function of a bone captures the variation
of the width along a shape part and the length of the part. By comparing
radius functions, we obtain a similarity measure that is invariant to relative
rotation, translation, and bending. This measure is not scale invariant, and
so we assume that the global scale of each shape is normalized. We obtain a
continuous representation of the radius function by approximating its discrete
values with a piecewise linear function. This approximation is the result
of minimizing the number of line segments without surpassing a maximum

24

ACCEPTED MANUSCRIPT

Figure 9: Examples of piecewise linear approximations of radius functions. The discrete
points of the radius functions for a back leg and the torso parts are plotted, with their
corresponding piecewise linear approximations overlaid.

fitting error (see [26] for details). Figure 9 illustrates examples of the radius
functions of bone graph nodes, and their approximation by piecewise linear
functions.

In the shock graph, the piecewise linear approximation of the radius func-
tion is used to create the shock graph nodes, and to compare their attributes
at matching time. During the construction of a shock graph, this approxima-
tion is used to decompose the skeletal branches into segments with constant
or monotonically varying radii, which then become nodes in the graph. At
matching time, the approximation is used to compare the radius functions
encoded by the nodes. For the bone graph, we only use the approximation of
the radius function at matching time, since we do not partition skeletal seg-
ments according to radius. Thus, our problem is to compare radius functions
that vary arbitrarily.

We propose a measure of similarity that accounts for the absolute radius
differences and for the variations of the radii along the medial axes. We begin
by subdividing the radius functions into an equal number of segments for the
part of the domain on which they are both defined. Given two piecewise linear
functions, r(x) and r′(x), defined on the respective intervals [0, L] and [0, L′],
we subdivide the line segments that fall in the interval [0,min(L,L′)] into
N subsegments. The subdivision is performed such that the x-coordinates
{xi}

N
i=0, for xi < xi+1, correspond to the endpoints, intersection points, and

knots between the segments of both functions (see Figure 10). Then, we
compute the areas and slopes of the pair of linear functions defined on each
interval [xi, xi+1], and combine them into a piecewise measure of similarity.

25

ACCEPTED MANUSCRIPT

x0 x x x1 2 Nx3 ...

R
ad

iu
s

Distance along skeletal segment

Figure 10: Example of the comparison of two radius functions. The piecewise linear
functions are subdivided into N segments for the part of the domain on which they are both
defined. The segments are partitioned such that each x-coordinate xi, for i = 0, . . . , N ,
corresponds to an endpoint, intersection point, or segment knot on either function.

First, we define the area-based similarity as a normalized measure of area
difference. Let ai and a′i be the respective nonzero areas under r(x) and r′(x)
on the interval [xi, xi+1], and

αi = 1−
|ai − a

′
i|

ai + a′i
(7)

be their area-based similarity. Next, we define the slope-based similarity as a
Gaussian function of slope difference. Let mi and m′

i be the respective slopes
of r(x) and r′(x) along the interval [xi, xi+1], and

βi = e−
(mi−m

′

i
)2

2σ2 (8)

be their slope-based similarity (we let σ = 0.15 in our experiments). Finally,
we combine the area- and slope-based similarities and the relative length of
each interval into a measure of node attribute similarity

Na(v, v
′) =

N−1
∑

i=0

αiβi

(xi+1 − xi)

max(L,L′)
. (9)

Our measure of node attribute similarity penalizes the differences in the
lengths of the medial axes, and in the relative widths and width variations

26

ACCEPTED MANUSCRIPT

9
2

1

10
11

4
3

6

87

5

12
15

1413
17

16

“ ” end0

1 1

1

.2

1

1

1

1

1

1
1

1

0

0
1 1

5 9

1

2 12 15

3 8 6 7 10 11 13 14 16 174

Figure 11: Example of the edge attributes of a bone graph. The attribute of an edge
corresponds to the attachment position between a child bone and its parent bone. For
clarity, we show the absolute value of each position and let the color of the edge represent
its sign (i.e., the side of the attachment). The parameterization of edge attributes assumes
that the lengths of all bones are normalized to the unit length. In the case of the root
node 1, the “0” end is chosen arbitrarily. The “0” end of all other nodes is specified as
the skeletal point closer to the attachment with their parent bone.

along the medial axes. In our experiments, we consider a value of σ that is
constant for all shapes and shape parts, but this could be replaced by a values
obtained as a function of the model shapes or model parts being matched.
We leave the problem of learning shape deformation parameters conditioned
on object classes as the subject of future research.

3.3.2. Edge Attribute Similarity

We define the similarity Ea(e, e
′) between the attributes of edges e and e′

as a function of the relative side and position of the attachment represented
by each edge. The attribute γ(e) = pu,v of edge e = (u, v) is the normalized
signed position of the attachment of node v onto node u. The sign of pu,v

encodes the side of the attachment, and the absolute value of pu,v encodes the
attachment position between endpoints 0 and 1 along the bone represented
by node u [23]. Figure 11 illustrates an example of the edge attributes of a
bone graph.

The “0” end of the position along the medial axis encoded by a node is
chosen arbitrarily for root nodes and for nodes with multiple parents. In
the case of nodes with a single parent, the “0” end is the point closer to the

27

ACCEPTED MANUSCRIPT

attachment point with the parent node. The sign of the position is specified
by considering that the bone rotates around its “0” end. For example, in
Figure 11, a black edge represents an attachment on the side corresponding
to a clockwise rotation of the parent bone, while a red edge is associated
with a counterclockwise rotation. We take this into consideration, and for
the cases in which the parameterization is ambiguous, i.e., nodes whose in-
degree is not one, we evaluate the node and edge attributes with respect
to both possible choices for the “0” end, and keep the one that maximizes
similarity.

We compute the edge attribute similarity as the product of sign simi-
larity and position similarity. We define a constant penalty ω ∈ [0, 1] for
attachments on opposite sides, and let the sign similarity be

δ(pu,v, pu′,v′) =

{

1 if sign(pu,v) = sign(pu′,v′)

ω otherwise.
(10)

In our experiments, we found that ω = 0 was too strict a penalty, and that
any value in [0.1, 0.8] yielded similarly good results (we let ω = 0.6 in our
experiments). Next, we let the position similarity be the absolute difference
in the positions of the attachments

ψ(pu,v, pu′,v′) = 1− |pu,v − pu′,v′ |. (11)

The product of these two measures of similarity becomes our edge attribute
function

Ea(e, e
′) = δ(γ(e), γ′(e′)) ψ(γ(e), γ′(e)′). (12)

Our measure of edge attribute similarity combines a linear penalty for
the differences in the positions of the attachments with a constant penalty
for the differences in the sides of the attachments. This represents a coarse
measure of the similarity of part relations, and does not account for the
relative ordering of child nodes that are attached to the same point of a parent
node. Similarly to the case of node attributes, our measure of edge similarity
could be improved by learning, at training time, the relative importance of
the differences in the position and side of part attachments as a function of
each object’s class. Then, this information could be exploited at matching
time, when a novel exemplar is compared against a model of a known object
class. We leave this problem as future research.

28

ACCEPTED MANUSCRIPT

4. Experiments

In this section, we evaluate the bone graph representation together with
the graph matching algorithm presented in Section 3 for the task of object
categorization. The goal in this task is to recognize 2-D views of novel 3-D
exemplars of known object categories. This task differs significantly from
the exemplar-based object recognition and pose estimation experiments con-
sidered in [23]. In particular, in our previous experiments, the task of esti-
mating pose from unknown views of known exemplars allowed us to evaluate
the benefits of addressing the over- and under-segmentation of skeletal parts,
but provided little information about how the representation might cope with
views of novel exemplars. The categorization problem, on the other hand,
addresses this question directly. It also provides us with a more stringent
task to evaluate the representation and the matching algorithms as part of a
complete recognition framework.

Like the experiments in [23], we compare the bone graph representation
to the shock graph. In review, both bone graphs and shock graphs are de-
rived from the medial axis of a closed contour (silhouette). In the case of a
shock graph [41], the points making up the medial axis are labeled according
to their radius function: monotonically increasing, constant, monotonically
decreasing from both directions toward a local minimum, and monotonically
decreasing in both directions away from a local maximum. Contiguous points
sharing the same label are clustered and become the nodes in the shock graph,
in which nodes are labeled medial point clusters (forming branches) and di-
rected edges represent branch adjacency, directed from larger to smaller (in
terms of radius) parts. Unlike the shock graph, every medial axis point is
not mapped to a node in a bone graph. As illustrated in Figure 1, those
medial axis points that are classified as ligature, i.e., non-salient points that
contribute little to the boundary shape, are abstracted out and are used to
define the connections between the remaining salient shape parts. Like the
shock graph, the edges of a bone graph are directed from larger to smaller
parts. However, unlike the shock graph, the edges of a bone graph are at-
tributed, and encode attachment positions.

This comparison between shock graphs and bone graphs is meaningful
because both representations take a skeleton as input and yield a graph of
skeletal parts as output. This means that for the bone graph to outperform
the shock graph, its structure and edge attribute properties must be more
beneficial for matching than those of the shock graph. In our experiments, we

29

ACCEPTED MANUSCRIPT

measure the individual contribution of these properties by matching graphs
with and without node and edge attributes. In contrast to the experiments in
[23], where for the purpose of comparison we sub-partitioned the nodes of the
bone graph according to radius, here we are concerned with evaluating the
bone graph as defined in [23]. This definition of bone graph leads to shapes
that are represented in terms of fewer nodes than required by the shock graph,
and has the advantage of significantly improving matching time, since the
time complexity of the matching algorithms are functions that grow with the
size of the input graphs. For example, in our dataset the average size of bone
graphs is 10.8 nodes, while that of shock graphs is 20.5.

4.1. The Dataset

The dataset in our experiments is a subset of the Princeton Shape Bench-
mark (PSB) [36]. This dataset is publicly available and widely used for eval-
uating learning and recognition approaches using 2-D and 3-D shape repre-
sentations. We select 8 classes and 5 3-D exemplars per class out of the 1,814
exemplars and 90 classes available in the PSB. Our selection of exemplars,
shown in Figure 12, includes models whose part structure varies from simple
(e.g., the hot air balloon class) to fairly complex (e.g., the walking human
class). This subset provides enough data to compare the bone graph and
shock graph representations and to discuss the limitations of our approach
while performing a comprehensive set of experiments. In future research,
we expect to consider larger datasets by combining our representation and
matching approach with learning and indexing components.

We populate a model database of 2-D shapes by taking 25 uniformly-
sampled views per exemplar in our dataset, which yields a total of 1000
shapes. We collect the sets of 2-D views of each 3-D exemplar by sampling
a portion of its viewing sphere. We select the views that fall within the
azimuth and elevation angles in the ranges [−180,−90] and [−30, 30] degrees,
respectively. We take 5 evenly spaced views along each coordinate (i.e., 25
views per object). We found that this selection of views provides a sufficiently
dense sampling of a 3-D object while capturing most of its non-degenerate
views. As an example, the set of views of one of the horse exemplars is shown
in Figure 13.

4.2. Experimental Set Up

We evaluate two graph matching algorithms in our experiments, and for
simplicity, we refer to them as algorithms A and B. Algorithm A is the

30

ACCEPTED MANUSCRIPT

Figure 12: The Dataset of 3-D Models. It is formed by 8 classes with 5 exemplars per
class. Half of the dataset is formed by “inorganic” objects, while the other half contains
“organic” objects. This set of objects captures a wide range of part structure complexity,
which ranges from very simple, in the case of the hot air balloon class, to fairly complex,
in the case of the walking human and bird classes.

matching algorithm of Shokoufandeh et al. [37], and does not exploit edge
attributes. Algorithm B is our generalization of algorithm A (Section 3.2),
and accounts for edge attributes, as well as structural graph constraints that
differ from those of algorithm A (Section 3.2.1). We consider the most greedy

31

ACCEPTED MANUSCRIPT

Figure 13: Subset of the Model Database of Object Views. Here we show the complete
collection of 25 views used to represent one of the exemplars belonging to the horse class.

version of algorithm B, in which the size of the solution queue is bounded to
one. Later, we evaluate the performance of the algorithm as a function of
the size of the solution queue. Both matching algorithms require a domain-
dependent node similarity function, while algorithm B also requires a domain-
dependent edge similarity function. We use the node similarity function
presented in [26] for shock graphs, and, when needed, let the edge similarity
function be the identity function. For the bone graph, we use the node
similarity function described in Section 3.3.1 and the edge similarity function
described in Section 3.3.2.

The node similarity functions used for the bone graph and the shock graph
are both based on comparing only the skeletal radius function represented
by each node. That is, these functions do not account for skeletal curvature
or other skeletal properties encoded in the node attributes. The two func-
tions differ mainly in that with the shock graph, the radius function of a

32

ACCEPTED MANUSCRIPT

node is assumed to be constant or vary monotonically, while with the bone
graph, this need not be the case. Thus, the minor differences between the
node similarity functions should not provide an unfair advantage for either
representation.

In order to understand the influence of edge attributes of the bone graph,
we carry out experiments with and without edge attributes (i.e., we let the
edge similarity of the bone graph be the identity function) using algorithm
B. Similarly, we evaluate the influence of graph structure in the matching
process of both bone graphs and shock graphs by performing experiments
with both node and edge similarity functions set to the identity function. In
each figure plotting experimental results, we specify the attributes considered
at matching time by labeling each representation as fully attributed (FA),
node attributed (NA), edge attributed (EA), and unattributed (UA). For
example, when matching the bone graph (BG) using both its edge and node
attributes, we label the results as FA-BG.

We perform two sets of experiments in which all 1000 shapes are consid-
ered as queries while the contents of the model database vary as a function
of the query class. In the first set of experiments, we evaluate recognition
performance as a function of number of model exemplars for the query class.
Here we expect the recognition performance to decrease as the shape vari-
ation of the exemplars in the query class becomes underrepresented by the
reduction of its model exemplars. In the second set of experiments, we eval-
uate performance as a function of number of model views per exemplar of
the query class. In this case, we also expect the performance to decrease
as the query class is represented using fewer views per exemplar than the
other classes. These experiments allow us to measure the performance of
bone graphs and shock graphs relative to the performance associated with
the numbers of exemplars and views of the query class.

In each experiment trial, we take an exemplar’s view and compare it
against all shapes in the model database that belong to exemplars different
from the query’s. That is, for each query view, the model database contains
4 exemplars of the query class and 5 exemplars of every other class (each
exemplar is represented by 25 views). We say that class recognition is correct
if the view that receives the highest similarity score belongs to the same
object class as the query view. In the case of ties between a view of the
query class and a view of a non-query class, we consider the outcome to be
unsuccessful, since we seek a unique answer to the categorization question.

33

ACCEPTED MANUSCRIPT

4.3. Object Categorization
We measure the influence of within-class shape deformation by evaluating

recognition performance as a function of decreasing number of exemplars for
the query class. In the first set of trials, each given query view is removed from
the model database, along with all other views of the same query exemplar.
In the next set of trials, we remove all the views of another exemplar of the
query class. We repeat this procedure until there is only one exemplar of
the query class remaining in the model database. All ways of removing one,
two, and three exemplars out of four are considered, and the average and
standard error of their recognition rate is plotted. That is, the values 3, 2
and 1 along the x-axis in Figure 14(a) correspond to the average performance
obtained from 4, 6, and 4 sets of 1000 trials, respectively. Each of such trials
represents a different way of removing exemplars of the query category prior
to matching. The number of exemplars of the classes that are not that of
the query view remains constant in each trial.

Figure 14(a) plots the recognition performance as the number of exem-
plars for each query class decreases from 4 to 1 (all the non-query classes
are represented by 5 exemplars). The results exhibit the superiority of bone
graphs and algorithm B over shock graphs and algorithm A. For the case of 4
exemplars, the score of the bone graph framework is 80.4% while that of the
shock graph framework is 73.6%. This performance difference, 6.8 percentage
points, is significant, as it is comparable to the decrease in performance due
to matching bone graphs using 3 exemplars instead of 4, which has a score
of 73.9%.

We determine whether the performance improvement of the bone graph is
due to the representation, the matching algorithm, or both, by evaluating the
four combinations of matching algorithms and shape representations. Figure
14(b) plots these results and shows that algorithm B is the most effective
algorithm for matching both bone graphs and shock graphs. The results also
show that the superiority of bone graphs over shock graphs is not due to the
matching algorithm alone, since, for example, in the case of 4 exemplars the
algorithm used only accounts for less than half the performance difference
between the two representations. The standard error in the results of the
exemplar removal trials suggests that both representations are sensitive to
the choice of model exemplars that are left in the database. Moreover, the
decrease in performance as the number of exemplars is reduced is slightly
more pronounced for bone graphs than for shock graphs, especially when
algorithm A is considered. We attribute this to the larger number of nodes

34

ACCEPTED MANUSCRIPT

4 3 2 1
40

45

50

55

60

65

70

75

80

85

Number of Model Exemplars for Each Query Class

R
ec

og
ni

tio
n

P
er

fo
rm

an
ce

 (
%

)
Varying Number of Model Exemplars

FA−BG B
NA−SG A

4 3 2 1
35

40

45

50

55

60

65

70

75

80

85

Number of Model Exemplars for Each Query Class

R
ec

og
ni

tio
n

P
er

fo
rm

an
ce

 (
%

)

Varying Number of Model Exemplars

FA−BG B
NA−BG A
NA−SG B
NA−SG A

(a) (b)

4 3 2 1
5

10

15

20

25

30

35

40

45

Number of Model Exemplars for Each Query Class

R
ec

og
ni

tio
n

P
er

fo
rm

an
ce

 (
%

)

Varying Number of Model Exemplars
Using Only Graph Structure Information

UA−BG B
UA−BG A
UA−SG B
UA−SG A

4 3 2 1
10

15

20

25

30

35

40

45

Number of Model Exemplars for Each Query Class

R
ec

og
ni

tio
n

P
er

fo
rm

an
ce

 (
%

)

Varying Number of Model Exemplars
Using Only Graph Structure Information

UA−BG B
UA−BG A
UA−SG B
UA−SG A

(c) (d)

4 3 2 1
0

10

20

30

40

50

60

70

80

90

Number of Model Exemplars for Each Query Class

R
ec

og
ni

tio
n

P
er

fo
rm

an
ce

 (
%

)

Varying Number of Model Exemplars
The Bone Graph with and without node/edge attributes

UA−BG B
EA−BG B
NA−BG B
FA−BG B

1 2 3
72

74

76

78

80

82

84

86

88

90

92

Ranking Position Threshold

R
ec

og
ni

tio
n

P
er

fo
rm

an
ce

 (
%

)

Varying Maximum Top Ranking Position

FA−BG B
NA−BG A
NA−SG B
NA−SG A

(e) (f)

Figure 14: System Evaluation (see text for discussion)

35

ACCEPTED MANUSCRIPT

in the shock graphs, which, in some cases, helps reduce the penalties incurred
by missing parts. Note that the number of missing/different parts between
query and model shapes increases proportionally to the dissimilarity between
the most similar model and the query.

We evaluate the contribution of graph structure stability to the match-
ing process by considering the problem of matching bone graphs and shock
graphs without their node and edge attributes. Figure 14(c) plots recognition
performance for unattributed (UA) bone graphs and shock graphs using al-
gorithms A and B. Here the structure of the bone graph seems to contribute
little information. In the case of 4 exemplars, the recognition score is just
26.6% with algorithm B, which is slightly more than twice the chance level of
10.26% (i.e., 4 correct exemplars over 39 exemplars). On the other hand, the
score for shock graphs is 34.1% with algorithm A, and 40.1% with algorithm
B. One reason for this large performance disparity between bone graphs and
shock graphs is that the partitioning of skeletal branches according to radius
performed by the shock graph effectively encodes geometrical attributes of
the shape parts into the structure of the graph. In contrast, the structure of
the bone graph is influenced less by the geometrical properties of the shape
parts, which leads to more dissimilar shapes having equal structure. This
effect can be seen in Figure 14(d), where we plot the same results but count
ties for first ranking position as successful trials. Now, the recognition score
for bone graphs and algorithm B jumps from 26.6% to 42.9%, while that for
shock graphs and algorithm B has a more modest increase from 40.1% to
42%. This confirms that bone graphs have a much larger number of ties in
the similarity ranking than shock graphs.

We analyze the contribution of the edge attributes to the matching pro-
cess by comparing the results of matching fully-attributed, node-attributed,
edge-attributed, and unattributed bone graphs. Figure 14(e) plots these re-
sults and shows that the presence of edge information does not improve recog-
nition performance when combined with node attributes, but it does lead to
a significantly better score than using graph structure alone. This suggests
that the graph structure of bone graphs can become significantly more in-
formative when combined with edge attributes. This result has important
implications for the problem of indexing graphs based on their unattributed
structure, such as the spectral approach proposed by Shokoufandeh et al. [39].
In the case of bone graphs, the results suggest that indexing features based
on graph structure would indeed benefit from incorporating edge attribute
information.

36

ACCEPTED MANUSCRIPT

25 21 17 13
64

66

68

70

72

74

76

78

80

82

Number of Views per Exemplars of the Query Class

R
ec

og
ni

tio
n

P
er

fo
rm

an
ce

 (
%

)

Varying Number of View per Exemplars

FA−BG B
NA−SG B
NA−SG A

Figure 15: System Evaluation (see text for discussion)

In the experiments above we treat all unsuccessful cases equally, i.e.,
regardless of whether the correct answer is close to the top or at the bottom
of the ranking. However, it is also important to evaluate the actual ranking
position of the correct answer that is best ranked. This is useful when the
goal of the matching process is that of pruning the model classes down to
a small set of candidates. Figure 14(f) plots recognition performance when
the correct answer is ranked in the top three positions. These results show
that with bone graphs, the correct answer is ranked within the top three
positions for 90.3% of the queries, while with shock graphs and algorithm A
this happens only with 83.9% of the queries. In addition, the performance of
the shock graph improves with algorithm B to 87.2%, which provides further
evidence of the superior performance obtained by our matching algorithm
regardless of the shape representation used.

Finally, we evaluate the performance of algorithm B when the size of the
solution queue grows up to 12. In particular, we conduct trials in which
the constants (K, τ) discussed in Section 3.2.3 are (1, 1), (3, 1), (6, 2), (9, 3),
and (12, 4). We test the case of bone graphs when the query class is rep-
resented by four exemplars and 25 views per exemplar. In these trials, the
performance remains constant at 80.4% up to a solution queue of size 6, and
increases monotonically to only 80.6% for a queue of size 12. Since this rep-
resents a small performance increase at a high computational cost, it justifies
the approach of considering only one greedy solution. Naturally, a more ex-
haustive search of the solution space could lead to better performance, but
the computational cost would render the approach impractical.

37

ACCEPTED MANUSCRIPT

4.4. Example Matches
Figures 16, 17, and 18 illustrate a number of successful matches drawn

from the experiments. The set of node correspondences found for each shape
is shown by arcs connecting each pair of shapes, and by matching node colors
between the corresponding bone graph representations of each shape. The
examples demonstrate cases in which the matcher finds natural correspon-
dences between parts with largely dissimilar geometries, such as the torso
and the legs. We have not measured the correctness of part correspondence
among successful matches, but we have found that in practice, the correct
matches generally yield mostly correct part correspondences.

It is interesting to analyze some examples of unsuccessful matches in order
to determine the limitations of our approach. We show four such cases in
Figures 19 and 20. Case (a) in Figure 19 illustrates the limitation of edge
attributes for representing ordering and orientation of multiple end-to-end
attachments. Here, the neck and tips next to it of the electric guitar have
similar attachment (edge) attributes with the guitar’s body to the posts
of the mailbox and its box. However, it can be seen that there is a strong
visual difference in how these parts are attached to each other. Case (b) in 19
provides an example of two simple but very different objects with isomorphic
graph structures. Here, in spite of the geometrical differences between the
node attributes, the fact that the knife view is able to explain all nodes of the
hot air balloon allows it to rank ahead of views of the correct class with more
similar nodes. This illustrates that small details in a simple shape, such
as convex corners, may have a disproportionate influence in the matching
process. Finally, the examples in Figure 20 show that strong structural
similarities can lead to matches between exemplars of object classes that
may seem to have nothing in common, such as a fish and a knife, or a guitar
and a bird.

It should be noted that the inherent ligature-induced instability of a shock
graph suggests a matching framework that’s many-to-many, rather than one-
to-one. While a number of many-to-many graph matching frameworks do
exist, e.g., [3, 8–10, 33], they often make restrictive assumptions (lack of
occlusion or clutter, lack of edge attributes, etc.). We have therefore limited
our study to one-to-one matching frameworks, although we expect that a
many-to-many matching framework would benefit the matching of both shock
graphs and bone graphs.

Finally, while our matching framework was developed to match bone
graphs, it is applicable to other classes of directed acyclic graphs. The match-

38

ACCEPTED MANUSCRIPT

1

0

.10
1

1

.1
1

1

1

2

3

4

5

6 7

8 9

1

0

.8
1

1
1

1

.2
1

1

1

2

3

4 6 9

1110875

(a) Correct match for the class walking human

1

.6

1

1

1
1

.6

1
1

1 1

1

2

3

8

9

1110

12

4 5

6 7

1

1

1

1
1

1
1

1
.9

.7

1

2 7

8

4

5 6

3

11

9 10

(b) Correct match for the class standing bird

Figure 16: Successful Matching Examples for Bone Graphs and Matching Algorithm B.
In each pair of shapes and graphs, the one on the left is the query view and the one on
the right is the best ranked model view. The part correspondences found by the matcher
are illustrated as arcs between each pair of shapes, and as matching node colors between
each pair of graphs. The number of each bone graph node corresponds to the shape part
represented by it.

ing algorithm only demands node and edge similarity functions in order to
compare the domain-dependent attributes of nodes and edges, and a set
of penalty weights for the possible violation of hierarchical relations in the
assignment of node correspondences. The penalty weights are also domain-
dependent, and depend on the amount of noise in the graphs and the expected
structural graph stability in the representation of similar objects.

5. Conclusions

In order to exploit all the information encoded by a bone graph when com-
paring shapes, we explore the problem of matching directed acyclic graphs

39

ACCEPTED MANUSCRIPT

1

1

0 .7 .6
.4

.0 .2 .91

.7
0 0

9 10 1312

1

2

3

6 75 114

8

14

1

1

0

1
.1

.5 .8

0

1

1.7

.10
0 0

1 8

2 5 6 7 9 10 13

3 4 11 12 14 15

(a) Correct match for the class electrical guitar

1

1
1

1

0 1

1

1
.8

1

0 .3 .5
1

.8

.1

0 .8

1

1

1

1 .8

1

1

1

1

1

1

24 23

25

26

27

20

4

5 6

14

3

2

1

7 16

17

28

29

18 19

8 9

10 11

151312

21

22

30

1

1

1

1

1

0

0

1

1

1

1

1

1

1 1

.8
1

1

92

1

14 15

3 6 10 11 16

4 5 7 8 12 13 17 18 19

(b) Correct match for the class horse

0

1
.6

.2

.5

1
1

2

1

3 8

74

5 6

1

0 1
.6

.10
.6 1

1

2 4 5 6 7 8

3

(c) Correct match for the class fish

Figure 17: More Successful Matching Examples for Bone Graphs. See Figure 16 for details.

(DAG) with arbitrary sets of attributes for both nodes and edges. We build
on our previous work on matching hierarchical structures in the presence of
noise, occlusion and clutter. We propose a novel generalization of the graph
matching approach of Shokoufandeh et al. [37] that incorporates edge infor-
mation, expands the range of domain constraints considered, and ensures (if
desired) that node correspondences do not violate the ancestor/descendant
relations between nodes. This framework is a contribution to the problem
of matching generic DAGs, and therefore can be applied to a multitude of
problems in pattern recognition.

Our new matching algorithm applied to the domain of bone graphs forms

40

ACCEPTED MANUSCRIPT

0
0

3

1

2

0
0

1
1

1

2 3 4 5

(a) Correct match for the class hot air balloon

.6
.6

1
1

3

1

2 4 5

.8
.8

1
1

5432

1

(b) Correct match for the class knife

.5

1
1

1

2

3 4

.4

.5

1
1

1

2 5

3 4

(c) Correct match for the class mailbox

Figure 18: More Successful Matching Examples for Bone Graphs. See Figure 16 for details.

a coherent framework for view-based object recognition, which we evalu-
ate for the task of object categorization. This task is a central problem in
computer vision and requires an approach that can accommodate the within-
category shape variation of object views. We compare the bone graph against
the shock graph by matching them using both the algorithm of Shokoufandeh
et al. [37] and our proposed generalization of this algorithm. This provides a
relevant comparison since both representations take the same shape skeletons
as input and yield graph-based encodings of their skeletal parts as output.
This means that for the bone graph to outperform the shock graph, its struc-
ture and attributes must be more beneficial for matching than those of the
shock graph. Our experimental results show that the bone graph signifi-
cantly outperforms the shock graph for the object categorization task, and
that the additional structural constraints exploited by our graph matching

41

ACCEPTED MANUSCRIPT

1

0
0

0

1

2 4

3

5

0
.5

.1

1

432

(a)

1
1

1

2 3

1
1

1

32

(b)

Figure 19: Incorrect Matching Examples for Bone Graphs and Matching Algorithm B. Here
we show two cases in which the graph structures and edge attributes are very similar, even
though the shapes are not. The strong structural and edge attribute similarities in these
cases help the wrong model exemplars rank well by compensating for the dissimilarity
between the node attributes.

algorithm improve the recognition performance of both representations. The
bone graph also leads to better computational performance as it represents
the object silhouettes using, on average, half the number of nodes than the
shock graph.

The experiments in Section 4 also evaluate whether the information pro-
vided by the edge attributes of the bone graph contribute to improving recog-
nition performance. The results suggest that edge attributes improve perfor-
mance in the absence of node attributes, but that when both node and edge
attributes are considered, the edge attributes do not offer a significant bene-
fit. A possible explanation for this is that the parameters that determine the

42

ACCEPTED MANUSCRIPT

.8
.8

1

2 3

.5
.6

1

32

(a)

1

1
1

1
1

1

2

4365

1
1

1

0

0

5

2

1

3 4

6

(b)

Figure 20: Incorrect Matching Examples for Bone Graphs and Matching Algorithm B. Here
we show more cases in which two views of conceptually dissimilar classes have similar part
structures.

penalty for edge attribute dissimilarities are sensitive to the category of the
model being matched. That is, the positions and sides of part attachments
(i.e., the edge attributes) may provide discriminating features for some object
classes but not for others, which can lead to an over- or under-penalization of
dissimilarities. We have found evidence of this phenomenon when analyzing
a significant number of matching cases in our experiments.

A limitation of our view-based object recognition framework is that the
rules to detect protrusions, discussed in [23], may fail to capture the part
variability of some objects. When this problem affects the decomposition of

43

ACCEPTED MANUSCRIPT

large shape parts (of similar silhouettes), it can lead to bone graphs with
significantly different structures. Because the structures of the graphs are
used to constrain the assignment of node correspondences, the matching
algorithm cannot correct this type of parsing errors. A possible solution to
this problem is to perform a denser sampling of the viewing sphere of each
model object in order to ensure that all the representational variations of
its views have a representative in the model database. Since this can lead
to a large number of redundant model views, it must be integrated with a
clustering procedure to find and eliminate views that are too similar. Another
solution is to represent each shape using multiple bone graphs computed
by varying the parameters that control the detection of protrusions. The
disadvantage of this solution is its high computational cost, since a pair of
query and model views would be represented by a multitude of graphs, which
must be matched against each other.

6. Acknowledgements

The authors would like to thank Allan Jepson and Ali Shokoufandeh for
their thoughtful feedback and support over the course of this work. The au-
thors would also like to gratefully acknowledge the support of OCE, NSERC,
CIFAR, and DARPA.

References

[1] X. Bai and L. J. Latecki. Path similarity skeleton graph matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(7):1282–
1292, 2008.

[2] E. Baseski, A. Erdem, and S. Tari. Dissimilarity between two skeletal
trees in a context. Pattern Recognition, 42(3):370–385, 2009.

[3] H. Bunke. On a relation between graph edit distance and maximum
common subgraph. Pattern Recognition Letters, 18(8):689–694, 1997.

[4] W. J. Christmas, J. Kittler, and M. Petrou. Structural matching in
computer vision using probabilistic relaxation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17:749–764, 1995.

44

ACCEPTED MANUSCRIPT

[5] S. D. Cohen and L. J. Guibas. The earth mover’s distance under trans-
formation sets. In International Conference on Computer Vision, pages
1076–1083, Kerkyra, Greece, 1999.

[6] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph
matching in pattern recognition. International Journal of Pattern Recog-
nition and Artificial Intelligence, 18(3):265–298, 2004.

[7] D. Conte, P. Foggia, C. Sansone, and M. Vento. How and why pattern
recognition and computer vision applications use graphs. Applied Graph
Theory in Computer Vision and Pattern Recognition, 52:85–135, April
2007.

[8] F. Demirci, B. Platel, A. Shokoufandeh, L. Florack, and S. Dickinson.
The representation and matching of images using top points. Journal of
Mathematical Imaging and Vision, 35(2):103–116, 2009.

[9] F. Demirci, A. Shokoufandeh, and S. Dickinson. Skeletal shape ab-
straction from examples. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(5):944–952, May 2009.

[10] F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bretzner, and S. Dick-
inson. Object recognition as many-to-many feature matching. Interna-
tional Journal of Computer Vision, 69(2):203–222, August 2006.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood
from incomplete data via the em algorithm. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology), 39:1–38, 1977.

[12] M.A. Eshera and K.S. Fu. A similarity measure between attributed
relational graphs for image analysis. In International Conference on
Pattern Recognition, pages 75–77, 1984.

[13] M. Fischler and R. Elschlager. The representation and matching of
pictorial structures. IEEE Transactions on Computers, 22:67–92, 1973.

[14] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general
graph matching problems. Journal of the ACM, 38:815–853, 1991.

[15] M. Garey and D. Johnson. Computer and Intractability: A Guide to the
Theory of NP-Completeness. Freeman: San Francisco, 1979.

45

ACCEPTED MANUSCRIPT

[16] Steven Gold and Anand Rangarajan. A graduated assignment algo-
rithm for graph matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 18(4):377–388, 1996.

[17] A. Goralcikova and V. Konbek. A reduct and closure algorithm for
graphs. Mathematical Foundations of Computer Science, Lecture Notes
in Computer Science 74:301–307, 1979.

[18] W.E.L. Grimson and T. Lozano-Pérez. Localizing overlapping parts
by searching the interpretation tree. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 4(9):469–482, 1987.

[19] B. Huet and E. R. Hancock. Shape recognition from large image libraries
by inexact graph matching. Pattern Recognition Letters, 20:1259–1269,
1999.

[20] J. Kittler and E. R. Hancock. Combining evidence in probabilistic re-
laxation. International Journal of Pattern Recognition and Artificial
Intelligence, 3:29–51, 1989.

[21] J. Kobler. The Graph Isomorphism Problem: Its Structural Complexity.
Birkhauser: Boston, 1993.

[22] B. Luo and E. R. Hancock. Structural graph matching using the em algo-
rithm and singular value decomposition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23:1120–1136, 2001.

[23] D. Macrini, S. Dickinson, D. Fleet, and K. Siddiqi. Bone graphs: Me-
dial shape parsing and abstraction. Computer Vision and Image Un-
derstanding, Special Issue on Graph-Based Representations, to appear,
2011.

[24] D. Macrini, A. Shokoufandeh, S. Dickinson, K. Siddiqi, and S. Zucker.
View-based 3-D object recognition using shock graphs. In International
Conference on Pattern Recognition, pages 24–28, Quebec City, August
2002.

[25] D. Macrini, K. Siddiqi, and S. Dickinson. From skeletons to bone graphs:
Medial abstraction for object recognition. In Conference on Computer
Vision and Pattern Recognition, pages 1–8, Anchorage, Alaska, June
2008.

46

ACCEPTED MANUSCRIPT

[26] Diego Macrini. Indexing and matching for view-based 3-d object recog-
nition using shock graphs. Master’s thesis, University of Toronto, 2003.

[27] E. Mjolsness, G. Gindi, and P. Anandan. Optimization in model match-
ing and perceptual organization. Neural Computation, 1:218–229, 1989.

[28] R. Myers, R. C. Wilson, and E. R. Hancock. Bayesian graph edit dis-
tance. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22:628–635, 2000.

[29] M. Pelillo, K. Siddiqi, and S. Zucker. Attributed tree matching and
maximum weight cliques. International Conference on Image Analysis
and Processing, September 1999.

[30] M. Pelillo, K. Siddiqi, and S. Zucker. Continuous-based heuristics for
graph and tree isomorphisms. Approximation and Complexity in Nu-
merical Optimization: Continuous and Discrete Problems, 1999.

[31] M. Pelillo, K. Siddiqi, and S.W. Zucker. Many-to-many matching of
attributed trees using association graphs and game dynamics. In Inter-
national Workshop on Visual Form, pages 583–593, 2001.

[32] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as
a metric for image retrieval. International Journal of Computer Vision,
40(2):99–121, 2000.

[33] T. Sebastian, P. Klein, and B. Kimia. Recognition of shapes by edit-
ing their shock graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(5):550–571, 2004.

[34] T. Sebastian, P. N. Klein, and B. Kimia. Recognition of shapes by
editing their shock graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(5):550–571, 2004.

[35] Thomas Sebastian, Philip Klein, and Benjamin Kimia. Recognition of
shapes by editing shock graphs. In International Conference on Com-
puter Vision, pages 755–762, 2001.

[36] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser.
The princeton shape benchmark. In Shape Modeling International, Gen-
ova, Italy, June 2004.

47

ACCEPTED MANUSCRIPT

[37] A. Shokoufandeh, L. Bretzner, D. Macrini, M.F. Demirci, C. Jonsson,
and S. Dickinson. The representation and matching of categorical shape.
Computer Vision and Image Understanding, 103:139–154, 2006.

[38] A. Shokoufandeh and S. Dickinson. A unified framework for indexing
and matching hierarchical shape structures. In International Workshop
on Visual Form, pages 28–46, Capri, Italy, May 2001.

[39] A. Shokoufandeh, D. Macrini, S. Dickinson, K. Siddiqi, and S. Zucker.
Indexing hierarchical structures using graph spectra. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(7):1125–1140, July
2005.

[40] K. Siddiqi, A. Shokoufandeh, Sven J. Dickinson, and Steven W. Zucker.
Shock graphs and shape matching. In International Conference on Com-
puter Vision, pages 222–229, 1998.

[41] K. Siddiqi, A. Shokoufandeh, Sven J. Dickinson, and Steven W. Zucker.
Shock graphs and shape matching. International Journal of Computer
Vision, 35(1):13–32, 1999.

[42] Andrea Torsello and Edwin R. Hancock. Efficiently computing weighted
tree edit distance using relaxation labeling. In EMMCVPR, pages 438–
453, 2001.

[43] S. Umeyama. An eigen decomposition approach to weighted graph
matching problems. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 10(5):695–703, September 1988.

[44] M. van Eede, D. Macrini, A. Telea, C. Sminchisescu, and S. Dickinson.
Canonical skeletons for shape matching. In International Conference on
Pattern Recognition, Hong Kong, August 2006.

[45] R. C. Wilson and E. R. Hancock. Structural matching by discrete relax-
ation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19:634–648, 1997.

[46] Song Chun Zhu and A. L. Yuille. Forms: A flexible object recogni-
tion and modeling system. International Journal of Computer Vision,
20(3):187–212, 1996.

48

