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Abstract—Given a set of captioned images of cluttered
scenes containing various objects in different positions and
scales, we learn named contour models of object categories
without relying on bounding box annotation. We extend a
recent language-vision integration framework that finds spatial
configurations of image features that co-occur with words in
image captions. By substituting appearance features with local
contour features, object categories are recognized by a contour
model that grows along the object’s boundary. Experiments on
ETHZ are presented to show that 1) the extended framework
is better able to learn named visual categories whose within-
class variation is better captured by a shape model than an
appearance model; and 2) typical object recognition methods
fail when manually annotated bounding boxes are unavailable.

Keywords-Language-Vision integration, Image annotation,
Perceptual grouping, Object categorization, Semi-supervised
shape learning

I. INTRODUCTION

Learning visual category models from training images
is now standard practice in the object categorization com-
munity [1], [2]. Such systems typically rely on a strong
degree of supervision, including cluttered scenes with la-
beled bounding boxes placed around objects of interest, or
alternatively, scenes in which the labeled object of interest
is largely front and centre (allowing the image boundary
to serve as an effective bounding box). However, as the
scope of the recognition task scales up to many thousands of
objects, the burden of manually annotating the large number
of required training images becomes prohibitive.

Captioned images are ubiquitous on the web and in certain
image collections, and offer a powerful semi-supervised
mechanism for learning category models without the need
for labeled bounding boxes or image cropping. Unfortu-
nately, any given image-caption pair may be unreliable,
providing very weak or even erroneous training data. For
example, the caption’s nouns may refer to objects that don’t
appear in the image, while the more salient objects in
the image might not even be referred to in the caption.
However, across a large training set, recurring correspon-
dences between particular objects appearing in the images
and particular nouns appearing in the captions of those same
images can be assumed to be salient. Such correspondences
can therefore be analyzed to yield visual category models
as well as the names of those categories.
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Figure 1. Given a set of captioned images of objects appearing in different
positions and scales, we learn named contour models without bounding
boxes.

In [3], such a framework was proposed which learned
structured visual object models from captioned training
data. A learned visual model was captured in a graph, in
which nodes represent SIFT features and edges represent
spatial relations among the SIFT features, including relative
position, orientation, and scale. When applied to captioned
image collections, the choice of SIFT to characterize a node
ultimately constrained the system to learn the structure and
names of exemplars rather than categories. For example, the
system learned the logos (and team names) of NHL teams
from captioned action images (containing players whose
jerseys contained the logos) taken from the NHL website,
and learned the models and names of famous buildings and
landmarks from around the world from captioned image
landmark collections. The question we pose is whether such
a framework can be extended to learn named categorical
models based on shape rather than appearance.

Extending the framework of Jamieson et al. [3] poses a
number of significant challenges, including 1) the choice of a
suitable structured shape representation that can accommo-
date within-class deformation, articulation, and occlusion,
and 2) coping with the tremendous ambiguity of local shape
features relative to appearance-based features such as SIFT.
For a categorical shape representation, we adopt and extend
the contour representation introduced by Ferrari et al. [4], re-
placing the star graph with a more generic graph with spatial
relations between any pair of nodes, and adding multi-scale
feature extraction. Like Jamieson et al., we “grow” visual
models that repeatedly co-occur with caption words across
training images. However, for any pair of spatially related



contour features representing an initial model, there may
be many false positives across training images due to their
inherent lack of specificity compared to appearance-based
features. As a result, we introduce a powerful bottom-up
heuristic that can focus search for recurring shape features
that are likely to represent the boundaries of objects.

We evaluate our approach head-to-head with Jamieson et
al., and demonstrate that on a standard benchmark, it clearly
outperforms Jamieson et al. in terms of learning visual
categories in which shape is more invariant than appearance.
Since we have based our shape representation on that of
Ferrari et al., we demonstrate that for the task of learning
visual models with correct object labels but without the aid
of bounding boxes, our approach outperforms Ferrari et al.’s
approach, which depends heavily on the strong supervision
offered by a bounding box. Finally, we demonstrate the
robustness of our approach under image caption noise.

II. RELATED WORK

There is a vast literature on language-vision integration,
and the related problems of object category modeling, recog-
nition and localization. While it is beyond the scope of this
paper to provide a full review of these topics, we will focus
on the two subfields most related to our work: 1) using
language or text to discover associations between visual and
textual features, and 2) weakly- or semi-supervised object
category learning using part-based models in support of
image annotation.

Automatic image annotation systems attempt to discover
correlations between words and visual features in a set of
image-text pairs, e.g., Barnard et al. [5] and Duygulu et al.
[6]. Such systems typically model objects as a mixture of
appearance-based features in which common configurations
are not captured by explicit spatial relations but rather by
co-occurrence statistics, e.g., Carneiro et al. [7], Monay
and Gatica-Perez [8], and Quattoni et al. [9]. The relatively
high dimensionality of appearance-based features, e.g., SIFT,
means that image features are relatively unambiguous and
therefore explicit relations are often unnecessary. The most
similar work to ours is Jamieson et al. [3], whose framework
used language to recover an explicit graph-based structural
appearance model from captions training images. While
the structural model captured explicit relations, its reliance
on appearance-based local features rendered it far more
suitable for learning named exemplars rather than named
categories. We attempt to extend that framework to support
the learning of visual object categories based on a structural
shape representation, which is far more invariant to within-
class variation than a structured appearance representation.

Learning a visual category model in the absence of
image captions has received considerable attention from the
recognition community. Most current approaches assume
that bounding boxes around the objects are given [1], [10],

[2]. In our domain, we want to avoid such strict supervi-
sion, and learn objects from cluttered scenes without any
a priori information about location and scale. Moreover,
labeling is assumed to be noisy in the sense that a noun
in the caption may or may not refer to an object in its
associated image, and an object in the image may or may
not be referred to in the caption. Given coarse location and
scale information, a number of frameworks have learned
structured models in terms of parts and relations without
requiring part labeling [11], [12], [13]. However, most of
these approaches, like Jamieson et al. [3], rely on the
distinctiveness of local appearance-based features, such as
image patches or SIFT, because such features allow the
search space to be aggressively pruned, thereby reducing
the complexity of the task. Furthermore, [11], [12], [13]
constrain object models to a star structure, while in our
work object features can be connected using a denser graph
whose number of vertices and edge structure are inferred
from images without supervision.

There are a few approaches which attempt to learn object
models without the strong supervision provided by a bound-
ing box. For example, Todorovic and Ahuja [14] propose a
powerful framework for unsupervised modeling based on
tree matching using a region-based object representation.
Lee and Grauman [15] perform object discovery over images
of multiple categories, using matching local appearance
patches to anchor an initial set of edge fragments. In our
approach, we do not rely on sparse discriminative features,
and instead use only dense contour features which capture
object categories better. Both Leordeanu et al. [16] and Payet
and Todorovic [17] use only shape features to learn object
models with weak supervision. In [16], object models con-
sisting of hundreds of fully interconnected features require
class labels for learning, while in [17], clusters of matching
pairs of contour features and spatial relations are found in an
unsupervised manner. While our visual representation also
consists only of contours, we take an integrated approach
where learning is guided by both bottom-up segmentation
and image caption text to achieve a comparatively efficient
way to initialize visual clusters among multiple categories.
The key concept here is that in our approach, we focus on
the construction of only those models that are referred to
(i.e., named) in the captions, as opposed to mining a much
larger space of possible regularities across a set of images,
regardless of whether they are salient or not.

III. OVERVIEW

Given a set of captioned images, we learn object models
that co-occur with words, and use the learned models
to detect and annotate objects in uncaptioned images. In
Section IV, we describe the object model, a graph in which
vertices are local contour features and edges encode pairwise
spatial relations between features. Section V describes how
object models are detected in an image by matching the



(a) Object model graph (b) Model instance

Figure 2. An object is modeled as a graph M over contour features F
with pairwise spatial relations S.

model’s contour features to those in the image. In a cluttered
image, typically a large number of ambiguous features match
individually to model features, creating an intractable search
space. Efficient detection is achieved by using the model’s
spatial relations to prune out unlikely matches.

Section VI describes how we learn object models that
co-occur with words. In a graph-growing process, an initial
model representing a small part of the object is iteratively
grown, primarily along the object’s boundary, to cover the
object. Features found in the vicinity of existing model
matches are added to the model if they recur with spatially
consistent relations, thus making the model more object-
specific and strengthening its co-occurrence with the given
word. When no more consistently recurring features can
be found in the vicinity, co-occurrence can no longer be
improved and the final model is returned.

Model growth strongly depends on the initial model
representing a small part of the object. Whereas in [3]
a spatially related pair of appearance-based features was
distinctive enough to represent a salient part, a related pair
of contour features is relatively ambiguous, i.e., a contour
representation of an object part is often very similar to, and
thus easily confused with, contours from background clutter
or even other objects. To ensure that model growth begins
from an object part, we use bottom-up segmentation as a
powerful heuristic to focus search on contours that are likely
to represent an object boundary.

IV. OBJECT MODEL

An object model is denoted as M = (F, S), where M is a
graph with a vertex set of contour features F = {f1, . . . , fT }
where T is unknown, and an edge set of pairwise relations
S ⊆ {sij : 0 ≤ i < j ≤ T}. Figure 2(a) shows an
example of such a structure. A (undirected) spatial relation
sij between features fi and fj may exist for any feature
pair. To maintain a spatially coherent object description, we
require that M be a connected graph. Typically, a dense set
of relations is learned for objects having spatially consistent
features and relations, resulting in a relatively distinctive
model, while more deformable and articulating objects result
in a sparser, more flexible model.

Feature extraction and description. Local contour fea-
tures are extracted from an image using the method of Ferrari
et al. [18]. Features are scale-invariant descriptions of line-
segment abstractions of image contours, where edgel-chains
are partitioned into line segments (e.g., Figure 2(b)). Because
linear partitioning is scale-dependent, we extract features at
multiple scales to obtain a robust bottom-up description of an
image. Efficient matching (Section V) and learning (Section
VI) is facilitated by a discrete vocabulary of codewords
[18], whereby similar contour features are represented by
the same codeword. By performing feature comparisons at
the codeword level, many feature similarity computations
are saved.

Spatial relations. A spatial relation sij encodes the
distance uij , relative direction vij , and relative scale wij

between features fi and fj , i.e., sij = (uij , vij , wij). Letting
xi and si denote feature position and scale with respect to
the image as in [18], respectively, the three components are
defined as follows:

uij =
1

λ
||xj − xi|| (distance)

vij = arctan(xj − xi) (relative direction)

wij =
1

λ
(sj − si) (relative scale)

where λ(si, sj) normalizes for the feature scales [3].
While features and spatial relations originate from the

image, the object model is a prototypical description of the
object using these elements, averaging over natural varia-
tions present in example images, e.g., due to deformation or
viewpoint variation. The following section explains how the
model matches to image features under these variations.

V. DETECTING OBJECTS

Occurrences of M = (F, S) are detected by matching
model features F = {f1, . . . , fT } to image features subject
to spatial relations S. Due to occlusion and feature extraction
errors, only a minimum number of model features are re-
quired to match. To detect occurrences in complex, cluttered
images efficiently, features are matched sequentially, using
S to prune out unlikely combinations at each stage.

Each occurrence is associated with a detection score D
that measures the confidence of the match, and can be
thresholded to obtain a level of precision. Suppose F ′ is
a set of image features which is a potential match to a set
of model features F . The detection score with respect to M
is defined as a ratio of two quantities (similarly to [12]):

D =
p(F ′|M)

p(F ′|bg)
. (1)

The numerator is the probability that F ′ is a true instance
of the object (approximated by M ), while the denominator
is the probability that F ′ is not an instance of the object.
The natural threshold of 1 for the ratio represents a pruning



threshold for the removal of highly unlikely matches. While
the quantity p(F ′|bg) determines the level of pruning, and
is set independently of the object, τ ≥ 1 provides a tighter,
object-specific threshold for D.

Let a partial matching be denoted using c, a list of T
binary indicators, where ci is 1 exactly when the model
feature fi is matched. We use F (c) ⊆ F to indicate the
subset of matching model features, and S(c) ⊆ S to indicate
the subset of model relations between any pair of features in
F (c). Furthermore, given a set of matching image features
F ′, let S′ denote the set of pairwise relations among F ′.

We let the object probability p(F ′|M) factorize into a
feature and spatial component:

p(F ′|M) = p(F ′|F )p(S′|S). (2)

Next, we proceed to define the two components. Let f ′

denote the image feature matching the model feature f . The
feature component p(F ′|F ) is defined only over f ∈ F (c),
as follows:

p(F ′|F ) =
∏

f∈F (c)

p(f ′|f), (3)

where p(f ′|f) is a Gaussian density over the feature dissimi-
larity measure d(f ′, f) given in [18], with variance σ2

f = 2.0
and zero mean. The dissimilarity d(f ′, f) compares two
contours using their line segment abstractions, in particular
their internal relative positions, orientations, and lengths.

The spatial component p(S′|S) considers only model
relations between matched features, i.e., sij ∈ S(c). Given a
pair of matching features, let s′ij denote the spatial relation
in the image corresponding to sij . The spatial component is
then defined as:

p(S′|S) =
∏

sij∈S(c)

p(s′ij |sij), (4)

where p(s′ij |sij) factors into its distance, relative direction,
and relative scale components:

p(s′ij |sij) = p(u′ij |uij)p(v′ij |vij)p(w′ij |wij), (5)

each of which is a Gaussian density with means uij , vij , wij

and fixed variances σ2
u = 0.35, σ2

v = 0.3, σ2
w = 0.8,

respectively. The spatial component accounts for variations
in spatial relations, e.g., due to deformation or viewpoint.

The background probability p(F ′|bg) represents a pruning
threshold and is similarly composed only of the matching
components as follows:

p(F ′|bg) =
∏

f∈F (c)

p(f ′|bgf )
∏

sij∈S(c)

p(s′ij |bgs), (6)

where p(f ′|bgf ) and p(s′ij |bgs) are fixed values that in the
product offset the ratio D.

Given the above definitions, the detection score is equiv-
alent to:

D =
∏

f∈F (c)

p(f ′|f)
p(f ′|bgf )

∏
sij∈S(c)

p(s′ij |sij)
p(s′ij |bgs)

. (7)

Note that since features and spatial relations must individ-
ually pass the pruning threshold given by p(f ′|bgf ) and
p(s′ij |bgs), each factor in Equation 7 is greater than 1,
i.e., each matching component accumulates evidence by
increasing the detection score. Since a partial match has
fewer components, it is penalized with a lower score.

Detection algorithm. As in [3], matching is done effi-
ciently by using S as a constraint to prune out unlikely
feature combinations. A set of potentially matching features
F ′ is iteratively grown until all model features are matched,
or no more matching features can be found. Failed partial
matches are rejected and search resumes with a new initial-
ization. Multiple occurrences in the same image are detected
by repeating the search over remaining image features.

VI. LEARNING OBJECTS

The graph-growing algorithm in [3] iteratively adds model
features to cover the object (e.g., in Figure 3), making
the model increasingly object-specific and simultaneously
increasing its co-occurrence with the word. Since word-
object co-occurrence is our objective in finding salient object
models in captioned images, we measure co-occurrence
using the score CM,W , defined as follows. Given N cap-
tioned training images, occurrences of words and objects
are summarized in two vectors of length N :

w = {w1, . . . , wN}, wn ∈ {0, 1}

indicating the occurrence of W in each image caption, and

m = {m1, . . . ,mN},mn ∈ [0, 1]

indicating the occurrence of M in each image. While
word occurrences are binary, object occurrences have soft
scores weighted by their detection scores D. When there
are multiple object occurrences in one image, the highest-
scoring detection is considered.

While object and word occurrences are obviously cor-
related, objects may or may not be referred to in the
caption, and words in the caption may or may not refer
to objects in the image. The co-occurrence score CM,W has
a probabilistic formulation in which the occurrences m,w
are generated from the presence (c = 1) or absence (c = 0)
of a common object, defined similarly to [3] as

CM,W =
p(m,w|c = 1)

p(m,w|c = 0)
. (8)



Figure 3. Initial models grow (left to right) to cover the object, increasing
in distinctiveness and co-occurrence with words ‘bottle’, ‘giraffe’, and
‘swan’, shown (top to bottom).

The numerator is defined as:

p(m,w|c = 1) =

N∏
n=1

p(mn, wn|c = 1) (9)

=

N∏
n=1

∑
on=0,1

p(mn, wn|on, c = 1)p(on|c = 1)

=

N∏
n=1

∑
on=0,1

p(mn|on, c = 1)p(wn|on, c = 1)p(on|c = 1)

where on is a hidden variable indicating the presence (on =
1) or absence (on = 0) of the common object. The quantities
α = p(w|o = 1) and β = p(w|o = 0) are the probability
that W occurs in the caption when the common object is
present or absent, respectively. Similarly µ = p(m|o = 1)
and ν = p(m|o = 0) represent the probability of the model
M occurring in an image when the common object is present
or absent. These parameters control the degree to which
CM,W is sensitive to caption noise.

The denominator is defined as:

p(m,w|c = 0) =

N∏
n=1

p(mn|c = 0)p(wn|c = 0) (10)

and acts as a bias term to offset the score CM,W .
Graph-growing algorithm. Given an initial model M (0)

of two spatially related features representing a small
object part, a sequence of successively larger models
M (1),M (2),M (3), . . . is found such that co-occurrence
CM(k),W is increasing for k ≥ 0. More specifically, given
occurrences of M (k), a search is performed for a feature in
the vicinity that repeats in a consistent spatial relation with
respect to the occurrences. Given a candidate shortlist of
such features, the candidate with the highest CM(k+1),W is
chosen, where M (k+1) is the model with the added candidate
feature, provided that CM(k+1),W > CM(k),W . When no
such candidate exists, the current model is returned as the
final model. While the approach described above is greedy,
in practice we keep a list of the best few candidates at each
iteration to explore in a backtracking fashion.

Figure 4. Superpixel Closure [19] returns multiple figure-ground seg-
mentations per image (shown above for 4 images). Model initialization is
constrained to contour features that fall along the boundaries of segmenta-
tion regions.

Model initialization. It is crucial that M (0) initially rep-
resents part of an object so the model can be expanded. The
ambiguity of contour features, however, makes it difficult to
distinguish salient boundary portions from accidental con-
tours. Bottom-up segmentation offers a powerful heuristic
for focusing search over features likely to represent object
boundaries. For each image containing the word W , we use
Superpixel Closure [19] to extract multiple figure-ground
segmentation hypotheses at multiple scales (Figure 4). The
boundaries of a figure-ground segmentation hypothesis are
used as constraints over features, where only contour fea-
tures that fall within a small, fixed distance from the region
boundary are selected. By initializing M (0) over this subset
of features, the heuristic is used to guide the search for
promising object parts that can be added to the model.

VII. EVALUATION

Following a discussion of the strengths and limitations
of our method in Section VII-A, we present a head-to-
head comparison of our approach to Jamieson et al. [3] in
Section VII-B, and two experiments comparing our approach
to Ferrari et al. [2], on which we have based our shape
representation, in Section VII-C. Finally in Section VII-D,
we train object models under image caption noise.

Experiments are conducted on the benchmark ETHZ
dataset [18], which consists of 255 images of 5 diverse
categories labeled with the words ‘apple logo’, ‘bottle’,
‘giraffe’, ‘mug’, and ‘swan’. While bounding boxes are
provided with the ETHZ dataset, they are used only for
evaluating object localization and not for training, unless
otherwise noted.

In our evaluation, we have used only the single final
model M∗ having the highest co-occurrence score CM∗,W ,
in the same manner as in [3]. A possibility is to incorporate
combinations of multiple learned models into detection for
improved robustness (e.g., models corresponding to different
viewpoints), although we have not done this.

A. Qualitative evaluation

In Figure 9 we present sample detections of learned
object models for each ETHZ category. Our method is
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Figure 5. Comparison with Jamieson et al. Contour features capture object categories more effectively than appearance-based features.
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Figure 6. Comparison with Ferrari et al., training without bounding boxes.

able to localize objects under large variations in scale and
minor changes in viewpoint, orientation, deformation, and
articulation. We achieve our best performance with ‘apple
logo’, which features stable contours; our system missed
only instances that were severely occluded or rotated by a
large amount. ‘Bottle’ and ‘mug’ objects have tremendous
variation in their surface markings: these objects are similar
only in their shape, and our method correctly captures their
characteristic contours. One source of false positives, how-
ever, is brand labels on bottles, which are easily confused
with the bottle boundary due to their proximity. ‘Giraffe’ and
’swan’ pose a significant challenge to our system due to their
deformation and articulation. The line-based abstraction of
Ferrari et al.’s contour features does not always respond
in a stable manner to slight changes in curvature, as curve
partitioning breakpoints suddenly appear or disappear. When
our system encounters highly varying features during the
graph-growing process, it tends to terminate growth early to
avoid overfitting.

B. Shape vs. appearance models

A comparison with Jamieson et al. [3] allows us to study
the effectiveness of shape-based vs. appearance-based fea-
tures for learning named object categories. Our experiments
support our hypothesis that shape is more effective. Figure 5
shows the performance of both approaches using precision-
recall over correct image annotation, where an annotated
image is counted as a true positive if the annotation is
correct, i.e., a detected occurrence is consistent with the
true word label; and counted as a false positive if a detected
occurrence is inconsistent with the true label.

Results show that the appearance-based system has diffi-
culty finding recurring object models, especially for ‘bottle’
and ‘mug’. These categories exhibit virtually no regular-
ities in colour, texture, or surface markings. Instead, the
appearance-based system found recurring texture on the

body of the giraffe (although overfit), and company slogan
text appearing in a limited number of ‘applelogo’ images.
Recurring patterns in the water were found for ‘swan’ im-
ages, but these were similar to parallel strokes in leaves and
grass, giving rise to poor precision. While appearance may
have a limited ability to describe some object categories,
contours were found to be more effective overall.

C. Training without bounding boxes

Our next experiments compare our approach with that of
Ferrari et al. [2] under two settings described below. We
follow the strict evaluation protocol in [2] (Pascal criterion
of 50% intersection-over-union bounding box overlap), and
report in Figure 6 detection rate (DR) against false positives
per image (FPPI). For interest, we include performance for
Ferrari et al.’s initial hough voting stage (lower curve) and
the final verification stage (higher curve).

In the first setting we train under realistic conditions
where manual annotations (bounding boxes) are not avail-
able to the system. Results in Figure 6 show that we
generally outperform Ferrari et al., which is unable to handle
training images where objects do not appear in consistent
positions and scales, namely, ‘apple logo’, ‘bottle’, and
‘mug’. It is clear that Ferrari et al.’s method strongly
depends on the availability of manually annotated bounding
boxes. Ferrari et al. performs better for ‘giraffe’ and ‘swan’,
as the respective objects typically occupy most of the image,
i.e., the image boundary serves as an effective bounding box.

Our second setting examines the scenario where bounding
boxes are provided for training. Although our system is
not designed to use the information given by bounding
boxes, it is interesting to include a discussion of the results.
While our method works well for categories with relatively
stable contour representations, e.g., ‘apple logo’, the high
variation in deformable and articulating categories present
a significant challenge to our model-growing algorithm, and
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Figure 7. Comparison with Ferrari et al., training with bounding boxes.

our performance is worse than that of Ferrari et al.’s (Figure
7). Since models grow incrementally in size, the algorithm is
faced with the choice of adding weak, ambiguous contours,
and hence may terminate growth early to avoid overfitting,
resulting in the strict bounding box overlap criterion not
being met. In contrast, Ferrari et al.’s Hough-based method
has a more global view by having each model feature
vote independently for the object centroid. However, this
explicitly takes advantage of information from the bounding
box, and thus performs an easier task than ours.

D. Image caption noise

In our final experiment, we approximate real-world cap-
tions by adding noise to the ETHZ word labels (referred
to below as captions). Recall from Section VI that the co-
occurrence score assumes that an object is likely to be
referenced in the caption with probability α, and an object
has a chance of being referenced even when it is absent,
with probability β. We corrupt the 5 original words in the
ETHZ captions as follows. First, with probability α, words
are substituted with a random word (not restricted to the 5
original words). For example, some ‘apple logo’ images no
longer have the word ‘apple logo’ in the captions. Secondly,
with probability β, an original word is appended to captions
not originally containing that word. For example, some non-
‘apple logo’ images now have the word ‘apple logo’ in
their captions. Distinct levels of noise are quantified with
a percentage p, where p% reflects the value α = 1 − p

100
and the value β = p

100 . We run experiments at different
noise levels, where captions are corrupted prior to training.
Figure 8 reports localization performance as a function of
noise levels, and shows that performance for ‘apple logo’
and ‘bottle’ remains stable under significant noise.

VIII. CONCLUSION

We have extended the framework of Jamieson et al. [3] to
learn named categorical models based on shape, and added
a focus-of-attention heuristic to cope with the ambiguity
of contour features. Using a standard benchmark we have
demonstrated that our method is able to handle large varia-
tions in scale and minor changes in viewpoint, deformation
and articulation. A comparison with Jamieson et al. [3]
showed that object categories are better captured by shape
than appearance. Additionally we outperform methods such
as Ferrari et al. [2] when training without bounding boxes,
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Figure 8. Localization performance of ‘apple logo’ and ‘bottle’ as caption
noise is increased by corrupting ETHZ word labels. Results show stability
under significant noise (up to 20%).

and showed that such methods have a strong dependence on
manual annotations.

As part of future work, we would like to extend the
method in numerous ways to make it applicable to larger
datasets. Ultimately, our goal is to learn object class
models directly from the web. This entails having a richer
representation (shape as well as appearance, more flexibility
in the shape features), dealing with multiple classes in a
scalable way as well as a more involved text model that
could better deal with noisy image tags and surrounding
web text.
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