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Abstract

Human observers can rapidly classify real-world scenes

into their natural categories (e.g. beaches, mountains).

It is unclear what neural mechanisms underlie this rapid

processing of scenes. In a previous behavioral study,

we demonstrated that local ribbon symmetry facilitates

scene classification. Here we manipulate the ribbon sym-

metry content of line drawings of real-world scenes and

then decode scene categories from patterns of voxel ac-

tivities of the observers obtained via fMRI. We can decode

scene categories from the parahippocampal place area

(PPA) more easily from symmetric scenes than asymmet-

ric scenes. In earlier visual areas the decoding accuracy

for symmetric and asymmetric scenes was not signifi-

cantly different. This suggests that the benefit for sym-

metric scenes in both behavior and fMRI is not solely

driven by a lower-level preference for symmetry. Instead,

ribbon symmetry may be uniquely informative for scene

categorization.
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Introduction

As soon as a person opens their eyes, their visual experience
is that of a cohesive world, composed of individual objects and

surfaces. The human visual system must transform low-level
image properties into conscious percepts of objects and con-
tinuous surfaces. Visual processing takes the responses from
individual photo-receptors and groups them through a hierar-
chical process, where the elements are grouped into larger
structures, and finally into objects and scenes. An observer
can classify a scene when it is presented very briefly (Potter
& Levy, 1969; Thorpe, Fize, Marlot, et al., 1996; VanRullen
& Thorpe, 2001). Human observers can rapidly classify line
drawings of real-world scenes, even though they do not con-
tain the richness of a photograph (Biederman, Mezzanotte, &
Rabinowitz, 1982; Walther, Chai, Caddigan, Beck, & Fei-Fei,
2011). The speed at which photographs or line drawings can
be classified demonstrates that the grouping process carried
out by the visual system occurs very rapidly.

The Gestalt psychologists proposed qualitative grouping
rules describing what image features influence this process.
While many of these grouping rules have been implemented
in concrete, quantitative algorithms, a rigorous algorithm for
the cue of symmetry has been lacking. We recently described
an algorithm for measuring contour symmetry in a line drawing
of a scene (Wilder et al., 2019), and showed that the presence
of symmetry greatly facilitates scene categorization.

Here we look for the neural correlates of this local symmetry



effect, using fMRI. Previous work on global mirror symmetry
as well as axiality of shapes (related to the local symmetry we
measure here) has found an influence of symmetry in V3, V4,
and LOC. Local contour symmetry is distinct from these previ-
ously studied types of symmetry, so it is not clear if we should
expect an effect of symmetry in these areas. The parahip-
pocampal place area has been shown to have activity consis-
tent with behavioral scene classification as well as 3D scene
geometry (Ferrara & Park, 2016; Lescroart & Gallant, 2019),
so we hypothesize that PPA will be influenced by local sym-
metry in line drawings of natural scenes. To test this hypoth-
esis we showed intact, symmetric, and asymmetric scenes to
observers and decoded scene categories from voxel activity
patterns in several ROIs (V1, V2, V3, LOC, PPA, OPA, and
RSC).

Methods

Scenes dataset

We showed participants line drawings of six categories of
real-world scenes (Walther et al., 2011; Wilder et al., 2019):
Beaches, Forests, Mountains, Cities, Highways, and Offices.
The line drawings we generated by artists tracing the impor-
tant lines from a set of color photographs. There are 475 im-
ages across all scene categories.

Scoring Symmetry

Our measure of symmetry is based upon the medial axis
transform, which is a way to transform a shape from the pix-
els along its boundary to the central axis in each part of the
shape. The medial axis marks where in the shape the con-
tour is equidistant on both sides. Details of our method can
be found in (Wilder et al., 2019). We will briefly describe the
process here.

We compute symmetry by starting with a line drawing of a
scene, and taking the Euclidean distance transform, which, for
each pixel in the image, measures the distance from that pixel
to the nearest contour. From this distance image we can de-
termine the gradient at each point. The medial axis lies at the
points where this gradient flows outward. From the distance
transform, we also know the distance from a medial axis point
to the contour in each direction. We call this the radius func-
tion. As we move along the medial axis, we measure how the
radius function changes. If there is no change in the radius,
we are in a locally ribbon symmetric region, meaning that the
contours on either side are parallel, as a curving ribbon of
constant width. Before scoring the contours, we must score
the axis points. Our score is based on the behavior of the
radius function within a local region. We count the number
of times the radius changes between neighboring axis points
within that local region. If this number is high, we give a low
symmetry score, because the contours are curving indepen-
dently of one another. If the number of radii changes between
neighboring axis points in this region is low, we give a high
symmetry score. Once the axis is scored, we find the contour
points that this axis point flows to (using the gradient of the

distance transform). Those contour points receive the score
of their corresponding axis point. As our method finds the me-
dial axis in all white-space regions of an image, there are two
skeletons that correspond to each contour point, one on either
side. The score we assign is the maximum score of the two
axis scores.

Concretely, we consider a window of 2K + 1 medial axis
points centered at our target medial axis point Q. These points
are Q�K , . . . ,QK , and Q0 = Q. At medial axis point Q, the
score S(Q) is

S(Q) =
#{Qi|8i={�K,...,K�1} where |R (Qi)�R (Qi+1)|

max(R(Qi),R(Qi+1))
<= t}

2K

where R (Qi) represents the radius value at Qi, and t is a
marginal threshold.

Stimuli

In our study we manipulated the amount of symmetric content
in the stimuli we showed to our observers. We used either the
original, intact line drawing, or we used a half-image, contain-
ing exactly half of the contour pixels of the intact image. To
create the half-images we first rank ordered all contour pix-
els based upon their symmetry score. For the Symmetric im-
ages we used the highest ranking half of the pixels, and for
the Asymmetric images we used the lowest ranking half of the
pixels. Thus, the symmetric and asymmetric images combine
to create the intact image, and they contain an equal number
of contour pixels. You can see an example of a scored image,
along with the accompanying splits in Fig. 1.

Each of the 475 images was transformed into three con-
ditions, resulting in 1425 total images that may be shown to
participants.

Participants

Twenty-two participants were recruited from University of
Toronto Facebook groups, and were paid for their participa-
tion. Only 19 participants’ data were used because three par-
ticipants fell asleep during multiple runs of the experiment.

Design and Procedure

We used a block design fMRI experiment. Participants were
scanned in nine runs. Each run contained 18 blocks, one
block for each combination of scene category and image con-
dition. In each block, participants were shown 8 scenes from
the same category and image condition. Each image was
shown for 800 ms, with a 200 ms gap between images. There
was a 10s fixation period prior to the first block and after each
block. Participants were instructed to maintain fixation for the
entire run, and a fixation mark was always on the screen to
aid the participants.

Separate localizer scans were conducted in order to allow
for the determination of areas V1-V3, LOC, PPA, OPA, and
RSC, for each individual participant.
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Figure 1: Example Office line drawing. The top image (gray
border) shows the intact image with the symmetry score over-
layed on top of the contour pixels. After the image is scored
the pixels are rank ordered, and the top half are used to cre-
ate the symmetric image (in red) and the asymmetric image
(in blue). Each of these contain exactly half of the contour pix-
els of the intact image, and combine to form the intact image.

Results

Multivariate Analysis

Our main analysis is a multivariate analysis where we train
linear support-vector machines (SVMs) to classify scene cat-
egories from the activity patterns of voxels elicited by partici-
pants viewing the scene images. The classifiers were trained
using leave-one-run-out cross-validations. Separate classi-
fiers were trained for each image condition.

In all ROIs decoding accuracy was above chance, for each
image condition. We were specifically interested in the relative
performance between the symmetric and asymmetric condi-
tions. For each ROI we conducted a paired t-test on the de-
coding accuracies from the symmetric and asymmetric condi-
tions. We found significantly better performance in the sym-
metric condition for both PPA and OPA (p < 0.05). In RSC
we found significantly better performance in the asymmetric
condition (p < 0.05).
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Figure 2: Decoding accuracy for each ROI (V1, V2, V3, LOC,
PPA, OPA, RSC) for intact (gray), symmetric (red), and asym-
metric (blue) scenes. * denotes p < 0.05

Univariate Analysis

We also performed a univariate analysis in each ROI, for each
image condition. In all ROIs, the activity for the intact condition
was the lowest. In V1, V2, and V3 there was significantly more
activity in the asymmetric condition than the symmetric condi-
tion (V1 and V2 p < 0.001, V3 p < 0.05). Also, in the OPA,
there was significantly more activity for the symmetric condi-
tion than the asymmetric condition (p < 0.05). No differences
were found in LOC, PPA, and RSC.

Discussion

As hypothesized, we found a significant effect of symmetry
versus asymmetry in scene selective ROIs.

Previous work has suggested that the axial structure of
shapes are represented in V3 (Lescroart & Biederman, 2013).
Additionally, single cell recordings in early visual cortex have



shown that some neurons respond highly when their receptive
field is centered on the medial axis (Lee, 1996). Our scoring
of symmetry is based upon the medial axis, thus these areas
could have been involved in processing our stimuli, but we
failed to find any significant results. Our line drawing scene
stimuli are quite different from the stimuli of the previous stud-
ies and are not isolating single medial axes. This could be
why we found no preference for symmetry in these areas. Ad-
ditionally, we restrict our symmetry measure to ribbon sym-
metry. While many objects have ribbon symmetry in the real
world, when projected into the image plane, due to perspec-
tive foreshortening, they taper in the image. We may have
found no influence of ribbon symmetry in earlier areas that
encode object and shape parts because our method does not
score tapering regions highly.

In addition to the significant difference between decoding
the scene categories for symmetric scenes and asymmetric
scenes in PPA, we found a similar effect in OPA, and the op-
posite effect in RSC. All three of these areas are involved in
processing scenes. Recent studies have characterized the
ways in which the functions for these areas differ (Dillon, Per-
sichetti, Spelke, & Dilks, 2018; Persichetti & Dilks, 2018). The
PPA was reported to be highly activated during categoriza-
tion but not for a navigation task, while OPA was more active
for navigation than categorizations (Persichetti & Dilks, 2018).
RSC showed low activity in both task. Both PPA and OPA
were sensitive to changes in scene layout, but RSC was not
(Dillon et al., 2018). Our work is consistent with those find-
ings; manipulating symmetry information, which is related to
scene layout, affects both PPA and OPA in a consistent man-
ner, while RSC had the opposite effect.

Conclusion

Human rapid scene classification is aided by local symme-
try. Here we show that scene selective cortex represents lo-
cal symmetry in its voxel patterns. Area PPA mirrors that of
categorization behavior, where symmetric scenes are easier
to classify than asymmetric ones. Ribbon symmetry may be
uniquely informative for scene categorization.
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