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Abstract

Automatic Verb Classification Using a General Feature Space

Eric Joanis

Master of Science

Graduate Department of Computer Science

University of Toronto

2002

We develop a general feature space that can be used for the semantic classification

of English verbs. We design a technique to extract these features from a large corpus

of English, while trying to maintain portability to other languages—the only language-

specific tools we use to extract our core features are a part-of-speech tagger and a partial

parser. We show that our general feature space reduces the chance error rate by 40%

or more in ten experiments involving from two to thirteen verb classes. We also show

that it usually performs as well as features that are selected using specific linguistic

expertise, and that it is therefore unnecessary to manually do linguistic analysis for each

class distinction of interest. Finally, we consider the use of an automatic feature selection

technique, stepwise feature selection, and show that it does not work well with our feature

space.
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Chapter 1

Introduction

1.1 Statement of Purpose

In any language, verbs can be grouped together into semantic classes which share com-

mon elements of meaning. It is well-known in linguistics that verbs in such classes will

also share syntactic characteristics, since the semantics of a verb at least partially deter-

mines its syntactic behaviour (Pinker, 1989; Levin, 1993). Using this syntactic–semantic

link as a central assumption, Levin (1993) proposed a semantic classification of English

verbs, bringing together decades of linguistic research. In computational linguistics, se-

mantic classifications of verbs are useful in the construction of lexicons for a number of

applications, such as machine translation (e.g., Dorr, 1997), natural language generation

(e.g., Stede, 1999), and information retrieval (e.g., Klavans and Kan, 1998).

Recently, a number of researchers have worked on using the syntactic–semantic link

to automate, at least in part, the process of verb classification (see §1.2). Most of

these studies have used some type of features to quantify or describe the syntactic char-

acteristics of verbs, using the assumption that information about the syntactic use of

a particular verb can provide information about its semantics. Supervised or unsuper-

vised classification techniques are then used to recover semantic information from these

1



2 Chapter 1. Introduction

features.

In particular, Merlo and Stevenson (2001) have used, as features, five linguistically

motivated statistical indicators for the membership of verbs in three classes they consid-

ered. Building on the syntactic–semantic link, they hypothesize that statistics regarding

the use of particular verbs can be automatically gathered from a large corpus and used

as features in a machine-learning system to automatically perform the semantic classifi-

cation.

The experiments Merlo and Stevenson (2001) conducted gave promising results, but

linguistic expertise was required to develop features that were good indicators for the

particular classes they considered. The need for linguistic expertise limits the applicabil-

ity of the method, since similar expertise would be required for each class distinction to

be considered. Instead, we propose an analysis of possible verb class distinctions, which

generalizes Merlo and Stevenson’s features to a large space of features that could poten-

tially cover any semantic classes. Accompanied by a technique to automatically select

the relevant features for a given classification task, or a machine-learning system capable

of ignoring irrelevant features, this general feature space could be used for the automatic

learning of any semantic verb class distinction in English. If our approach is successful, it

will no longer be necessary to analyze the differences between individual classes to devise

relevant features for a specific class distinction. Furthermore, if the approach used to

build this feature space was transferable across languages, general feature spaces could

be built for other languages as well.

In this study, we experiment with a new approach for building a general feature

space for the semantic classification of English verbs, and test it with a number of verb

classification tasks of varying complexity. We do not address the transferability of the

feature space directly. However, we view alternation behaviour as an integral part of

the definition of verb classes in any language, since the semantic classification of verbs

is largely based on the syntactic expression of their arguments. While our feature space
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would certainly need to be adapted and expanded to deal with other languages, we expect

the sufficiently useful extraction of argument slots, as we perform it, to play a key role

in feature extraction for any language. We therefore try to use only those tools that

can reasonably be expected to exist or be readily developable for other languages. For

example, we use a partial, rather than full, parser, which produces noisier results, but is

more readily available for languages other than English.

1.2 Previous Work on Automatic Verb Classification

Levin (1993) (hereafter referred to simply as Levin) manually classifies English verbs

into semantic categories according to their assignment of semantic arguments to syntac-

tic positions, as well as the diathesis alternations they undergo. Diathesis alternations

involve switching semantic arguments between different syntactic positions. For example,

the thing being broken can occur in the direct object slot of the verb break, as in The boy

broke the window, or in the subject slot, as in The window broke (causative/inchoative

alternation, Levin §1.1.2.1). Since Levin published her classification, several approaches

have been taken towards automating verb classification, and towards automatically iden-

tifying participation in a diathesis alternation.

Dorr and Jones (1996) investigate the theoretical potential of using syntactic frames

to classify verbs. (A syntactic frame is a list of the syntactic slots in which verb arguments

are found, e.g., NP-V-NP-PPfor or NP-V-NP-NP). They define the syntactic signature of

a Levin verb class as two lists of syntactic frames—those allowed and those not allowed—

according to Levin’s examples. Note that these are not statistical features, but simple

lists, unlike most other work we review here. They show that 187 (97.9%) of the 191

Levin classes have unique signatures, which suggests that the syntactic–semantic link

can be exploited computationally. They then argue that if one performs word-sense

disambiguation (WSD) on a verb, the signature of its sense in a given Levin class will
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be the same as the signature of its class, and therefore that 97.9% accuracy can also

be obtained when classifying disambiguated verbs into the Levin classes. For “novel

verbs” (verbs and verb senses not covered in Levin), they propose to use the syntactic

codes from Longman’s Dictionary of Contemporary English (LDOCE) (Procter, 1978)

to acquire syntactic signatures. They then assign the novel verb to the closest matching

Levin class, based on the syntactic signature of the classes. They evaluated this method

with 134 verb senses, and found that 82 (61%) were accurately classified—an impressive

result given that the chance baseline accuracy is below 1/191 (since they also consider

new classes not covered in Levin) (Dorr, 1997).

However, the syntactic signatures used by Dorr and Jones (1996) are either extracted

directly from Levin’s examples, or from LDOCE, and therefore they are essentially noise-

free, a situation that cannot be reproduced with any corpus-processing tools. Therefore

we cannot compare their results with classification experiments based on statistical fea-

tures extracted from corpora, such as the ones we present later in this section. Never-

theless, by exhibiting a computational use of the syntactic–semantic link, Dorr and Jones

(1996) show that it is worthwhile to try to acquire syntactic information automatically

for the purpose of semantic verb classification.

Oishi and Matsumoto (1997) have produced a semantic classification of verbs in

Japanese by combining what they call a thematic classification based on case frames

with an aspectual classification based on adverbs. They take advantage of the case

markings in Japanese, so that their case frames—lists of the case markings that the

arguments of a verb can take—are equivalent to syntactic frames. They obtained the

list of possible case frames and adverbs for each verb from a Japanese dictionary of de-

pendency relations. They then used the acquired case frames and adverb lists to build

very fine-grained thematic and aspectual classifications consisting of 173 and 328 classes,

respectively. Manually combining these two classifications, they built a network of 38

semantic classes for Japanese verbs. They argue that their thematic and aspectual clas-
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sifications made building the semantic classification easy, but they still had to build it

manually. In our work, we attempt to do most of the classification work automatically,

and we attempt to eliminate the need for external sources of knowledge, such as the

dictionary they use.

Schulte im Walde (1998, 2000) has investigated the clustering of English verbs using

distributional statistics over syntactic frames acquired using a statistical parser. She

tested her approach with 153 verbs in 80 Levin classes, and showed that the approach

had good potential. In more recent work, she applied the same technique to 57 German

verbs in fourteen classes, and had reasonable success in clustering them (Schulte im

Walde and Brew, 2002). It is difficult to interpret the results of these studies, however,

since it is unclear how one can objectively quantify the quality of a set of automatically

built clusters. Schulte im Walde and Brew (2002) propose an evaluation method, but the

numbers are not meaningful without the detailed explanation presented in the paper, so

we do not present them here.

An important part of the work in producing a verb classification like Levin’s is iden-

tifying whether a given verb can participate in a particular diathesis alternation. For

that purpose, McCarthy (2000, 2001) uses selectional preferences encoded over a cut in

the WordNet 1.5 noun hierarchy.1 Consider a diathesis alternation where a role can be

switched between two syntactic slots. McCarthy was able to determine whether a verb

can participate in the diathesis alternation with an accuracy of around 70% (baseline:

50%) by measuring the similarity of the selectional preference the verb has for those two

slots. This technique could only be applied to a few languages other than English, how-

ever, since it relies on the availability of an ontology such as WordNet. McCarthy also

experimented with a simple lemma overlap measure, and achieved an accuracy around

1A cut in a tree is set of nodes that induces a partition of its leaves. Thus, each element of a cut
groups together all the leaves it dominates, and each leaf in the tree is dominated by one of the cut
elements (Li and Abe, 1998). A WordNet cut is defined similarly, but since the noun hierarchy is a
directed acyclic graph, each leaf may be dominated by more than one cut element.
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60%. We use a similar lemma overlap measure in this study (see §2.8).

Some researchers have used corpus-based statistics to acquire information about verb

tokens, rather than verb types.2 Many verbs have different senses which belong to dif-

ferent Levin classes. Lapata and Brew (1999) used joint frequency statistics over verbs,

verb classes, and syntactic frames to infer the most likely Levin class of a verb token,

given the syntactic frame it occurs in. They experimented with benefactive and dative

verbs. Considering only the frames NP-V-NP-NP, NP-V-NP-PPto , and NP-V-NP-PPfor ,

they were able to correctly identify the Levin class of unambiguous verb tokens 91.8% of

the time (baseline: 65.7%), and of ambiguous ones 83.9% of the time (baseline: 61.3%).

Also working at the verb token level, Siegel (1999) used fourteen carefully selected

linguistic indicators to automatically determine the aspect of a verb token. Using his

method, he could distinguish states from events with an accuracy of 93.9% (baseline:

83.8%). He could also distinguish between culminated and non-culminated events with

an accuracy of 74.0% (baseline: 63.3%).

The goal of Lapata and Brew’s (1999) work above was to determine the semantic class

of a verb token using syntactic frame information. In a different kind of task, Gildea and

Jurafsky (2002) instead classified the elements of the syntactic frame itself—i.e., the

arguments of the verb—labelling each according to its semantic role with respect to the

verb in a given sentence. Using probability estimates derived from a training corpus

of sentences manually annotated with semantic role labels, they achieved about 80%

accuracy on argument labelling in unseen test sentences.

Unfortunately the need for manual annotation of the semantic roles for training pur-

poses greatly limits the current applicability of the Gildea and Jurafsky (2002) method

to a fairly small number of verbs, and only in English. (For example, in their work, 927

different English verbs occurred in the annotated database.) However, it is clear that

2A token is an individual occurrence of a word. A type is a category, of which a token is an instance.
Thus, verb type refers to the verb in general, whereas verb token refers to its use in a particular sentence.
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Class/Transitivity Example Subject Object

Unergative intr. The horse raced past the barn. Agent

trans. The jockey raced the horse past the barn. Causative Ag. Agent

Unaccusative intr. The butter melted in the pan. Theme

trans. The cook melted the butter in the pan. Causative Ag. Theme

Object-Drop intr. The boy played. Agent

trans. The boy played soccer. Agent Theme

Table 1.1: Thematic role assignment for optionally transitive verb classes (Merlo and

Stevenson, 2001)

progress in such methods goes hand-in-hand with research on semantic verb classifica-

tion (at the type or token level), as the latter is, in large part, an attempt to indirectly

determine the possible semantic role labels for the arguments of a verb, by determining

its class.

Returning to the task of semantic verb classification at the verb type level, we note

that Merlo and Stevenson (2001) used five statistical features describing the usage of

verbs in a corpus of English to classify verbs into three optionally transitive classes.

The class distinction they considered is particularly interesting because it involves three

classes of verbs that occur in the same syntactic frames, but assign different thematic

roles to each syntactic slot (see Table 1.1).

The features used by Merlo and Stevenson (2001) (see Table 1.2) were carefully de-

signed to correlate with the three optionally transitive classes. Classification tests gave

69.8% accuracy, a significant improvement over the 33.9% (20/59) baseline (obtained by

classifying all verbs in one class). The work in this thesis builds on theirs, expanding

their features to a general feature space.
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Feature Description

TRANS The proportion of use of a verb in transitive frames (vs. intransitive).

PASS The proportion of use of a verb in passive clauses (vs. active).

VBN The relative frequency of the past participle among past tense uses, i.e.,

VBN/(VBN + VBD).

CAUS A measure of overlap between the lemmas occurring in the subject and

direct object positions, intended to quantify the causativity of a verb.

ANIM An estimate of the animacy of the subject position based on the use of

personal pronouns.

Table 1.2: Features used by Merlo and Stevenson (2001)

1.3 Outline of the Study

Expanding the approach of Merlo and Stevenson (2001), we define a general feature space

for English verb classification in Chapter 2. Our features are statistical indicators of, for

example, general verb usage, the use of specific syntactic slots, and the participation

in various alternations defined in Part I of Levin. In developing the feature space, we

included indicators that are potentially useful for verb classification, but that are also

easy to extract from a corpus.

In Chapter 3, we show how we estimate the value of our features by counting specific

verb usage frequencies over a large corpus of English, the British National Corpus. We use

a partial parser to identify the syntactic constructions required to estimate the value of

our features. For each verb, we obtain a vector of features which are statistical indicators

for the use of the verb in English and, if our approach is successful, membership in

semantic verb classes.

Since we are using a large feature space (our core feature space has 234 features), which

will contain features of varying usefulness for any particular classification task, we explore
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some approaches to automatic feature selection in Chapter 4. The machine-learning

system we use, C5.0, performs feature selection internally. Additionally, we experiment

with stepwise feature selection, a method which attempts to select the features with which

the machine-learning system achieves the highest estimated accuracy on our training

data.

In Chapter 5, we present ten verb classification tasks involving between two and

thirteen classes, with which we experimentally verify the usefulness of our feature space

and our feature selection techniques. Our experimental results (Chapter 6) show that

classifiers built using our core feature space reduce the error rate by 40% or more from

the chance baseline for these ten tasks, e.g., achieving as high as 84% and 72% accuracy

on two- and three-way classifications, respectively. They also generally perform as well as

classifiers built using linguistically-motivated subsets of our core feature space. However,

our results show that stepwise feature selection, as we implemented it, generally hurts

predictive accuracy on unseen data.

In Chapter 7, we review the contributions of this study and consider a number of

directions for future work.
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Chapter 2

A General Feature Space

In this chapter, we define our feature space, a first attempt at a general feature space for

the classification of English verbs. Our features expand on the five features defined by

Merlo and Stevenson (2001): we started with the five features they used and attempted

to generalize each of them to a class of potentially useful features. We also used the al-

ternations described in Part I of Levin for additional features, with the goal of developing

a feature space that can be used for the automatic distinction of any verb classes, or at

least any Levin verb classes.

The feature space is summarized in Table 2.1 and described in detail in the rest of this

chapter. Five of the feature categories are motivated by the five features of Merlo and

Stevenson (2001), as indicated in the table. The first three categories of features are also

expected to capture general verb usage information about the verb classes, potentially

providing some aspectual information as well. The remaining six categories of features are

all motivated by alternations described in Part I of Levin, as well as the corresponding

syntactic frames and the specific assignment of arguments to syntactic slots in those

frames. It is important to note that the features are motivated by possible alternations

in English, as described in Part I of Levin, and not by the behaviour of specific verb

classes.

11
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Feature Category
Unique Actual

Motivation
Count Count

Part of speech of the verb 6 6 M&S: VBN; general use and

aspect

Frequency of auxiliaries and modals 11 11 general use and aspect

Combined feature: passive 1 2 M&S: PASS; general use

and aspect

Relative frequency of derived forms 3 3 Levin: §5.4, §7.1,2

Semantically empty constituents 4 6 Levin: §6.1, §8.4

Frequency of various syntactic slots 78 84 M&S: TRANS; correlated

with syntactic frames

Animacy of NPs in various slots 76 80 M&S: ANIM; Levin: many

alternations

Measure of slot overlap 40 42 M&S: CAUS; Levin: §1–4

Core features: total 219 234

Syntactic collocation features 1140 1260 Selectional preference

All features: total 1359 1494

Table 2.1: Feature categories with counts and motivation. Unique counts reflect the

number of features we define in this section. Actual counts reflect the number of features

given to the machine-learning system. They are higher than unique counts because some

features are calculated in two different ways (see §3.7). The motivation indicates from

which source we developed each category of features, including Merlo and Stevenson

(2001) (M&S), Levin alternations, and general and aspectual information.
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The first eight categories of features form our core features, and are the the main

focus of our work. The last category, syntactic collocation features, are a preliminary

attempt at encoding syntactic collocations, or a simplified form of selectional preference,

within our feature space. They are experimental and should not be considered definitive.

Furthermore, they make use of WordNet, a resource that we cannot expect to have access

to for most languages other than English, and therefore we cannot consider them as a

part of our core feature space.

All the features are proportions of use of a verb in a particular way, with respect

to the overall frequency of the verb as the head verb in a clause in the corpus, unless

otherwise specified. In the following text, the “target verb” refers to the verb for which

these proportions are being calculated.

2.1 Part of Speech of the Verb

The first set of features encodes the proportion of occurrence of the six part-of-speech

(POS) tags that verbs can take in the Penn tagset: VB, VBP, VBZ, VBG, VBD, and

VBN. In this study, we mostly work with the British National Corpus (BNC), but we still

use the Penn tagset because our corpus processing tools require it (see §3). The mapping

of verb tags from the CLAWS tagset (used in the BNC) to the Penn tagset is straightfor-

ward, though not exact, as shown in Table 2.2 (BNC, 2000; Santorini, 1995). When we

work with the BNC, we map VVI to VB and VVB to VBP, since this mapping preserves

the most information, even though it is incorrect for imperatives and subjunctives.1

1We could map VVB to VB instead, but this would mask the potentially useful distinction between
infinitives and the non-third-person-singular present tense. We also suspect it would introduce more
errors, since we expect the non-third-person-singular present tense to occur more frequently than im-
peratives or subjunctives in a balanced corpus of English, but we have not verified this.
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Verb Form Penn tag CLAWS tag

Base form: infinitive VVI

Base form: imperative VB

Base form: subjunctive VVB

Non-third person singular present VBP

Third person singular present VBZ VVZ

Past participle VBN VVN

Past tense VBD VVD

Gerund or present participle VBG VVG

Table 2.2: The Penn and CLAWS tags for verbs

2.2 Auxiliaries and Modals

The second set of features measures the proportion of verb groups with the target verb

as head that include each auxiliary or modal: to have, to be, will, can, could, might, must,

would, should, and may. An additional feature gives the proportion of verb groups that

include any of the eight modals.

2.3 Passive Voice

The passive voice is a feature category on its own because for English, it is really a

combined feature. The passive feature measures the proportion of use of the target verb

where a) the POS tag is VBN, and b) the auxiliary to be occurs in the verb group, and

both of those conditions hold simultaneously. Following Merlo and Stevenson (2001), we

use the total count of VBN and VBD as the denominator in one instance of this feature.

We use the overall frequency of the target verb in a verb group as denominator in a

second instance of this feature. In principle, we need only the latter, but we keep them
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both and let the classification system decide which one is more useful.

This feature is the only one we keep from the original study by Merlo and Stevenson

(2001). As a combined feature, it does not really belong with any of our feature categories,

but we feel it is an important feature in general. In future work, more combined features

might be added to the feature space, and then the passive voice feature will belong to

that class.

2.4 Derived Forms

The fourth set of features measures the relative frequency of derived forms with respect

to the overall frequency of the verb itself. Specifically:

rel-freq(zero-nominal) =
freq(zero-nominal)

freq(zero-nominal) + freq(verb)

rel-freq(vbn-adjectival) =
freq(vbn-adjectival)

freq(vbn-adjectival) + freq(verb)

rel-freq(vbg-adjectival) =
freq(vbg-adjectival)

freq(vbg-adjectival) + freq(verb)

The quantity freq(zero-nominal) is the frequency with which the base form of the target

verb, possibly with the plural marker -s or -es added, occurs with a noun POS tag (NN

or NNS) in the corpus. The quantities freq(vbn-adjectival) and freq(vbg-adjectival) are

the frequencies with which the past and present participles, respectively, are deemed to

be used as adjectives. A participle is deemed to be used as an adjective if it is tagged

as an adjective (POS tag JJ) or if it is tagged as a participle (POS tag VBN or VBG,

respectively) but is not part of a verb group. Finally, freq(verb) is the overall frequency

of the target verb being used as a verb.
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2.5 Semantically Empty Constituents

The fifth set of features measures the relative frequency of constructions involving se-

mantically empty constituents. The first such construction we consider is the impersonal

it, which can occur in the subject position (e.g., it occurs to me that ...; it rains) and

in the direct object position (e.g., I like it that ...; they’ve got it made). We cannot

distinguish the impersonal it from the regular personal pronoun it, but we still expect

that the occurrence of it in the subject or direct object positions should be higher for

verbs which allow the impersonal it. Therefore, the relative frequency of it in those two

positions, with respect to the overall frequency of the target verb, should be informative

features, and these are the two we retain.2

The second construction we consider is the insertion of there, as in There runs a cat

in the alley or There developed a problem (Levin, §6.1). Conveniently, there occurs in

the subject position of any non-copulative verb only when there-insertion has occurred.3

Thus, we can accurately estimate the relative frequency of there-insertion by the propor-

tion of uses of the verb for which there is the subject with respect to the overall frequency

of the target verb. We also measure this proportion with respect to transitive frames

only, which indicates what proportion of transitive frames are really intransitive frames

which have undergone there-insertion.

2Here we do not distinguish between transitive and intransitive frames. However, the impersonal it
subject frequently occurs in intransitive frames, so it would have been useful to consider the relative
frequency of it used as the subject in intransitive frames separately. We thought about this after
completing the evaluation on unseen test data, when it was too late to change the feature space for this
study, so this feature should be added in future work.

3In some grammatical analyses, there is not considered to be in the subject position, but in others it
is considered an expletive subject. Our corpus-processing techniques treat it as a subject, but we make
no linguistic claim about what the correct analysis should be.



2.6. Syntactic Slots 17

2.6 Syntactic Slots

The sixth set of features measures the relative frequency of occurrence of the verb with

particular syntactic slots, including subject, direct object, indirect object, adverbs (oc-

curring after the verb group), and prepositional phrases. Since transitive and intransitive

frames sometimes have different arguments assigned to the subject slot, we add the rela-

tive frequency of the subject in a transitive frame and in an intransitive frame, i.e., what

proportion of transitive (or intransitive, respectively) clauses using the target verb have

a subject (including expletive subjects). Finally, the middle alternation (Levin §1.1.1)

often involves a transitive verb being used intransitively with some modifier, such as an

adverb. We therefore add the relative frequency of adverbs in intransitive frames.

For prepositional phrases, we use individual counts for the 51 prepositions which occur

at least 10 000 times in the BNC, as well as nineteen groups of related prepositions. Note

that many prepositions are counted both individually and as part of a group. To these

we add an additional feature: the proportion of uses of the verb where any prepositional

phrase occurs at all.

The 51 prepositions considered individually are about, above, according to, across,

after, against, along, among, around, as, as well as, at, away from, because of, before,

behind, between, beyond, by, despite, during, for, from, in, in terms of, including, into,

like, near, of, off, on, out of, outside, over, per, rather than, round, since, such as,

through, throughout, to, towards, under, until, up to, upon, with, within, and without.

Note that this list includes prepositions which introduce an adjunct, as well as preposi-

tions which introduce an argument.

The nineteen preposition groups we consider were created with the help of Quirk et al.

(1985, §9), by putting together prepositions that are very close in meaning or in expected

usage. Table 2.3 shows the nineteen groups, and gives prepositions which, although

considered only individually, are treated as groups to allow for alternate spellings which

occur in the corpus.
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Group Name Preposition List

%above above, on top of

%add besides, as well as, in addition to, in conjunction with, plus, including

%behind behind, in front of

%between between, among, amongst, amid, amidst, in between

%cause because of, on account of, for fear of

%despite despite, in spite of, notwithstanding

%dest on to, onto, into

%during during, throughout

%except except, except for, apart from, other than, but, but for, excluding, save,

aside from, save for, excepting, bar, barring

%inside outside, inside, outside of

%instead rather than, instead of

%like like, unlike

%near near, nearer, nearest, beside, near to, nearer to, nearest to, close to,

opposite, adjacent to, next to

%path through, toward, towards, round, around, across, along, past, up,

down, beyond

%regard as to, concerning, as for, regarding, with regard to, in view of, with

respect to, re, as regards, in regard to, pertaining to

%reltime after, before, until, since, till, prior to

%source out of, out, away from, off, off of

%spatial the union of the groups %under, %near, %above, %over, %behind,

and %inside

%under under, below, beneath, underneath

Prepositions for which alternate spellings are accepted

%about about, ’bout

%for for, fer

%of of, o’

%over over, o’er

%with with, wi’

Table 2.3: Preposition groups
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2.7 Animacy

The seventh set of features expands on the animacy feature used by Merlo and Stevenson

(2001). In their work, they estimate the proportion of animate nouns occurring in the

subject position by counting the proportions of subjects which are nominative personal

pronouns except it—one of I, you, he, she, we, and they. They justified including they

in this list by confirming that most instances of they in the WSJ (the corpus they used)

refer to animate entities.

In this study, we consider pronouns in all positions, so we must include objective and

reflexive personal pronouns. We assume that a pronoun refers to an animate being if it

is any personal pronoun except it and itself, i.e., one of I, me, myself, you, yourself, he,

him, himself, she, her, herself, we, us, ourselves, yourselves, they, them, and themselves.

We also consider the interrogative/relative pronouns who and whom and the reflexive

indefinite pronoun oneself. Finally, we consider any proper noun phrase that we can

identify as naming a person to be animate (see §3.7). Our animacy feature for a given

slot and target verb is the total frequency of the above pronouns and proper NPs that

occur in the slot with the target verb, divided by the frequency of occurrence of the slot

with the target verb. In future work, we might also consider words which are hyponyms

of person or causal agent in WordNet, but for now, the feature is intentionally kept simple

to see how helpful it can be as-is, and to maintain its transferability to other languages.

For most personal pronouns, it is reasonable to assume that they refer to animate

beings most of the time. However, it is not clear that this assumption holds for they,

them, and themselves. Aone and McKee (1996), who define a similar animacy feature in

their verb classification work, exclude they, along with it, from their animacy estimate

for that reason. In order to determine how valid that assumption is, we have randomly

extracted 100 occurrences each of they, them and themselves from the BNC, and manually

classified them as animate or inanimate. When animacy could not be established from

the sentence alone, we looked at the surrounding text, so that we could establish the
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Pronoun Animate Proportion in Sample

they 63%

them 54%

themselves 82%

Table 2.4: Animacy of the personal pronouns they, them and themselves, each estimated

using a random sample of 100 occurrences from the corpus.

animacy of every example extracted. The results show that the animacy assumption

holds for themselves, but for they and them, only slightly more than half the examples

are animate, so including them in our animacy estimate adds almost as much noise as

signal (see Table 2.4). We include them regardless, since leaving them out would also

result in lost information. In future work, we might consider leaving them out or counting

only a proportion of their occurrence counts based on estimates of how often they refer

to animate beings.

We calculate the animacy estimate for all the slots listed in §2.6 except adverb—i.e.,

for subject, subject in a transitive frame, subject in an intransitive frame, direct object,

indirect object, and for object of preposition slots as described above (i.e., for individual

prepositions and for preposition groups).

We should note here that the idea of calculating the animacy estimates for the tran-

sitive and intransitive subjects separately is not strictly ours. Aone and McKee (1996)

used a subject animacy estimate similar to ours, but they did not distinguish between

transitive and intransitive frames. They had inconclusive results in their work for verbs

that can alternatively express a process or state, or a caused process, because the ex-

pected animacy of the subject for those verbs depends on the transitivity of the verb. For

that reason, they noted that they would calculate the animacy of the subject separately

for transitive and intransitive frames in future work.
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2.8 Slot Overlap

The eighth set of features measures overlap between various syntactic slots. Many alter-

nations involve the expression of the same semantic argument in two different syntactic

slots. It is expected that if a verb (or a class of verbs) can undergo a particular alterna-

tion, the sets of lemmas (nouns stripped of any plural markers) found in two slots that

express the same semantic argument should overlap to some degree. Consequently, a

measure of the overlap of lemma usage between two slots can be used as an indicator for

the participation of a verb in an alternation which involves those two slots (McCarthy,

2000, 2001; Merlo and Stevenson, 2001).

Merlo and Stevenson (2001) measured the lemma overlap between the subject and

the direct object slots. This overlap was expected to be higher for verbs which un-

dergo causative alternations (Levin §1.1.2), since they allow the expression of the agent

role either as an intransitive subject, or as a transitive object when a causative role is

introduced in the subject slot—e.g., The horse races can alternate to John races the

horse.

For our feature space, we consider the overlap between each pair of slots that cor-

responds to a specific alternation in Part I of Levin. For example, Levin’s §2.3.5 states

that in the intransitive clear alternation, the object of from can alternate with the in-

transitive subject. Using Levin’s examples, Clouds cleared from the sky alternates with

The sky cleared. We therefore consider the overlap between the intransitive subject and

the object of the preposition from. In a number of cases, it was more appropriate to con-

sider a group of prepositions instead of a single preposition. For example, Levin’s §1.4.1

states that in the locative preposition drop alternation, directional information can be ex-

pressed as a direct object or as the object of a directional preposition, which corresponds

to our preposition group %path. Again using Levin’s examples, Martha climbed up the

mountain can alternate with Martha climbed the mountain. To cover this alternation,

we consider the overlap between the direct object and the object of the prepositions in
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the %path group. See Table 2.5 for a list of all the slot overlap features we use, with the

corresponding alternations.

We use the method of Merlo and Stevenson (2001) to calculate slot overlaps. Let

SX be the set of lemmas occurring in slot X for a given verb, MSX be the multiset of

lemmas occurring in slot X, and wX be the number of times lemma w occurs in MSX .

Then we define the overlap between slots A and B, over(A,B), as follows:4

over(A,B) =

∑
w∈SA∩SB

max(wA, wB)

|MSA|+ |MSB|

For example, if {a, a, a, b, b, c} is the multiset of lemmas occurring in the subject slot

for a verb, and {a, b, b, b, b, d, d, e} is the multiset of lemmas occurring in the direct object

slot for the same verb, then over(subject , object) = (3 + 4)/(6 + 8) = 0.5. We have briefly

experimented with different definitions of the overlap, replacing max with min or the

geometric mean, which might have more intuitively quantified the overlap between two

slots. This made no significant difference to the classification performance, and therefore

we retained the original formula used by Merlo and Stevenson (2001).

McCarthy (2000, 2001) proposed a lemma overlap formula which uses min and divides

by the cardinality of the smallest multiset instead of the sum of the two. This formula has

the advantage of yielding more intuitive values between 0 (no overlap) and 1 (complete

overlap), whereas ours would give a value nearer 0.5 for complete overlap.

As another indicator of participation in an alternation, McCarthy (2000, 2001) pro-

posed to use measures of similarity between the selectional preference of a verb for two

slots involved in the alternation. She used a tree-cut model within the WordNet hierarchy

to represent selectional preference, and experimented with measures like the Kullback–

Leibler distance and the α-norm of Lee (1999). In her experiments, she found that she

4When either multiset is empty, we defined the overlap to be 0, but we should have used undefined,
as is allowed by many machine-learning systems, including the one we use. We thought about this after
completing the evaluation on unseen test data, when it was too late to use it for this study, but undefined
should be used where appropriate in future work.
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Slots Relevant

Alternations

subj obj 1.1.1, 1.1.2,

4.1, 4.2

subj dobj 1.1.1, 1.1.2,

4.1, 4.2

subjintr obj 1.1.1, 1.1.2

subjintr2 dobj 1.1.1, 1.1.2

subjtrans from 1.1.3, 3.8, 3.10

subjintr %with 1.2.6.2, 2.3.4

subjtrans %with 1.2.6.2, 2.13.4,

3.3, 3.4, 3.5

obj at 1.3

obj on 1.3, 2.3.1, 2.7,

2.10, 2.12

obj against 1.3, 2.8

obj %dest 1.4.1, 2.3.1

obj around 1.4.1, 2.3.1

obj %over 1.4.1, 2.3.1

obj into 1.4.1, 2.3.1,

2.4.1

obj in 1.4.1?, 2.3.1?,

2.11, 2.12,

2.13.3

obj %path 1.4.1, 2.3.1?

obj %spatial 1.4.1?, 2.3.1

obj %with 1.4.2, 2.3.1, 2.6,

2.7, 2.8, 2.9

Slots (continued) Relevant

Alternations

iobj to 2.1

iobj %for 2.2

obj from 2.3.2, 2.3.3

obj %of 2.3.2, 2.3.3

obj off 2.3.3

subjintr in 2.3.4, 2.13.5

subjintr %spatial 2.3.4?

subjintr from 2.3.5, 2.4.2

subjtrans %of 2.3.5

obj out of 2.4.1

subjintr into 2.4.2

obj to 2.6

obj through 2.9

obj %for 2.10, 2.11,

2.13.1, 2.13.3

obj as 2.14

subjtrans in 3.1, 3.2, 3.6

subjtrans on 3.6

subjtrans %spatial 3.6

subjtrans into 3.7

subjtrans out of 3.8

subjtrans %for 3.9

subjtrans obj 4.1, 4.2

subj pp-any

obj pp-any

Table 2.5: Slot overlap features we consider, with the lists of alternations for which

they are relevant. The alternations are all given as section numbers in Levin (1993).

Alternations for which the relevance of an overlap measure is uncertain are marked with

“?”. Slots of the form “%group” refer to preposition groups (see Table 2.3).
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could identify whether a verb participates in causative alternations (Levin §1.1.2) with

73% accuracy (baseline: 50%) using a selectional preference similarity measure, but with

only 63% accuracy using her lemma overlap measure. However, this approach uses Word-

Net, a resource which we cannot expect to have for all languages. Since we want to keep

our study as transferable as possible, we prefer to use a simple lemma overlap measure.

In this study, we modify the lemma overlap approach used by Merlo and Stevenson

(2001) to treat names of people in a special way. As mentioned in the previous section,

we can identify some proper noun phrases as being the name of a person (details in §3.7).

When we measure the slot overlap, we take advantage of this by treating all proper names

identifying a person as if they were the same lemma. This captures the intuition that, in

terms of semantic slot selection, names of people are interchangeable. The occurrence of

names of people in two syntactic slots is an indicator for a possible diathesis alternation,

just as the occurrence of the same lemma in both slots does.

2.9 Syntactic Collocations

The ninth and final set of features is a simplified representation of selectional preference,

which we will call syntactic collocations. We use a simple and preliminary definition,

which we have not tried to refine. Although we would like to fine-tune the representation

in future work, it falls outside the scope of this study to do so.

We measure syntactic collocations for the slots listed in §2.6, except that we do not

use all 51 individual prepositions. Since each slot considered adds a large number of

features to our feature space, we have chosen to restrict the preposition list to only the

most frequently used ones. Therefore we consider the nineteen preposition groups, but

only thirteen individual prepositions—namely, those that occur at least 50 000 times in

the corpus and are not part of any group: about, against, as, at, by, for, from, in, of,

on, over, to, and with.
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Schulte im Walde (1998, 2000) encodes the selectional preferences of a verb for a

particular syntactic slot using a cut in the WordNet noun hierarchy. Simplifying the

approach of Resnik (1997, 1998), she summarizes the head nouns occurring in a particular

slot over the eleven root synsets of the WordNet 1.5 noun hierarchy, as well as the thirteen

children of entity%1,5 since the latter was considered too generic to be meaningful.

In her work on automatically determining whether a verb participates in a given

alternation (mentioned in §2.8), McCarthy (2000, 2001) uses a similar definition of selec-

tional preferences. She investigated using different tree-cut models to encode selectional

preference. The first tree-cut model she considered was based on Li and Abe (1995),

who proposed to automatically select the optimal model according to the minimum de-

scription length (MDL) principle. The second model she considered was the root cut,

where only the eleven root nodes of the WordNet 1.5 noun hierarchy were used. In her

experiments, McCarthy found that the choice of cut did not make a significant difference

for her task. We therefore conclude that it is not worth investigating the more complex

MDL-based tree-cut models for our work.

To encode our syntactic collocation features, we use the simple cut proposed by

Schulte im Walde (1998, 2000), and we use WordNet 1.7, the latest version available at

the time we designed this feature space.6

We summarize a set of nouns using a WordNet cut as follows: we find each noun in

the WordNet 1.7 hierarchy, follow the hypernym links until we get to a synset in the cut,

5We refer to WordNet synsets using the first word in the synset together with its sense number. For
example, the synset composed of organism (sense 1), being (sense 2) and living thing (sense 1) is referred
to as organism%1.

6WordNet 1.7.1 has since been released, and some clean-up was performed in the hierarchy, including
in the direct hyponyms of entity%1. This new hierarchy seems preferable to the one we used, but the
update was released too late for use in this study. Another change we could have done to the cut is to
remove the hyponyms of entity%1 which have very small subtrees. Eleven hyponyms of entity%1 have
fewer than ten synsets each in their respective subtrees, and one has 29. These subtrees would have
been best summarized with entity%1 rather than treated separately. However, this should not have
any adverse effects on our experiments, because the important semantic categories are still in the cut
we use. The categories that should have been removed will add a very small amount of noise, since their
values will be null most of the time. Their presence does not affect the values of the relevant semantic
categories.
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and add the occurrence count for the noun to that synset. In this process, however, two

issues come up: ambiguity and multiple hypernyms. When a noun has several senses

(i.e., it appears in several synsets) we divide the occurrence count evenly among all the

senses, following Schulte im Walde (1998, 2000) and McCarthy (2000, 2001). Sometimes

a synset has more than ancestor in our cut, since the WordNet noun hierarchy is a

directed acyclic graph, and not a tree or a forest. For example, person%1 has hypernyms

organism%1 and causal agent%1, which are both in our cut since they are hyponyms

of entity%1. Thus, all hyponyms of person%1 have at least two ancestors in our cut.

In such cases, we follow Schulte im Walde (1998, 2000) and further divide the fractional

count evenly between each hypernym of any synset with more than one hypernym. In

contrast, McCarthy (2000, 2001) assigns the full fractional count to each element of the

cut that can be reached from the synset. Her approach has the disadvantage that the

total weight assigned for one occurrence of a word may exceed 1. Finally we divide the

total count accumulated by each cut element by the number of noun occurrences in the

slot, so that we get proportions for each cut element. This gives us 30 numerical features

approximating the selectional preference of a verb for each slot. Since we calculate these

features for 42 slots, we get a total of 1260 features in this category.
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Feature Extraction

In this chapter, we describe how we estimate the features defined in the previous chapter

using a large corpus of English. We describe the corpus we use, each of the processing

steps required, and how we calculate the features.

3.1 The British National Corpus

In this study, we use the British National Corpus (BNC) to estimate all features. The

BNC is a corpus of about 100 million words, tagged with the CLAWS POS tagset. It

consists of small text samples ranging over a wide spectrum of domains, including 10%

from spoken sources. It covers British English only, including imaginative texts from

1960 and informative texts from 1975. Refer to (BNC, 2000) for more information about

the corpus.

Unlike the Wall Street Journal corpus (WSJ), which was used in previous related

studies (Merlo and Stevenson, 2001), the BNC is a general corpus. In the WSJ, we can

expect the financial sense of a polysemous verb to dominate, whereas in the BNC, we do

not expect any strong domain-specific bias. We have therefore decided to use the BNC

instead of the WSJ, so that we can obtain estimates of the features we measure for each

verb that are more representative of the general use of English.

27



28 Chapter 3. Feature Extraction

3.2 Data Processing Overview

Since our features involve argument slots of the verb, we use an existing tool to extract

some of them: the partial (or chunking) parser of Abney (1991, 1997). This program,

called SCOL, allows us to extract subjects and direct objects with reasonable confidence.

It also allows us to identify potential prepositional phrases associated with the verb, and

(with some post-processing) indirect objects, although with lower confidence.

We perform the following data processing on the corpus:

1. Conversion of the BNC POS tags to the Penn tagset (needed for SCOL).

2. Extraction of the relevant sentences from the corpus.

3. Partial parsing with cass, a component of SCOL.

4. Tuple identification with tuples, a second component of SCOL.

5. Indirect object identification using TGrep2.

3.3 Corpus Preprocessing

Since the BNC is already POS tagged, we need only convert its tagset (CLAWS) to

the PennTreebank tagset, as required by SCOL. SCOL provides a tag conversion utility

for the BNC, but it maps the CLAWS tag VVB to the Penn tag VB, which is not the

mapping we use (see §2.1), so we modified it to map VVB to VBP instead.

A further issue with POS tags in the BNC is that when a tag is uncertain, the BNC

uses an “ambiguous” tag indicating the two most likely tags, with the single most likely

tag listed first. For example, the ambiguous tag VVB–NN1 means that the word is most

likely a verb in the present tense, but could be a singular noun. For simplicity, we always

replace ambiguous tags by the most likely tag and ignore the ambiguity. This conversion

is also done by the utility provided with SCOL.
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We then extract all the sentences which contain one of our target verbs used as a verb.

We do so simply by using grep to search for lines identified in the corpus as sentences

that contain any of the inflected forms of the verb tagged with any of the possible verb

POS tags.

The inflected forms of the verb are determined with the help of the list of irregular

verb forms provided with WordNet 1.7 for the purpose of lemmatization. We retain each

form mentioned in that list, and we add regular -ing, -s and -ed forms if no corresponding

irregular forms were found. In the few cases where this method fails to provide the correct

results, we use hard-coded lists. (Of all the verbs listed by Levin, only nineteen require

such hard-coded lists.)

3.4 Partial Parsing with SCOL

SCOL is a partial parser, or chunker, provided by Steven Abney for public use (Abney,

1991, 1997). It takes as input English text tagged using the Penn tagset, performs

shallow syntactic analysis on it, and provides the results in two output formats, each

supplying different information about the analysis. The first format, the output of the

cass program, is in the form of partial parse trees which can be analyzed using tree

searching or manipulation techniques. The second format, the output of the tuples

program, is in the form of slot/value pairs, with one tuple being produced for each

clause. Each tuple includes the head verb of the clause, along with the head word found

in any syntactic slot identified as belonging with the verb. We are interested primarily in

the slots which correspond to arguments of the verbs (see Table 3.1). Other slots cover,

for example, adjective phrases, date phrases, and incomplete chunks (groups of words

that could not be labelled as phrases, usually because the sentence is too complex to be

analyzed correctly), which we simply ignore. Since SCOL is a partial parser, it does not

attempt to identify embedded clauses except the simplest ones, namely, those that occur
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Slot Description

subj Subject (active frames only)

obj Active frames: the first object after the verb; Passive frames: the surface

subject

obj2 Passive frames only: surface object

prep Object of the preposition prep (for any preposition)

pp-comp Object of the preposition before, after, until, or since

cdqlx Object of the preposition about, only, above, under, or over

rb, rx Adverb and adverb phrase

Table 3.1: Slots identified by tuples that are of interest to us

between the subject and the verb. Furthermore, tuples treats all clauses identically,

embedded or not.

A few slots require further explanations:

pp-comp: Because the four prepositions before, after, until, and since allow particular

constructs that other prepositions do not, SCOL treats them as a special group

and labels them all p-comp. As a result, tuples uses pp-comp as the slot name for

objects of those prepositions, instead of the prepositions themselves.

cdqlx: This label is intended to capture pre-numeral chunks, which include about, only,

and over, and should not be associated with the verb, but rather with numeral

expressions. However, tuples also uses this slot name for objects of those prepo-

sitions, and thus we also find cdqlx associated with the verb.

obj, obj2: The label obj is always intended to capture the underlying direct object.

Therefore, this label is given to the surface object in an active frame and to the

surface subject in a passive frame.

SCOL will recognize a noun phrase following the verb as a surface object, even in
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passive frames. Since the label obj is already assigned to the surface subject, the

surface object in a passive frame is given the label obj2. However, when a surface

object is present in a passive frame, as in John was given a book, the surface object

is the direct object, and the surface subject is the indirect object. In this case, the

label obj assigned incorrectly by SCOL.

Furthermore, SCOL does not try to identify double object frames—it recognizes

only one object after the verb. When an indirect object is present in an active

frame, as in I gave John a book, the indirect object is incorrectly labelled with obj

and the direct object is ignored. To identify double object frames, and indirect

objects, we apply some simple heuristics to SCOL’s partial parse trees (see §3.5).

3.4.1 Processing of the SCOL Output

We use the sample sentences in Table 3.2 to illustrate the output produced by SCOL.

Note that these sentences were created to illustrate how SCOL works, and not to be clear

or good English.

The output of tuples

The tuples output for this set of sample sentences is presented in Table 3.3. Each line,

or tuple, corresponds to a clause in the input text. Each tuple starts with the index of

John is tall.

I gave the man a cat.

A chair was built by John for his mother.

Andrew, the new chair, was elected by acclamation and also accepted after some

thought over important issues the position of chair of the subcommittee on equity as

the committee recessed.

Table 3.2: Sample sentences used to illustrate our corpus processing.
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0 tall :subj %person

4 gave :obj man :subj I

11 built :by %person :for mother :obj chair

21 elected :by acclamation :obj %person

32 accepted :pp-comp thought :cdqlx issues :obj position :on equity

:as committee

52 recessed

Table 3.3: Output of tuples on the sample sentences.

the first token of the clause, followed by the head of the clause.1 The head of the clause

is then followed by an unordered list of all the slots SCOL finds accompanying the verb

phrase. For each slot, the name of the slot is followed by the head of the phrase filling

the slot, as identified by SCOL. The head can be a leaf node in the partial parse tree

(i.e., a word) or an internal node, in which case the type of the internal node is given,

prefixed by “%”. For example, %person fills several slots in the sample output above,

since person is the internal node used to represent proper noun phrases which SCOL’s

named-entity recognizer classifies as a person.

Since SCOL is a partial parser, the identification of clauses and clause boundaries

is only approximate. In a complex sentence, SCOL may fail to identify the correct

arguments of a verb phrase. Some constituents might be attached to the wrong phrase, or

not be attached at all, in which case tuples would ignore them. Furthermore, dependent

clauses are not identified as such, but treated as independent clauses.

We consider all these errors as noise in our data, and do not attempt to correct any

of them, except for the lack of indirect object identification (see §3.5).

1Normally the head of the clause is the head verb, but if the verb is copular and the predicate
complement is an adjective, this adjective is reported as the head of the clause. For example, tall is
reported as the head of John is tall.
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The output of cass

The output of tuples is ideal for counting occurrences of particular slots, but it does not

provide all the information we need for extracting our features. In particular, we need

the POS tag of the target verb, the whole verb phrase, and the POS tag of the head of

some of the slots. This information is all available to the tuples program, but no means

are provided by the software to include it in the output. However, we can extract it by

matching the tuples output with the cass output, which is presented in the form of a

partial parse tree. Table 3.4 shows the output of cass on the sample sentences above.

Merging the two output formats

Using the cass output to extract the additional information we need, we augment each

tuple by adding the POS tag to the verb and each slot filler, as well as the whole verb

group so that we can extract auxiliaries and modals. We also rename the slots cdqlx

and pp-comp to the actual preposition appearing in the text, so that we can later deal

with these prepositions individually. We call the result the intermediate tuples, since

we augment them further in the next section. The intermediate tuples for the sample

sentences are shown in Table 3.5.

3.5 Indirect Object Identification with TGrep2

Before we describe our final step in augmenting tuples, we need to discuss direct and

indirect object identification in more detail.

We use SCOL to extract the subject, the direct object, and the object of prepositions,

but SCOL does not attempt to identify indirect objects and it has poor recall when

identifying direct objects.2 Since we need to identify both indirect and direct objects for

2 To get an idea of SCOL’s accuracy, we evaluated how well SCOL identifies direct objects. We found
precision in the high eighties but recall was only around one half. To estimate precision, we extracted
100 random clauses where SCOL identified a direct object, and manually found 87 of them to be correct
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<s> 19 h=[nn mother]]]] 43 h=[nn chair]]
00 [c 20 [per .] 44 [of of]
00 h=[c0 </s> 45 [nx
00 s=[nx <s> 45 [dt the]
00 h=[person 21 [c 46 h=[nn subcommittee]]]
00 [fn John]]] 21 h=[c0 47 [pp
01 h=[vx 21 s=[nx 47 f=[in on]
01 [bez is] 21 h=[person 48 h=[nx
02 h=[jj tall]]]] 21 [fn Andrew]]] 48 h=[nn equity]]]
03 [per .] 22 [cma ,] 49 [pp

</s> 23 [nx 49 f=[as as]
<s> 23 [dt the] 50 h=[nx

04 [c 24 [jj new] 50 [dt the]
04 h=[c0 25 h=[nn chair]] 51 h=[nn committee]]]]
04 s=[nx 26 [cma ,] 52 [vnp
04 h=[prp I]] 27 h=[vx 52 h=[vnx
05 h=[vx 27 f=[bedz was] 52 h=[vbn recessed]]]
05 h=[vbd gave]]] 28 h=[vbn elected]]] 53 [per .]
06 o=[nx 29 [pp </s>
06 [dt the] 29 f=[by by]
07 h=[nn man]]] 30 h=[nx
08 [nx 30 h=[nn acclamation]]]]
08 [dt-a a] 31 [cc and]
09 h=[nn cat]] 32 [vnp
10 [per .] 32 h=[vnx

</s> 32 [rb also]
<s> 33 h=[vbn accepted]]

11 [c 34 [pp-comp
11 h=[c0 34 [p-comp after]
11 s=[nx 35 h=[nx
11 [dt-a A] 35 [dtp-q some]
12 h=[nn chair]] 36 h=[nn thought]]]
13 h=[vx 37 [pp
13 f=[bedz was] 37 f=[cdqlx
14 h=[vbn built]]] 37 [over over]]
15 [pp 38 h=[nx
15 f=[by by] 38 [jj important]
16 h=[nx 39 h=[nns issues]]]
16 h=[person 40 o=[ng
16 [fn John]]]] 40 h=[nx
17 [pp 40 [dt the]
17 f=[in for] 41 h=[nn position]]
18 h=[nx 42 [of of]
18 [prps his] 43 k=[nx

Table 3.4: Output of cass on the sample sentences, reformatted in three columns. Role

legend: h: head, s: subject, o: object, f: function word, k: part.
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0 tall/jj :subj %person/person [vx [bez is] [jj tall]]

4 gave/vbd :obj man/nn :subj I/prp [vx [vbd gave]]

11 built/vbn :by %person/person :for mother/nn :obj chair/nn [vx [be

dz was] [vbn built]]

21 elected/vbn :by acclamation/nn :obj %person/person [vx [bedz was]

[vbn elected]]

32 accepted/vbn :after thought/nn :over issues/nns :obj position/nn

:on equity/nn :as committee/nn [vnx [rb also] [vbn accepted]]

52 recessed/vbn [vnx [vbn recessed]]

Table 3.5: Intermediate tuples, with information from tuples and cass merged

our work, we attempted to go beyond what SCOL provides.

By inspection, we observed that when a double object frame is processed by cass, the

first object is attached to the verb phrase and labelled as an object, but the second object

is left unattached and immediately follows the core of the clause in the tree structure.

(The core of the clause is the subtree containing the verb group and, when they are

identified as belonging with the verb, the subject, the first object and any adverbs.) We

therefore make the following assumptions:

Assumption 1. When a clause core contains an object and is followed immediately by

an unattached noun phrase, the unattached noun phrase is the second object.

Assumption 2. When a clause core does not contain an object, but is followed imme-

diately by an unattached noun phrase, the unattached noun phrase is an object.

(95% confidence interval: [78.8%–92.9%], calculated using the binomial exact method of Newcombe, 1998
and Uitenbroek, 1997a). To estimate recall, we extracted 100 random clauses and manually identified
those with a direct object. This gave us 61 clauses. SCOL correctly identified the direct object of 30
(49%) of those (95% confidence interval: [36.1%–62.3%]). This high precision and low recall reflects the
easy-first parsing philosophy embedded in partial parsing—attachments that can be made easily or with
high confidence are made first, whereas complex or ambiguous structures are sometimes left as unlinked
chunks (Abney, 1991).
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We know that these assumptions will often be incorrect, but we hope that they will

provide more signal than noise, and that the noise will be sufficiently randomly distributed

that the statistics we gather for indirect objects, based on these assumptions, will still

be helpful.

We evaluated the precision of our two assumptions as follows. We randomly selected

100 frames which were identified as double-object frames using Assumption 1. We man-

ually inspected these and found that only 22 of them were indeed double-object frames,

with the two objects correctly identified (95% confidence interval: [14.3%–31.4%], cal-

culated using the binomial exact method of Newcombe, 1998 and Uitenbroek, 1997a).

We also randomly selected 100 frames which were not identified as having an object by

SCOL, but which were identified as one-object frames using Assumption 2. We manually

inspected these and found that 55 of them were indeed one-object frames, with the direct

object correctly identified (95% confidence interval: [45.7%–65.9%]).

This evaluation gives us estimates of precision, although it does not tell us anything

about accuracy or recall. It would be useful to assess the recall achieved by these as-

sumptions. However, given the low frequency of indirect objects in the corpus, obtaining

enough random samples to make this assessment would require the manual annotation

of an unreasonably large number of sentences.

Given the low precision of Assumption 1, we might consider discarding it. However,

at this point it is the only method that is simple and readily available to identify indirect

objects. We therefore accept that features involving indirect objects will be noisy ones,

and hope that the machine-learning system can still extract useful information from

them. If the noise is sufficiently evenly distributed, these features can be useful, at least

in theory. We review this question in §6.5.

Assumption 2 does not affect the identification of indirect objects, but only direct

objects. When we designed this method of identifying indirect objects, we noticed that

SCOL misses a number of direct objects that would be easy to identify. With the ma-
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chinery in place to identify indirect objects, it seemed most sensible to improve the

direct object identification where it was easy to do so, hence Assumption 2. However,

Assumption 2’s precision is significantly lower than SCOL’s, so it is unclear whether it

is preferable to use it or not. For that reason, we keep two versions of features using

the direct object, one using neither assumption above, the other using both, and let the

machine-learning system pick the most useful. We also review this question in §6.5.

3.6 Final Augmented Tuples

We extract double object frames and attempt to increase direct object recall using the

assumptions described in the previous section. To implement these assumptions, we

process the partial parse trees output by cass using TGrep2 version 1.06, a publicly

available tree-searching utility (Rohde, 2002).

Using these assumptions, we assign the slot labels dobj and iobj. In active frames, if

one object is found, it is labelled dobj; if two objects are found, the first is labelled iobj

and the second, dobj. In passive frames, if there is no object, the subject is labelled dobj;

if there is one object, the subject is labelled iobj and the object, dobj. Occasionally,

two objects are found in passive frames. Since such a frame is not possible in English,

we assume this is an error; we ignore the second object and treat the frame as if only

one object had been found.

We identify passives by the use of the past participle and the auxiliary to be in the

same verb group. Note that in the case of passives, we make no attempt at recovering the

underlying subject. We could look for the preposition by, but it is ambiguous whether

it is an underlying subject, as in The chair was built by John or an actual object of

the preposition by, as in John was elected by acclamation. We therefore prefer the more

conservative solution of always treating the preposition by as distinct from the subject.

Finally, we add the dobj and iobj slots to our intermediate tuples to obtain aug-
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0 tall/jj :subj %person/person [vx [bez is] [jj tall]]

4 gave/vbd :obj man/nn :subj I/prp :dobj cat/nn :iobj man/nn [vx [

vbd gave]]

11 built/vbn :by %person/person :for mother/nn :obj chair/nn :dobj c

hair/nn [vx [bedz was] [vbn built]]

21 elected/vbn :by acclamation/nn :obj %person/person :dobj %person/p

erson [vx [bedz was] [vbn elected]]

32 accepted/vbn :after thought/nn :over issues/nns :obj position/nn

:on equity/nn :as committee/nn :dobj position/nn [vnx [rb also] [vbn a

ccepted]]

52 recessed/vbn [vnx [vbn recessed]]

Table 3.6: Augmented tuples, with merged information from tuples, cass and TGrep2,

i.e., the intermediate tuples with the slots dobj and iobj added.

mented tuples. In the augmented tuples, we preserve the obj slot, even though it is

superseded by dobj, and we preserve the obj2 slot, even though it has little meaning.

Occasionally, tuples fails to identify a passive frame as such (specifically, with long verb

groups like would have been picked). In those cases, we change obj to obj2 and subj to

obj, the transformation tuples applies to passives it recognizes. The augmented tuples

for the sample sentences are shown in Table 3.6.

3.7 Feature Calculations

Using the augmented tuples described above, it is fairly straightforward to calculate most

of the features presented in Chapter 2 (summarized in Table 3.7). In most cases, the

relevant frequency is divided by the overall frequency of the target verb, but there are

exceptions, so we explain the calculation of each feature category individually here. For

each target verb, we first extract all verb groups from the cass output which contain
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Feature Category Defined in Section

Part of speech of the verb 2.1

Frequency of auxiliaries and modals 2.2

Combined feature: passive 2.3

Relative frequency of derived forms 2.4

Semantically empty constituents 2.5

Frequency of various syntactic slots 2.6

Animacy of NPs in various slots 2.7

Measure of slot overlap 2.8

Syntactic collocation features 2.9

Table 3.7: Summary of the feature categories

any form of the target verb with a verb POS tag.

The relative frequencies of the parts of speech of the verb (§2.1) are calculated by

tabulating the occurrences of the inflected forms of the target verb with each POS tag in

the extracted verb groups, and dividing by the total number of occurrences of the target

verb with a verb POS tag.

The relative frequencies of modals and auxiliaries (§2.2) are calculated by tabulating

the occurrences to be and to have (and their inflected forms) and each of the eight modals

in the extracted verb groups, and dividing by the total number of occurrences of the verb.

The feature giving the proportion of verb groups which include any of the eight modals

is also calculated using these extracted verb groups.

The relative frequency of the passive voice (§2.3) is calculated by counting the number

of extracted verb groups where two conditions are met: the verb group contains the

auxiliary to be in some form, and the head verb has the POS tag VBN. We divide in one

case by the sum of the occurrence counts of VBN and VBD as calculated above, following
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Merlo and Stevenson (2001), and in the other by the total number of occurrences of the

verb.

For the relative frequencies of the derived forms (§2.4), we count how often the verb

occurs as an adjective or a noun in the original corpus. To avoid having to process the

entire corpus multiple times, we first build a list of all tagged tokens appearing in the

corpus with their frequency counts, and we extract from this list the counts we need for

each verb. The application of the formulas given in §2.4 is then straightforward.

To produce the remaining sets of features, we first extract, out of our augmented

tuples, all the tuples for which the verb of interest is the head verb. Then for each slot,

we create a list of all the words that occur in that slot across all tuples, with frequency

counts. Additionally, we create the list of words occurring in the subject slot in transitive

clauses (i.e., those whose tuple contains a direct object) and the list of words occurring in

the subject slot in intransitive clauses (i.e., those whose tuple does not contains a direct

object).

Note that we have two ways to identify the direct object, the first being those direct

objects identified by tuples, the second adding to those the ones we find with TGrep2 as

part of our indirect object identification process, and removing those that are identified

as indirect objects. Consequently, we keep two distinct lists for each of direct object,

subject in a transitive frame and subject in an intransitive frame. Each feature using

these lists has two versions—we keep both and let the machine-learning system determine

which one is more useful. (We review this question in §6.5.)

The relative frequencies of semantically empty components (§2.5) are calculated using

the list of words occurring in the subject and direct object slots for the impersonal it, and

the subject and subject in a transitive frame slots for there-insertion. We tally how often

it or there occurs in the relevant slot, and divide by the total number of occurrences of

the verb. In the case of the relative frequency of there-insertion with respect to transitive

frames, we divide by the number of tuples which have a direct object instead.
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The relative frequencies of syntactic slots (§2.6) are calculated by dividing the sum

of the frequencies from the list of words occurring in the slot by the total number of

occurrences of the verb. This includes the subject, subject in a transitive frame, sub-

ject in an intransitive frame, direct object, indirect object, and the object of individual

prepositions.

The relative frequencies of preposition groups (§2.6) are calculated by adding the

relative frequencies of each preposition in the group. This will be an overestimate when

two prepositions from the same group occur in the same clause, but the resulting error

is sufficiently small that we can ignore it.

The relative frequency of the occurrence of the verb with any preposition (§2.6) is cal-

culated in two ways. In the first way, we simply add the relative frequencies of all prepo-

sitions. However, this incorrectly counts a clause with multiple prepositional phrases

multiple times. This number is therefore not really a relative frequency, since it could be

greater than 1. In the second way, we count the number of tuples in which any preposition

occurs, and divide by the total number of occurrences of the verb. Since we are treating

a large number of prepositions, these two numbers could be significantly different. We

calculate and keep them both, as they convey potentially different information about the

verb.

All the animacy features (§2.7) are calculated using the lists of words occurring in

the relevant slots. For each slot or group of prepositions, we go through the list of words

and tally those that are deemed to refer to an animate being, and divide by the sum of

all word frequencies in the list. In §2.7, we list the pronouns we deem to refer to animate

beings, and mention that we also count proper noun phrases that can be identified as

the name of a person. We rely on SCOL’s crude named entity recognizer to do this. If a

proper noun phrase starts with one of the five titles Mr., Ms., Mrs., Miss., or Dr., or if

it contains a known first name (from a list of 178 English first names), SCOL classifies

it as a person’s name, tuples labels it %person, and we count it as animate.
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To calculate the slot overlap features (§2.8), we again use the list of words occurring

in each slot. We lemmatize each word, treating %person as a special lemma. We then

apply the slot overlap formula given in §2.8.

The syntactic collocation features (§2.9) are calculated using the same lists of words

and following the procedure described in §2.9.
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Machine-Learning Approaches

The purpose of this study is to develop a general feature space for verb classification and

test it on a number of sample classification tasks. Specifically, we focus on two questions.

First, do our features work well, and second, can we identify which features are most

useful or relevant?

We use the decision-tree-induction system C5.0 (http://www.rulequest.com), the

successor of C4.5 (Quinlan, 1993), as our machine-learning software. We made this

choice because it is the system that was used in studies upon which our work is built

(Merlo and Stevenson, 2001) and because it performs well for our purposes. In previous

work, different machine-learning paradigms were compared, and they performed similarly

(Stevenson et al., 1999). Without repeating this comparison, we consider additional

approaches to solve the feature-selection problem.

The feature space we defined is a relatively large one, given the small size of our

training data—in our experiments, we have over 200 features for 40 to 60 training samples.

Our feature space includes many partially redundant features, and for any particular

verb classification task, we can expect a number of the features to be irrelevant. C5.0

internally selects the features it identifies as most useful when building decision trees. In

our experience, however, it does not always use the best features available when faced

43
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with numerous redundant and irrelevant ones (e.g., in Chapter 6, we report a number of

cases where a set of features has lower accuracy than a subset of the same features). We

therefore assume that we cannot rely solely on the tree-induction mechanism to select the

most relevant features for us. We consider methods to filter out irrelevant features and/or

to select the most useful features for a particular classification task. These methods

should improve the selection of relevant features and, by reducing the number of features

used, make the interpretation of classifiers built by the machine-learning system, to the

extent that such interpretation is meaningful, easier.

In this chapter, we describe the two approaches we explored for dealing with our large

feature space. Section 4.1 describes our first, unsuccessful approach, namely to filter out

features that clearly should not be relevant. Specifically, we remove features that we

expect not to be useful, based solely on the values they take, and without regard to

the classification of the training data. Section 4.2 describes stepwise feature selection,

our second and more successful approach. With this approach, we try to identify useful

features based on their performance on the classification task. Finally, we survey some

relevant literature in §4.3.

4.1 Feature Filters

Knowing that C5.0 is not always successful at selecting the best features when faced with

large numbers of irrelevant and redundant features, as found in our feature space, we first

applied filters to remove features that should clearly not be useful. The justification for

this approach is that when faced with a large number of features, but restricted training

data, it is preferable to first exploit any information available for removing features other

than the classification of the training data. This will reduce the number of statistical

tests, or other types of feature comparisons based on the training data, and thereby

reduce the chances of overfitting, i.e., the chances of finding seemingly good features
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that are not actually relevant.

This approach did not prove useful. The main problem is that it completely ignores

the classification of the training data when making decisions about features to remove.

We therefore discarded it in favour of stepwise feature selection (see §4.2), but we describe

it here for completeness.

4.1.1 Highly Correlated Features

When two useful features are highly correlated (positively or negatively), we expect that

either one of them will be sufficient to perform the classification. If both were kept, the

second one would provide only redundant information and not only would it not help

the classification, but it could make the decision trees built by the tree-induction system

more complex and harder to interpret. Therefore, when we find two features having a

correlation coefficient r higher than a fixed threshold in absolute value, we discard one

of the two as follows. Some features are believed to be better than others, because of

how they are extracted or what information they encode. If, of the two features, one is

believed to be better, the other one is discarded; otherwise, one of the two is chosen at

random and discarded.

We experimented with the threshold set at r ≥ 0.8, r ≥ 0.9, and with the correlated-

feature filter disabled. The results were disappointing, as filtering features seldom im-

proved predictive performance and frequently degraded it, as estimated using tenfold

cross-validation repeated 50 times.

One of the problems lies in the use of the correlation coefficient. Some of our features

have null values for many verbs (though not enough to be filtered by the mostly-null-

feature filter described below), and in some cases, two features might be zero for the same

verbs but yet not be otherwise correlated. The weight of all these zero values can raise

the correlation coefficient enough to filter out one of the features, even if they provide

complementary information about the verbs when they are not null. For example, %of is
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the most important feature in the Clear Alternation task (described in Chapter 5). How-

ever, it is highly correlated with over.obj.%of, %of person and over.subjtrans.of,

since if %of is null, then the others must also be null. In our experiments, %of was

sometimes removed because of this correlation, and we observed a dramatic increase in

mean cross-validation error in those cases. We could have looked for a better measure of

feature relatedness, but this approach did not seem useful or promising. Consequently,

we did not investigate it further.

4.1.2 Mostly Null Features

Features for which 90% or more of the verbs had a null value were considered to be

meaningless, and were removed from the feature set before passing it to C5.0. We com-

pared performance with and without this filter, and we found again that it made no

appreciable difference in classification performance, except in one case where the filter

slightly hurt performance. We therefore discarded this filter as well. (Although as a

speed optimization, we kept it with a 99% threshold.)

4.2 Stepwise Feature Selection

Our second approach to automatically selecting the most relevant features, stepwise

feature selection (§4.2.3), was more successful. It is a greedy algorithm combining forward

selection (§4.2.1) and backward elimination (§4.2.2) of possible features to include in

the final classifier. This approach requires a method to evaluate the “goodness” of

feature subsets—we use accuracy as estimated by repeated tenfold cross-validation on

the training data (§4.2.4).
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4.2.1 Forward Selection

Forward selection is a greedy feature selection approach which starts with the empty set,

and at each step selects the feature which most improves estimated accuracy when added

to the already-selected features. If the best accuracy improvement does not meet a fixed

“add” criterion, the feature is not added and the algorithm stops (Olden and Jackson,

2000; Sokal and Rohlf, 1981; John et al., 1994).

In the typical statistical approach to forward selection for regression, the add criterion

is a test of statistical significance of the reduction in estimated error (Olden and Jackson,

2000; Sokal and Rohlf, 1981). However, it is not clear that the significance test applies for

classification tasks, especially since we use repeated cross-validation to estimate accuracy.

How best to test for the statistical significance of a difference between cross-validation

results is debated, as we discuss in §4.3.6. Furthermore, since we consider hundreds

of different features at each forward selection step, the probability of finding statistical

significance by chance when it does not really exist would be very high (Salzberg, 1997).

Thus, even if we used a valid test of the significance of the difference between two cross-

validation results, it would not be valid when used in forward selection.

Since the statistical approach to forward selection is very involved, and does not

clearly apply to classification tasks, we use a simpler approach. We set the add criterion

to a fixed minimum accuracy increment, 0.5%, and we ensure that the standard error

of the mean accuracy is 0.5% or less (see §4.2.4). This may seem like an excessively

relaxed add criterion, but Kohavi and John (1997) relax this even further by accepting

any improvement at all, giving a penalty of only 0.1% per feature to the larger feature

sets, in order to prefer smaller sets in the case of a tie. Our approach gives a bit more

weight to parsimony, under the theory that smaller feature sets are better if they explain

the data almost as well as larger ones. In future work, we might want to examine the

effect of the add criterion more carefully.
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4.2.2 Backward Elimination

Backward elimination is also a greedy feature selection approach, but this time we start

from the full set of features. At each step we remove the feature such that, when it is

removed, accuracy improves most (or degrades least)—we will call this feature the “worst

feature”. If the feature does not meet a fixed “remove” criterion, we leave it in and the

algorithm stops (Olden and Jackson, 2000; Sokal and Rohlf, 1981; John et al., 1994).

In the typical statistical approach to backward elimination for regression, the remove

criterion is also a test of statistical significance, applied as follows: if removing the worst

feature degrades performance in a statistically significant way, the feature is not removed

and the algorithm stops (Olden and Jackson, 2000; Sokal and Rohlf, 1981). Just as with

forward selection, slightly lower accuracies are tolerated for the sake of parsimony.

Note that for regression, such a remove criterion must be used, because removing a

feature is guaranteed either to leave the estimated error untouched or to make it worse,

but never to improve it. The reason is that the fit of a feature set is assessed against the

training data only, as seems to be normal practice in regression tasks, at least during the

feature selection phase (Olden and Jackson, 2000; Sokal and Rohlf, 1981). (Olden and

Jackson (2000) warn against using the training data for final validation, but do not seem

to hesitate using it for feature selection.)

When using backward elimination for classification tasks, we do not necessarily have

to allow any performance degradation when removing a feature, since removing a feature

can improve performance, unlike with regression. However, it remains a good idea, for

the sake of parsimony—we prefer smaller feature sets to larger ones, if they perform

similarly.

For our work, we again use a simple remove criterion, similar to our add criterion.

The worst feature is removed if removing it increases the accuracy estimate at all, or

reduces it by at most 0.25%. This is in keeping with the standard statistical approach,

where stricter requirements are applied before adding a feature, but we are more lenient
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in allowing features to stay in the current set. But it is also consistent with the desire

to prefer parsimonious feature sets, since a feature might be removed even if removing it

slightly reduces the accuracy estimate.

4.2.3 Stepwise Feature Selection

Stepwise feature selection combines forward selection and backward elimination. If all our

features were independent, a feature that was deemed very useful would normally remain

so even when more features were added. But when various correlations exist between

features, it is possible for a feature to be informative on its own, but to be useless or

even harmful when some particular combination of other features is also available. In

order to deal with this problem, forward selection and backward elimination are combined

together in an algorithm called stepwise feature selection (Olden and Jackson, 2000; Sokal

and Rohlf, 1981; John et al., 1994). This method can start from any subset of features,

be it the empty set, the set of all available features, or some other subset believed to

be a useful starting point. The algorithm then alternates between forward selection and

backward elimination, alternatively trying to add and remove features, and stopping

when both directions miss their respective criterion and cannot change the feature set

any further (Olden and Jackson, 2000; Sokal and Rohlf, 1981; John et al., 1994).

Note that stepwise feature selection is related to hill-climbing, in that it is a greedy

algorithm, except that in hill-climbing, we would not alternate between adding and re-

moving features. Instead, we would select at each step the addition or removal operation

which would yield the best feature subset if applied to the current feature subset. Step-

wise feature selection has the advantage of allowing the add and remove criteria to be

set independently.

As mentioned in the previous two sections, in our study the add criterion is an increase

of at least 0.5% in the estimated accuracy, and the remove criterion is any increase or
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a decrease of at most 0.25% in the estimated accuracy.1 The choice was somewhat

arbitrary, but seemed appropriate given that we force the standard error of the mean

accuracy estimate down to 0.5% (see below). For the initial set, we used the empty set.

4.2.4 Accuracy Estimation

In all the algorithms described above, we need a method to estimate the accuracy of

a subset of features. The estimator we use is repeated tenfold cross-validation using

the subset of features to evaluate. This method can be used with any machine-learning

system, but since we use C5.0 for our study, we have to use C5.0 when running the

cross-validation. To reduce the variance of the estimate, we repeat the cross-validation

20 times, and then add repeats by groups of five until the standard error of the mean

accuracy is 0.5% or less.

Kohavi and John (1997) report that they also use repeated cross-validation, having

found that using a single cross-validation run gave insufficiently predictable results be-

cause of the high variance in the estimate. They argue that the number of repeats must

be set keeping in mind what they call the exploration versus exploitation problem, which

they attribute to (Kaelbling, 1993). A higher number of repeats favours exploitation by

reducing the confidence interval on the accuracy estimates. At the cost of more CPU

time, the right feature subset is more likely to be picked. Fewer repeats favour explo-

ration, since evaluating each feature subset takes less CPU time, and more states can be

1Another approach would be, using the empty set as the initial set, to make the add criterion more
relaxed than the remove criterion—e.g., 0.1% for the add criterion, but 0.5% for the remove criterion.
This unusual setting would create loops in the search, so a loop detection mechanism would be required.
However, it would provide an interesting advantage when two correlated features carry useful information
for the classification task. If the first was more useful than the second when considered alone, but less
useful when other features were available, it would be added first, even if it was not the best one to
keep in the end. This setting would give the second feature a better chance to replace the first one
later in the search. In situations without such pairs of features, this approach yields results similar to
the 0.5%/0.25% setting we use. The first feature to be added with an improvement smaller than 0.5%
would be immediately removed by the next backward elimination step. This would create a loop and
terminate the search, with the smaller set being retained. Experimenting with this approach, however,
is left to future work.
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explored in the search space. At the cost of rougher accuracy estimates, good feature

subsets further away in the search space can be found sooner. Now, with stepwise feature

selection, we explore far fewer states that Kohavi and John (1997) do with their search

heuristic, so we can afford to exploit the data more than they do.2 We force all our

standard errors to be below 0.5%, using 20 or more repeats, whereas they run only up to

five cross-validation repeats, stopping earlier if the standard error is below 1%. For some

of our larger experiments, we might consider allowing a higher standard error, because

the largest one took several days to run, which is not very practical.

4.3 Survey of Selected Literature

The problem of feature selection frequently comes up in studies that involve prediction

tasks, including classification tasks (which predict the class an item belongs to) and

regression tasks (which predict the value of a given quantity for an item). This problem

is usually called model selection in the statistical literature (e.g., Olden and Jackson,

2000; Sokal and Rohlf, 1981), but we follow the machine-learning literature and refer

to it as feature selection, for consistency and to avoid confusion with other senses of

“model”.

In the present survey, we focus on work that is most relevant for our study. The

reader interested in a broader survey of feature-selection literature is referred to Blum

and Langley (1997). (Of all the methods reviewed there, the approach of John et al.

(1994) is the most appropriate for the problem we are solving, and is discussed in §4.3.3.)

2John et al. (1994) use forward selection and backward elimination. Kohavi and John (1997) differ
somewhat from John et al. (1994), in that they use best-first search instead, and they stop only when
the last five search node expansions produced no improvements. At the end, they simply retain the best
feature subset that was encountered throughout the search, giving a 0.1%-per-feature penalty to each
subset, basically to give the advantage to the smaller subset in the case of a tie.
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4.3.1 Feature Selection for Regression

Olden and Jackson (2000) survey the practices of feature selection for regression found

in the ecological literature, and perform a study of the correctness of different selection

methods. They clearly demonstrate that examining all subsets of features is inappropri-

ate, even in cases where it is practical, as it tends to include many features which are not

relevant, but which are correlated with the predicted variable by chance. In fact, exam-

ining all subsets of features results in the worst overfitting behaviour of all the feature

selection approaches they survey.

Based on their experiments, they recommend two feature selection approaches. For

small sample sizes (30 training examples in their study), they find that stepwise feature

selection (and also its components forward selection and backward elimination used in-

dividually, see §4.2) performs best. For larger sample sizes (60 training examples in their

study), they find that an approach called bootstrapping performs best for regression

problems. Since it is not clear how to apply bootstrapping to classification tasks, we

do not describe it here. With this sample size, however, they find that stepwise feature

selection still performs well.

4.3.2 The Filter Model

John et al. (1994) study feature selection for classification tasks. One method they discuss

is the feature-filter model, where determination of the relevant features is done before

the machine-learning system is used. Each feature is individually evaluated for relevance,

and those with the top relevance scores are used. Note that this model should not be

confused with the feature filters we described in §4.1. There, features were discarded

based on their hypothesized uselessness, without regard to the classification task, i.e.,

without looking at the classification of the training data. Here, features are selected

based on some assessment of their individual relevance to the classification task.
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As they mention in the paper, this model does not deal with redundant features

very well. The first problem is that if two features are highly relevant, but also highly

redundant, we would like to keep only one of them, unless having them both actually

helps classification. But this cannot be determined without testing them together, so

this model would keep them both. The second problem is that if a set of weakly relevant

features are, together, highly informative, they might all get discarded anyway because

they are not sufficiently relevant individually.

The use of any method which individually assesses features, such as using Mutual

Information, or the Relief filter system (Kira and Rendell, 1992) will have the same

problem. Since our feature set contains numerous redundant features, it is clear that the

filter model is not appropriate for our classification tasks.

4.3.3 The Wrapper Model

John et al. (1994) also introduce what they call the wrapper model, which treats the

machine-learning system as a black box, guiding feature selection by evaluating different

feature subsets using cross-validation. Unlike with the filter model, feature values are

not directly examined. With this model, various strategies can be used to determine

which feature subsets to consider, from the brute-force all-subsets approach to more

clever strategies which search for the best subset in a more focused way. Stepwise feature

selection, our approach, is an example of a search strategy that can be used with the

wrapper model.

The key to the wrapper model is that interactions between features are always taken

into account, since feature sets are evaluated together using the machine-learning system

itself, rather than individually. It is important to note here that the feature sets selected

in this way are only appropriate for the machine-learning system used in selecting them,

since the biases of the system itself are also embedded in the selection procedure. Different

systems cannot always be expected to exploit features the same way, so the best feature
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set with one system might not be the best feature set with another.

Based on their study, John et al. (1994) find that the wrapper model, using forward

selection in particular, performs well for classification tasks, just as Olden and Jackson

(2000) found that it works well for regression tasks. John et al. (1994) show that forward

selection enables C4.5 and ID3, the precursor to C4.5, to build smaller decision trees using

fewer features than when they have access to all the features, but that generalization

performance remained roughly the same. They conclude that the main advantage of this

method lies in these smaller decision trees, which, to the extent that decision trees can

be meaningfully analyzed, are easier to interpret than the large trees produced when all

features are available to the tree-induction systems.

In later work, the wrapper model is generalized. The traditional statistical terminol-

ogy of forward selection, backward elimination and stepwise feature selection is replaced

by the more standard machine-learning terminology of a state space with operators to

move through the space. The state space is the set of all possible feature subsets, and

the goal is to search through this space for the best subset. Three kinds of operators

are defined to move through the state space during the search. The two basic kinds of

operators, adding a feature and removing a feature, correspond respectively to a step

in forward selection and a step in backward elimination. The third kind, which they

call compound operators, combines the best operators available at a given point into a

single operator that adds and/or removes multiple features at once. Intuitively, if adding

two features separately helps, it is likely (though not necessarily) true that adding them

together will help even more, so it is worth exploring that hypothesis right away. At each

step, they consider combining the best k operators so far into a compound operator ck,

starting with k = 2, and continue as long applying ck to the current parent node being

expanded improves the estimated performance. (Kohavi and John (1997) provide the

most comprehensive report on this research; see also Kohavi and Sommerfield (1995),

Kohavi and John (1998) and Kohavi (1995b, §4).)
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The effect of compound operators is similar to that of the filter model, in that they

take the features that were best individually, and consider them together. However, only

the decision to consider a subset is based on the individual performance of the features.

The decision to accept a subset is always based on the performance of the features when

given together to the machine-learning system. Thus, interactions between features are

taken into account, in contrast to the filter model. With this approach, if redundant

features are accepted together but are not both required for optimal performance, we

can expect that one of them will be removed by a backward elimination operator in a

subsequent step. We can also expect that groups of weakly relevant features that are

useful when used together will eventually be considered and retained.

Kohavi and John (1997) show that the use of compound operators, together with

a search heuristic called best-first search, often improves generalization performance,

although slightly larger feature subsets tend to be selected when compound operators

are allowed than otherwise. Intuitively, compound operators allow the search to reach

better states more rapidly, since features do not have to be removed or added one at

a time, and more of the information available at each step of the search is exploited.

compound operators increase the chances of overfitting, however, especially when only a

small number of training examples are available.

In the present study, we restrict ourselves to adding or removing one feature at a

time, as described in §4.2. However, we would like to explore the potential of compound

operators for verb classification in future work. To avoid overfitting, we will have to find

a more conservative way to apply them, since we have a large number of features and a

small number of training examples. One approach would be to give a more significant

penalty to operators that add many features at once.
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4.3.4 Overfitting and the Wrapper Model

When using the wrapper model, including when stepwise feature selection is used, the

probability of overfitting increases as we explore more distinct subsets. The more fea-

ture subsets we test, the more likely we are to find one which is only good by chance,

performing very well on the training data, but having poor predictive power (Kohavi

and Sommerfield, 1995; Kohavi and John, 1997). For this reason, exploring all possible

subsets is clearly inappropriate, as confirmed by Olden and Jackson (2000) and suggested

by the work of Ng (1998).

Kohavi and Sommerfield (1995) study the issue of overfitting in stepwise feature

selection. They found that overfitting was mostly an issue for small training sets, and

therefore we will have to be concerned about overfitting in our work. They also showed

that overfitting became increasingly worse as the search was allowed to expand more

nodes. In the problematic cases they show, however, overfitting only became a serious

problem when the search was allowed to continue expanding nodes even if a large number

of previous node expansions had produced no improvements at all. Thus, we should not

expect too much trouble with overfitting when performing stepwise feature selection, as

long as we maintain a sufficiently conservative add criterion.

Finally, Kohavi and Sommerfield (1995) mention, as we know, that in order for ac-

curacy estimates to be unbiased, they must be based on test data that was not used to

perform the feature selection. Thus, the cross-validation results on the set of features

selected cannot be considered meaningful.

Ng (1998) uses the wrapper model in two approaches to feature selection in cases

where a large number of irrelevant features are present and only a small training sample

is available, as in our case. His first approach is essentially that of Kohavi and John

(1997), where the state space is searched using some heuristic and the feature subset

selected in the end is the one that has the best estimated accuracy using cross-validation

or a held-out set. Ng demonstrates that, because the same data is used repeatedly, the
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approach is limited by the severity of overfitting.

In his second approach, Ng proposes “ordered-fs”, a theoretical algorithm that

exhaustively examines feature subsets. The set of training samples S is subdivided into

an active training set S ′ and a held-out set S ′′. For all possible subsets of features,

performance on S ′ is measured (e.g., using cross-validation). For each possible subset

size (0–f if there are f features), the best-performing feature subset is retained (yielding

f + 1 feature subsets). The retained feature sets are evaluated on S ′′ and the one with

the smallest error is selected.

The key to ordered-fs is that, although all subsets are examined, only f+1 subsets

are tested on the hold-out set, so that the severity of overfitting is reduced. We describe

this algorithm as theoretical, however, because it requires the exploration of all possible

subsets, which rapidly becomes intractable with large numbers of features. Ng (1998)

performs empirical experiments with an approximation of this algorithm, and finds that

it almost always outperforms the standard wrapper approach. It is possible to adapt

stepwise feature selection or the approach of Kohavi and John (1997) to make use of

the underlying idea of ordered-fs. For example, stepwise feature selection would be

run on the training data with a hold-out portion removed. The best feature subset

identified at each step of the algorithm would be retained. At the end, we would evaluate

the retained feature subsets against the held-out set and keep the best one. Note,

however, that experimenting with this approach falls beyond the scope of this study and

is proposed as an avenue of future work.

4.3.5 Gaussian Process Models

Another machine-learning approach we investigated is Gaussian process models (Neal,

1997), which use automatically determined relevance hyperparameters to reduce or in-

crease the effect of individual features on classification, normally reflecting their actual

relevance to the classification task. We tried this approach in a preliminary experiment,
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to determine if the relevance hyperparameters can help with the feature-selection prob-

lem. It performed similarly to C5.0 in terms of estimated accuracy, but it did not help

with feature selection.

Even though Gaussian process models can deal with redundant features fairly well,

they do not help in determining which features are the relevant ones, and which feature set

might be the best. The key problem is that if two features are very helpful but redundant,

their relevance hyperparameters will tend to be set in such a way that their combined

relevance is high. However, one of them could have a high relevance hyperparameter and

the other a low one, or both of them could be set somewhere in the middle. This approach

is appropriate if the goal is to build a good classifier which uses all the available features.

However, we cannot expect a feature’s relevance hyperparameter to be informative of its

actual relevance when there are potentially many redundant features in the feature space,

such as is the case in this study. Since feature selection and the identification of relevant

features is an important goal of this study, we decided it was not worth investigating the

use of this approach any further, and we therefore have no results to report using it.

4.3.6 Comparing Classifiers

In this study, we need to compare a number of classifiers to each other. When a lot of

data is available, one can randomly draw a sizeable test set out of the available data,

and use this test set to perform classifier comparisons. However, when data is limited, as

is our case since we are working with relatively small verb classes, comparing classifiers

to determine whether we can say that one is better than the other in a statistically

significant way is a difficult and debated problem.

Dietterich (1998) studied the behaviour of a number of descriptive statistical tests

that can be used to compare classifiers using a small data sample. Of the four tests he

studied, he found that a paired t test applied to the results of a tenfold cross-validation

run was the most powerful, i.e., it was most likely to detect real differences between
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classifiers. However, it was also the most likely to make Type I errors, i.e., to claim there

was a difference between classifiers when there really was not one.

Salzberg (1997) also warns that the paired t test has a high probability of making

Type I errors because the trials in a cross-validation experiment are not independent. If

more than two folds are used, each trial shares most of its training data with each of the

other trials. Furthermore, even if the test sets of the cross-validation trials are disjoint,

they are not really independent since the testing data for one trial is used as training

data for all the other trials.

Dietterich (1998) recommends an alternative test, the “5x2cv paired t test” which

uses five replications of twofold cross-validation and a carefully designed test based on it.

He claims that it has less dependence between trials within a single cross-validation run

because the training sets are non overlapping. The trials are not independent, since the

training data of one trial is the testing data of the other, but they are less dependent than

when three or more folds are used. Thus, they violate the assumptions of the statistical

test to a lesser degree. In his study, he found that this test has a low probability of

making Type I errors, which makes it a more reliable test than the t test applied to

tenfold cross-validation.

However, the 5x2cv test has the strong disadvantage of using twofold cross-validation

which we expect to be highly pessimistically biased (Kohavi, 1995a,b). The other disad-

vantage is that it is not a very powerful test. When a real difference exists between two

algorithms, it is much less likely to detect it than the t test is. In fact, Dietterich (1998)

finds that even when the performance of two learning algorithms differ by as much as

ten percentage points, this test is still only able to detect the difference about one third

of the time, making this test almost useless in practice.

When two algorithms are compared on the same test set and the results of each

algorithm on each test example are available, Salzberg (1997) recommends considering

the examples where the algorithms differ and ignoring the ones where they agree. One



60 Chapter 4. Machine-Learning Approaches

can compare the proportion of examples Algorithm A got wrong but Algorithm B got

right with the proportion of examples Algorithm B got wrong but Algorithm A got right,

using a simple binomial test. Salzberg (1997) claims that this test is a much better test

than the t test. Dietterich (1998) studies two tests that are based on a similar idea,

including one called the McNemar test with continuity correction, and finds that they

have a low probability of making Type I errors. However, he also finds that these tests

are even less powerful than the 5x2cv test at detecting real differences. When comparing

classifiers using our unseen test data, we use the McNemar test with continuity correction

(see §6.1.1).

None of the studies we have found on the topic of comparing classification algorithms

have discussed the use of statistical tests to compare repeated k-fold cross-validation runs

using a k > 2. In our experiments, we always use repeated cross-validation runs because

they yield more stable estimates of accuracy with a lower variance (Kohavi, 1995a,b).

We also always use ten folds, because this works well with our training sets, whose size is

always a multiple of ten. Kohavi (1995a,b) shows that using ten or 20 folds tends to yield

unbiased or slightly pessimistically biased estimates of the accuracy, which confirms that

this is generally a good estimate. He also shows that stratified cross-validation, where

the class distribution within each fold is kept roughly the same, is even less biased. We

always use stratified cross-validation, since that is what C5.0 does.

In principle, the lower variance of the accuracy estimates obtained using repeated

cross-validation runs should allow for more powerful statistical tests to determine if two

algorithms (or features sets) have significantly different accuracies. However, the t test

and the ANOVA test both assume that the data they are comparing are independent.

This is clearly not the case since each cross-validation run uses the same data, even if a

different random split is used.

One convincing argument that there is a problem with these tests is that one can make

any difference significant by simply running more repetitions of the cross-validation. If
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the difference between two algorithms is not significant when tested with tenfold cross-

validation repeated 50 times, we could make it significant by using 500 or 5000 repetitions.

However, if it takes that many repetitions, the difference is probably very small. When

comparing different cross-validation results, it is therefore important to look at the size

of a difference and consider whether it is meaningful or not for the application being

studied, and not rely only on statistical tests. When designing his 5x2cv test, Dietterich

(1998) found that five was the most appropriate number of repetitions for that test. With

fewer repetitions, he had too much variance, but with more repetitions the risk of Type I

errors was increased. With an appropriate experimental setup, one could determine power

and the probability of Type I errors of the t test when used with different numbers of

cross-validation repetitions, and determine the most appropriate number of repetitions.

However, we know of no study which has done such an experiment.

In previous studies on verb classification (e.g., Merlo and Stevenson, 2001), an ANOVA

test with a Tukey–Kramer post test was used on tenfold cross-validation repeated 50

times. This test was used to compare multiple classifiers at once. For comparing two

classifiers, a two-tailed t test with Welch correction for continuity would be used on the

repeated cross-validation results, with an adjustment for multiple tests when appropriate

(see below). In either case, the independence assumptions of the tests are not respected,

and the warnings of Salzberg (1997) and Dietterich (1998) about the risk of Type I errors

are probably applicable. However, we still use this test (see §6.1.1), hoping that the lack

of independence will not be too critical, because it is not clear that any other test will

be better, and, as mentioned above, we have no way of knowing how many repeats are

appropriate.

As an alternative test, we could take advantage of the fact that when we run repeated

cross-validation for different subsets of features, we use the same random splits for each

series of repeated cross-validation. Since xval controls the sampling seed used by C5.0,

two sets of repeated cross-validation runs performed on the same data will use the same
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data splits, even if the feature subsets are different. Thus, we could use a paired t test or

ANOVA instead of an unpaired one. A paired test would have the advantage of controlling

for the variance that is due to the particular split used in each cross-validation run. It

would therefore be more powerful at detecting existing differences, but the probability of

Type I errors would likely be even greater than with the unpaired test, again because of

the lack of independence between trials.

A second alternative would be to use the sign test, which has no distribution assump-

tions. This is also a paired test, but it would be used on the individual trials rather than

on the average accuracy of the whole cross-validation run. When we run tenfold cross-

validation repeated 50 times, we use the 50 average accuracies in the ANOVA or t test.

In the sign test, each of the 500 trials would be considered individually. The number of

trials where one feature subset performed better and the number of trials where the other

feature subset performed better, would be counted, ignoring trials where they performed

equally. The binomial test would then be applied to determine if the proportions are

significantly different than one half each (Sokal and Rohlf, 1981, §13).

Being a non-parametric test, the sign test makes no assumptions about the distribu-

tion of the data. We could therefore be more confident in its conclusions than in those of

the parametric tests. However, it also assumes independence between individual trials,

and that assumption is still violated. Again, we hope that this violation is not too crit-

ical. Unfortunately, we know of no study which analyzes the behaviour of the sign test

when used to compare repeated cross-validation runs as we suggest here.

Performing Multiple Classifier Comparisons

When statistical tests are performed to compare a number of different algorithms or

feature subsets, and all accuracy estimates are based on the same training data, an

adjustment is required in the significance level used. Salzberg (1997) shows that if n

tests are performed at a nominal significance of α∗, the probability that at least one of
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them will be found to be significant by chance (i.e., when the difference really is not

significant) is

α = 1− (1− α∗)n.

For example, if ten tests are performed at the significance level 0.05, we have α = 1−(1−

0.05)10 = .4012, or a 40% chance that at least one of the tests will be significant by chance.

If 200 tests are performed at that level, we have α = 1 − (1 − 0.05)200 = .9999649 or a

99.996% chance that one of the tests will be significant by chance. Since a typical forward

selection step in our experiments compares over 200 feature subsets, any statistical test

would not be meaningful.

Salzberg (1997) mentions that one can compensate for this problem by an adjustment

that is well known in the statistical community as the Bonferroni adjustment. With this

adjustment, we set α to the desired significance level, and calculate the α∗ required to get

this α. This adjustment can be closely approximated by the simpler formula α∗ = α/n

(where n is the total number of tests performed).

When we perform an ANOVA with a Tukey–Kramer post test, the test is properly

adjusted to account for the multiple comparisons that it performs. However, if we use any

test which is not already adjusted, such as the sign test discussed above, some appropriate

adjustment will be required.

During feature selection, so many comparisons are performed that no test of signifi-

cance can really be meaningful. Instead, as described in §4.2, we simply use a threshold

improvement. Note, however, that we do not consider the accuracy estimate obtained

by cross-validation on the selected feature subset to be representative of true generaliza-

tion performance. Because of the procedure we use to select this subset, it is likely the

one with the most optimistically biased estimated accuracy, and it is therefore no longer

possible to rely on this estimate. To estimate the accuracy of a classifier built with this

subset of features, it will be necessary to use previously unseen test data, as we do.
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Chapter 5

Verb Classes

One of the important goals of this study is to design a feature space that can be general

enough to apply to a wide range of class distinctions. (Following Levin, we focus on verb

classes that exhibit alternations involving NP and PP arguments.) Hence, to evaluate

our feature space, we want to run classification experiments over a number of different

class distinctions. Section 5.1 describes the verb classes that we have selected for our

experiments. Section 5.2 describes how we have established which verbs in those classes

were usable for this study, and then how we selected which particular verbs to use for

training and testing.

5.1 Class Descriptions

We have identified seven two- or three-way classification tasks which were selected to give

us a good indication of how well our feature space can perform. To these seven tasks,

we added three more, which grouped together larger numbers of classes, to see how well

we can perform these more difficult classification tasks. Table 5.1 summarizes the ten

classification tasks.

Table 5.2 gives more details about the two- and three-way classification tasks that

we have selected. For each task, we show the immediate contrast, in terms of syntactic

65
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Task Name
Class

Verb Classes
Count

Benefactive/Dative 2 • Benefactive: Build (26.1) and Preparation (26.3)

verbs

• Dative: Recipient verbs (13.1, 13.3)

Clear Alternation 2 • Cheat verbs† (10.6)

• Steal (10.5) and Remove (10.1) verbs†

Admire/Amuse 2 • Verbs of Psychological State: Amuse verbs (31.1)

• Verbs of Psychological State: Admire verbs (31.2)

Swarm Alternation 2 • Unergative: Run verbs‡ (51.3.2)

• Verbs of Sound Emission‡ (43.2)

Wipe Alternation 2 • Wipe verbs† (10.4.1,2)

• Steal (10.5) and Remove (10.1) verbs†

Spray/Load

Alternation

3 • Spray/Load verbs† (9.7)

• Fill verbs† (9.8)

• Other verbs of Putting† (9.1–6)

Transitive

Alternations

3 • Unaccusative: Change of State verbs (45.1–4)

• Unergative: Run verbs‡ (51.3.2)

• Object Drop: Build (26.1), Performance (26.7)

and Preparation (26.3) verbs

Six Locative Classes 6 The six basic locative classes, marked with †

All Locative Classes 8 All locative classes, marked with † and ‡

All Classes 13 All classes (except Benefactive∗)

Table 5.1: Summary of the ten classification tasks. Levin section numbers are in paren-

theses. * The Benefactive class is a subset of the Object Drop class, and therefore these

two classes cannot be put together in a classification task.
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Class Frames
Thematic Role Mapping

Subj. D. Obj. Other

1. Benefactive/Dative task

Benefactive NP-V-NP-NP agent theme I. Obj.: benefactor

(Object-Drop) NP-V-(NP-(PPfor)) agent theme PPfor : benefactor

Dative NP-V-NP-NP agent theme I. Obj.: recipient

NP-V-NP-(PPto) agent theme PPto : recipient

Contrast: these two classes differ by the thematic role that is assigned to the indirect

object, and what prepositional argument it alternates with (dative and benefactive

alternations, Levin §2.1 and §2.2).

2. Clear Alternation task

Cheat verbs NP-V-NP-(PPof ) agent location PPof : theme

Steal/Remove verbs NP-V-NP-(PPfrom) agent theme PPfrom : location

Contrast: these two classes differ in what variant of the transitive clear alternation

they can occur in (a locative alternation, Levin §2.3.2).

3. Admire/Amuse task

Amuse verbs NP-V-NP-(PPwith) stimulus exper. PPwith : attribute

Admire verbs NP-V-NP-(PPfor) exper. stimulus PPfor : attribute

NP-V-NP-PPin exper. attribute PPin : stimulus

Contrast: these two classes assign the experiencer and stimulus roles in opposite

ways, and accept different PP arguments.

4. Swarm Alternation task

Run verbs NP-V-(PPloc) agent PPloc: loc./dest.

(Unergative) NP-V-NP-(PPloc) caus. ag. agent PPloc: loc./dest.

Verbs of Sound NP-V-(PPloc) agent PPloc: location

Emission NP-V-PPwith location PPwith : agent

Contrast: these classes differ in whether they can participate in the swarm

alternation (a locative alternation, Levin §2.3.4).

continued on next page

Table 5.2: Main characteristics of the semantic classes we consider for each task. Parts

of syntactic frames in parentheses are optional. PPloc represents a prepositional phrase

headed by any locative preposition. (Role abbreviations on next page.)



68 Chapter 5. Verb Classes

Class Frames
Thematic Role Mapping

Subj. D. Obj. Other

5. Wipe Alternation task

Wipe verbs NP-V-NP-(PPfrom) agent theme PPfrom : location

NP-V-NP agent location

Steal/Remove verbs NP-V-NP-(PPfrom) agent theme PPfrom : location

Contrast: these classes differ in whether they can participate in the wipe alternation

(a locative alternation, Levin §2.3.3).

6. Spray/Load Alternation task

Spray/Load verbs NP-V-NP-PPloc agent theme PPloc: loc./dest.

NP-V-NP-(PPwith) agent loc./dest. PPwith : theme

Fill verbs NP-V-NP-(PPwith) agent loc./dest. PPwith : theme

Other v. of Putting NP-V-NP-PPloc agent theme PPloc: loc./dest.

Contrast: these classes differ in which variants of the spray/load alternation they

can occur in (a locative alternation, Levin §2.3.1).

7. Transitive Alternations task

Unergative (Run NP-V-(PPloc) agent PPloc: loc./dest.

verbs) NP-V-NP-(PPloc) caus. ag. agent PPloc: loc./dest.

Unaccusative NP-V theme

(Change of State v.) NP-V-NP-(PPwith) caus. ag. theme PPwith : instrument

NP-V-NP instrument theme

Object-Drop (Build, NP-V-(NP-(PPfor)) agent theme PPfor : benefactor

Perf., Prep. v.) NP-V-NP-NP agent theme I. Obj.: benefactor

Contrast: these classes assign roles differently for transitive and intransitive frames

(transitivity alternations, Levin §1.1.2 and §1.2.1) and accept different PP

arguments.

Table 5.2 (cont’d): Main characteristics of the semantic classes we consider for each task.

Role abbreviations: loc.: location, dest.: destination, exper.: experiencer, caus. ag.:

causative agent.
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frames and/or thematic mapping, between the verb classes involved. The syntactic frames

shown are those that apply to all or most verbs in the class. The thematic role mapping

indicates how arguments are mapped to syntactic slots for each frame.

The classification tasks we chose vary in difficulty. For most tasks, knowing exactly

what PP arguments each verb can take would be sufficient to perform the classification.

However, we do not have access to such knowledge, since we restrict ourselves to ac-

quiring syntactic information from the corpus. With the simple tools we use, we cannot

distinguish PP arguments either from PP adjuncts or from PPs that should be attached

to nouns instead of the verb. For example, the PPfor argument in I admired Jane for

her honesty is not distinguished from the PPfor adjunct in I amused Jane for the money.

Thus, if two classes differ in that one can take a PP argument that the other cannot,

we expect the features involving that PP to be useful, but imperfect, indicators. For the

Wipe Alternation task (5), perfect information about syntactic frames and allowable PP

arguments would not suffice since there is no frame or slot which is allowed by all verbs

in one class and no verbs in the other. One might therefore expect this task to be one of

the hardest ones we consider.

The Benefactive/Dative (1), Admire/Amuse (3), and Transitive Alternations (7) tasks

were chosen because the verb classes involved assign different thematic roles to slots

in the same syntactic frames. For example, consider the double object frame in the

Benefactive/Dative task—benefactive verbs assign the benefactor role to the indirect

object slot, whereas dative verbs assign the recipient role to that slot. The classes involved

in these three tasks also differ in what PP arguments they can take, so we expect that

PP argument information and role information will both contribute to these classification

tasks. The Clear Alternation (2), Swarm Alternation (4), Wipe Alternation (5), and

Spray/Load Alternation (6) tasks involve classes that differ in which locative alternations

they can participate in. For example, the classes involved in the Spray/Load Alternation

task differ in which variants of the spray/load alternation (Levin §2.3.1) they can occur
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in, namely the with variant (e.g., Leslie staffed the store with employees), the locative

variant (e.g., Cora coiled rope around the post), or both (e.g., Jessica sprayed paint on

the wall, Jessica sprayed the wall with paint).

The tasks labelled Six Locative Classes and All Locative Classes group together six

and eight classes, respectively, involving locative alternations. The All Classes task puts

all thirteen classes together in one big classification experiment. These three tasks are

meant to test how well our feature space can deal with larger numbers of classes, and give

us an idea of how much we can expect to scale the approach to multiple class distinctions.

5.2 Verb Selection

For each verb class that we used, we determined which verbs were available for our study

as follows:

1. We took the list of all verbs belonging to the particular class or classes in Levin.

2. We removed all verbs that did not occur at least 100 times in our corpus, the BNC.

(Our study still considers a good number of infrequent verbs, since 100 occurrences

is very low in a corpus of 100 million words.)

3. We removed verbs that belonged to more than one class under consideration.

4. We removed verbs that were highly polysemous, as determined by inspection, or for

which the sense under consideration was clearly a fairly rare sense.1 For example,

perk, in the sense of making coffee in a percolator, belongs to class 45.3, Cooking

verbs, but that is a rare sense, so we removed perk from this class.

Table 5.3 indicates how many verbs were available in each class at different steps of the

process described above.

1We are aware that, by removing highly polysemous verbs, we make the classification task somewhat
easier for ourselves. However, ambiguity is by no means removed—verbs that belong to a single Levin
class can still be polysemous. Furthermore, we plan to use Levin-class disambiguation based on the work
of Lapata and Brew (1999) to deal with polysemous verbs in the future.
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Verb Class
Levin

classes

Number of Verbs

in ≥ 100 in Kept Train Test

Levin the BNC

Benefactive: Build and

Preparation verbs
26.1, 26.3 58 52 35 20 15

Dative: Recipient verbs 13.1, 13.3 34 34 27 20 7

Cheat verbs 10.6 48 31 29 20 9

Steal and Remove verbs 10.5, 10.1 77 52 45 20 24∗

Amuse verbs 31.1 220 144 134 20 114

Admire verbs 31.2 45 36 35 20 15

Unergative: Run verbs 51.3.2 124 87 79 20 45∗

Verbs of Sound Emission 43.2 119 64 56 20 34∗

Wipe verbs 10.4.1,2 56 44 35 20 15

Spray/Load Verbs 9.7 49 43 36 20 15∗

Fill verbs 9.8 95 65 63 20 42∗

Other verbs of Putting 9.1–6 70 63 48 20 28

Unaccusative: Change of

State verbs
45.1–4 318 197 169 20 135∗

Object Drop: Build, Perfor-

mance and Preparation verbs

26.1, 26.3,

26.7
76 68 50 20 24∗

Table 5.3: Number of verbs in each class at various phases of processing: number of

verbs listed in Levin (1993); of those, number of verbs which occur at least 100 times

in the BNC; of those, number of verbs which are not too polysemous and were kept for

the study; number of verbs used for training and development; number of verbs used for

testing. (*) In a number of classes, some of the verbs were used in previous studies and

could not be considered unseen test data. In those cases, the number of training and

testing verbs might not add up to the number of verbs kept.
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Of the verbs available in each class, we selected 20 as training and development data,

to be used to explore various classification approaches, and various feature sets, which

we compare to each other using cross-validation.

The 20 training verbs were selected randomly for each class, with two exceptions, due

to the need to keep as many verbs available for testing as possible. In the development of

this work, we used the verbs and classes from (Merlo and Stevenson, 2001), as well as a

number of other verbs, so these verbs cannot be considered as previously unseen data in

our study. In selecting Build, Performance and Preparation verbs for training, we could

not afford to let the random selection of training verbs “use up” all the previously unseen

verbs, given that we had so few of them. Hence, for the Benefactive (Build and Prepa-

ration) verbs, we took the eleven previously seen verbs and added nine more randomly.

For the Object Drop (Build, Performance and Preparation) verbs, we randomly chose 20

among the 21 previously used verbs and the nine that were chosen as Benefactive verbs.

For all other classes, the selection of training verbs was strictly random, since either there

was no concern about running out of new verbs (Unaccusative and Unergative verbs), or

almost all the verbs were new data (all other classes).

For test data, we used all verbs remaining after the selection of training data, except

those that had been used in the previous studies we build on. Thus, we used all verbs

which were previously unseen to us as test data.

The training and testing verbs selected using this procedure are listed in Appendices A

and B, respectively.
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Experimental Results

In this chapter, we compare the accuracy of four versions of our feature space. The first

version we consider is our core feature space—i.e., all our features except for the syntactic

collocation ones. Building this core feature space was one of the main goals of this study,

and therefore we pay particular attention to it and compare other feature sets to this

one.

The second version we consider is our whole feature space—our core features plus

the syntactic collocation features. The syntactic collocation features are a crude ap-

proximation of selectional preference, but one that we expect should still provide some

useful information for the classification tasks. However, since these features are somewhat

experimental and not fine-tuned, our expectations for this set are limited.

One of the goals of this study is to investigate whether it is necessary for a linguist to

devise a relevant set of features for each class distinction of interest, or if a general feature

space can be adequate. In order to evaluate this, we have defined what we will call Levin-

derived subsets for each task, the third version of our feature space. For each verb class,

Levin gives a number of examples illustrating what alternations and syntactic frames are

characteristic of that verb class. We have systematically identified which features within

our core feature space are related to the syntactic frames and the alternations illustrated

73
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by each of her examples. In this way, for each verb class, we obtained a subset of relevant

features from our core features, which we call the Levin-derived subset for that verb

class. For each verb classification task, then, the Levin-derived subset is the union of

the Levin-derived subsets for all the verb classes involved in the task. For example, the

Levin-derived subset for the Benefactive/Dative task is the union of the Levin-derived

subsets for classes 26.1 (Build verbs), 26.3 (Preparation verbs), 13.1 (Give verbs) and

13.3 (Verbs of Future Having). (The Levin-derived subsets are available from the author

on request.)

The last version we evaluate are the subsets selected by stepwise feature selection

(hereafter referred to as “stepwise”), as described in §4.2. In order to better understand

how stepwise works, we also look at its incremental behaviour—i.e., how well the feature

set retained at each iteration performs.

Finally, we compare these results to the baseline. In all the tasks we consider, the

training data is balanced, having exactly 20 verbs from each class. If there were no infor-

mation in the feature space, any algorithm trained on this data would not be expected to

perform better than chance. Our baseline, therefore, is the chance baseline. For a k-way

classification task, the chance baseline has an expected accuracy of 1/k.

6.1 Methodology

In order to evaluate the different feature sets described above, we performed two kinds

of experiments. First, we used tenfold cross-validation repeated 50 times to estimate the

average accuracy on the training data only (20 verbs per class). (We will refer to these

estimates as “mean cross-validation accuracy” in the rest of this chapter.) We then used

the training data to build a classifier, which we evaluated on our previously unseen test

data (described in §5.2).

We believe it is important to consider both the mean cross-validation accuracy, which
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is estimated using the training data, and the accuracy on the test data, because the

number of test verbs is limited in many classes. When comparing two sets of results,

we can be more confident that a difference is meaningful if the mean cross-validation

accuracy and the test accuracy both increase or both decrease. If one increases and

the other decreases, we should question whether there really is a difference between the

classifiers compared.

In theory, the test accuracy should be more reliable, because it is estimated over

previously unseen data and is therefore not biased by our attempts at improving the

algorithm and the feature space, whereas the mean cross-validation accuracy might be.

However, the test accuracy is based on a single classifier built by C5.0 over the training

data, and does not take into account the variance due to the choice of training data—

if we had used different training verbs, we would expect somewhat different results.

Repeated cross-validation, on the other hand, has much lower variance because it averages

accuracies over a number of training/test splits of the training data. This lower variance

means that we can be confident in the significance of much smaller differences in the

mean cross-validation accuracy than differences in the test accuracy.

In summary, because it is unbiased, the test accuracy is a more reliable indicator

of the true accuracy of our feature space. But having lower variance, the mean cross-

validation accuracy is a more powerful tool to detect differences between versions of our

feature space.

6.1.1 Statistical Methodology

Given the small sample sizes in our test data, descriptive statistical tests on our results

on unseen data lack power. We performed them, but few were significant, so we do not

report them all here. Furthermore, since we are using all the verbs available as test

data, subject to the filter described in §5.2, our test data cannot be considered a random

sample, as most tests of statistical significance assume, so it is not clear that the tests
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are appropriate. In our tables, we report test accuracy both in terms of percentages and

counts, in order to help the reader intuitively interpret how meaningful differences are.

We report meaningful statistical tests in the main body of the text only.

When comparing cross-validation experiments, we used an unpaired t test, using the

Welch correction for continuity (Uitenbroek, 1997c; GraphPad Software, 1998). When

comparing test results on unseen data, we used a McNemar test with continuity correc-

tion (Dietterich, 1998; Uitenbroek, 1997b), which consistently produced almost identical

significance levels as the binomial test recommended by Salzberg (1997). See §4.3.6 for

a discussion of these tests.

Note that we did not apply any adjustments for multiple tests (see §4.3.6), since most

of our analyses showed no significant differences; therefore, it was pointless to perform the

adjustment. However, when we report significance tests, we provide the actual p value

(rather than simply saying “significant at p = 0.05”, for example) so that the reader can

better assess the significance of the results.

6.2 Main Results

Tables 6.1 and 6.2 summarize our main results. Table 6.1 reports mean cross-validation

accuracy, i.e., accuracy estimated on our training verbs. Table 6.2 reports accuracy on

the test verbs.

The first result we can see from these tables is that our feature space allows us to

perform significantly better than the chance baseline in all cases, reducing the test error

rate by 42% to 69% for the different tasks. Although there is room for improvement

in accuracy, the feature space provides considerable information to the machine-learning

system about the verb classification tasks we experimented with in this study.
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Task Name Baseline Core features All (with SC) Levin-der. Stepwise

Benefactive/Dative 50.0 74.1 0.6 82.4 0.6 79.5 0.6 (87.8)

Clear Alternation 50.0 88.9 0.4 84.4 0.4 83.0 0.5 (92.9)

Admire/Amuse 50.0 79.6 0.6 81.1 0.7 80.8 0.5 (92.5)

Swarm Alternation 50.0 79.9 0.7 89.2 0.6 71.9 0.8 (90.1)

Wipe Alternation 50.0 79.4 0.8 66.7 0.8 85.8 0.6 (92.2)

Spray/Load Alt. 33.3 78.3 0.5 72.6 0.6 79.2 0.5 (88.5)

Transitive Alts. 33.3 68.3 0.7 72.4 0.6 68.7 0.5 (80.1)

Six Locative Classes 16.7 69.0 0.3 66.4 0.4 72.8 0.4 (71.6)

All Locative Classes 12.5 69.3 0.4 66.4 0.4 64.7 0.3 (74.9)

All Classes 7.7 58.6 0.3 57.0 0.3 58.7 0.2 (58.6)

Table 6.1: Comparison of our main approaches: mean cross-validation accuracy on train-

ing verbs. The baseline column shows the expected accuracy of a random classifier. The

next three columns show accuracy estimated using tenfold cross-validation repeated 50

times, for our core features, all our features—our core features plus the syntactic col-

locations (SC) features—and the Levin-derived subsets, respectively. The last column

shows the mean cross-validation accuracy for the subsets of features selected by stepwise

feature selection (stepwise). The stepwise figures are in parentheses because they are

highly optimistic by definition, since stepwise retains the feature subset with the lowest

mean cross-validation accuracy. Entries are percent accuracy with standard error (SE)

where meaningful.

6.2.1 Core Features vs. All Features

Comparing the accuracy of the classifiers built using our core features vs. using all our

features (i.e., adding syntactic collocation (SC) features to our core features), we see that

accuracy is sometimes better when using all features, but more often worse. Looking

at the test results, none of the differences is statistically significant (McNemar test,

p = 0.05). Looking at the cross-validation results, adding SC reduces the mean cross-

validation accuracy in six cases and increases it only in three cases (t tests: in each case,

N = 50, p ≤ 0.0001).

The Swarm Alternation task is especially noteworthy because adding SC significantly
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Task Name N Baseline Core feat. All (w. SC) Levin-der. Stepwise

Benefactive/Dative 22 50.0 (11.0) 72.7 (16) 86.4 (19) 86.4 (19) 81.8 (18)

Clear Alternation 33 50.0 (16.5) 72.7 (24) 72.7 (24) 72.7 (24) 69.7 (23)

Admire/Amuse 129 50.0 (64.5) 82.2 (106) 87.6 (113) 90.7 (117) 79.1 (102)

Swarm Alternation 79 50.0 (39.5) 78.5 (62) 64.6 (51) 77.2 (61) 78.5 (62)

Wipe Alternation 39 50.0 (18.5) 84.6 (33) 84.6 (33) 84.6 (33) 61.5 (24)

Spray/Load Alt. 85 33.3 (28.3) 65.9 (56) 62.4 (53) 64.7 (55) 52.9 (45)

Transitive Alts. 204 33.3 (68.0) 72.1 (147) 74.5 (152) 77.0 (157) 66.2 (135)

Six Locative Classes 133 16.7 (22.2) 56.4 (75) 59.4 (79) 54.9 (73) 53.4 (71)

All Locative Classes 212 12.5 (26.5) 59.9 (127) 55.7 (118) 59.0 (125) 50.5 (107)

All Classes 507 7.7 (39.0) 46.4 (235) 43.8 (222) 43.6 (221) 35.1 (178)

Table 6.2: Comparison of our main approaches: evaluation on test data. N is the number

of test verbs for each task. The other columns are the same as in Table 6.1. Entries are

percent accuracy, with the number of correctly classified verbs in brackets, or the expected

number of correctly classified verbs in the case of the baseline.

increases the mean cross-validation accuracy (t test: N = 50, p < 0.0001) while at the

same time appreciably reducing the test accuracy (McNemar: N = 79, p = 0.072).

Looking at the classifier C5.0 built for this task with SC, the first decision tree per-

fectly matched the training data, so boosting was disabled and the overall classifier used

only two features in one decision tree with two decision nodes. Looking at the two

features used, we find that the SC feature %like object%1 and the animacy feature

away from person were deceivingly helpful in describing the training data, but did not

classify the test data very well. In contrast, C5.0 used boosting when SC features were

not available, thereby building a classifier with better generalization ability.

Overall, we find that SC features generally do not help classification accuracy. Since

they are also expensive to calculate and to use, we conclude it is not worth using them, at

least as we have defined them in this study. In her work on clustering verbs semantically,

Schulte im Walde (2000) also found that using similar syntactic collocation information

reduced both precision and recall. In future work, we might consider a much simpler
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definition, with only a few high-level semantic categories of nouns. This would add a

much smaller number of features to our feature space, thereby reducing the probability

that one of them would fit the training data by chance, as was the case for the Swarm

Alternation task. Note that the animacy features we use (see §2.7) are already a first step

in that direction. A very simple set of semantic categories (e.g., animate beings, physical

objects, and possibly only a few more categories) might be more informative for verb

classification than the 30-node WordNet cut we used in this study. (Schulte im Walde,

personal communication, has also considered taking a similar approach in her work.)

6.2.2 Core Features vs. Levin-derived Subsets

Comparing the accuracy of the classifiers built using our core features vs. using the

Levin-derived subsets, we find that there is no clear trend. The Levin-derived subsets

have significantly higher mean cross-validation accuracy for three tasks, but significantly

lower for three others (t tests: in each case, N = 50, p < 0.0001). On the test data,

the Levin-derived subsets perform significantly better for the Admire/Amuse task only

(McNemar+CC: N = 129, p = 0.009). Otherwise, accuracy is very similar to our core

features.

This indicates that selecting a linguistically relevant subset of features can sometimes

help, but will usually not make a significant difference. In most cases, it will therefore be

sufficient to use our core feature space as a whole and let the machine-learning system

choose the most relevant features for a particular task, since investing in additional

linguistic analysis may not yield any improvements.

6.3 Stepwise Feature Selection

Comparing the test accuracy of the classifiers built using our core features vs. using

the subsets thereof selected by stepwise, we find accuracy of the latter to be generally
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worse. Accuracy is only improved for the Benefactive/Dative task, where the two fea-

tures selected by stepwise increase the test accuracy from 72.7% (core features) to 81.8%

(stepwise). For the Wipe Alternation, Spray/Load Alternation, All Locative Classes

and All Classes tasks stepwise test accuracy is significantly worse (McNemar: N = 39,

p = 0.04; N = 85, p = 0.05; N = 212, p = 0.006, and N = 507, p < 0.001, respectively).

The mean cross-validation accuracy of the feature subsets selected by stepwise is

almost always significantly better than all other methods, but the test accuracy is gen-

erally worse. It is clear, therefore, that overfitting of the training data is a serious issue,

and that if we are to use feature selection, more work will be required along the lines

mentioned in §4.3.3 and §4.3.4.

Although we expected overfitting to be an issue (see §4.3.4), we still hoped that

stepwise would improve predictive accuracy, or at least not degrade it, but our results

show otherwise. Furthermore, it is a very expensive approach: it takes from several

hours, for the two-way tasks, to several days, for the multi-way ones, to complete on

hardware that is close to the fastest currently available on the market. Stepwise would

have a use only if we could improve it enough so that it performed comparably to our

core features. Then, even if it did not help building better classifiers, it would at least

provide a list of the most useful features, and it would make interpretation easier, since

only a small list of features would have to be analyzed. As it stands, though, there is no

reason to use stepwise.

Since stepwise adds and removes features one at a time, we can also look at its

incremental behaviour. To do so, we plotted the mean cross-validation accuracy and

the test accuracy for the feature subset selected at each step of the process for the ten

tasks we used in this study (Figures 6.1 and 6.2). In all graphs, each increment of the x

axis corresponds to one full stepwise selection step, i.e., a remove and an add step. The

“base” line shows the chance baseline for the task. The “train” and “test” lines show

the mean cross-validation accuracy and the test accuracy, respectively, for the feature
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Figure 6.1: Detailed analysis of the stepwise selection process for the two-way tasks
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Figure 6.2: Detailed analysis of the stepwise selection process for the multi-way tasks
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subsets selected at that step.

From these graphs, we can see that stepwise systematically overfits the training data,

since the mean cross-validation accuracy is consistently higher than the test accuracy

(except in the first step for the Transitive Alternations task). However, in most cases this

overfitting is not harmful to the selection of features, since the test accuracy generally goes

up with the mean cross-validation accuracy. Notable exceptions occur at the beginning

of the selection process for the Clear Alternation, Swarm Alternation and the Transitive

Alternations tasks, and at the end of the process for the All Locative Classes and All

Classes tasks. Despite those cases, the graphs show that stepwise generally finds useful

feature subsets, though not useful enough, as we discussed earlier.

6.4 Prior-Distribution Knowledge

In our experiments, the baseline accuracy is chance performance, because our training

sets are balanced. Since C5.0 is not given prior class probabilities, it has no knowledge of

which class is more frequent, and it therefore could not make use of such knowledge. If

we provided class probabilities to C5.0, we would expect it to favour the majority class in

uncertain cases, and then the relevant baseline would be the majority, or naive, classifier,

rather than a chance classifier.

Table 6.3 shows the difference between the chance baseline and the naive baseline

for the ten tasks we experimented with. Taking into account the prior class distribution

sometimes yields a large improvement in expected classification accuracy over the chance

baseline. We expect that our accuracies would be similarly increased if we provided C5.0

with both our feature space and the prior class distribution. We leave it as future work

to investigate how to do so.1

1Technically, C5.0 does not allow the specification of a prior distribution. However, it permits the
specification of differential costs for each error type. If we take into account the size of each class when
setting this cost function, we should be able to simulate the effect of prior class probabilities. How we
should do so to correctly reflect the prior distribution is a difficult question left for future work.
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Task Name

Number Chance Number of verbs in Majority

of Baseline each class (majority Baseline

Classes (%Acc) class in bold) (%Acc)

Benefactive/Dative 2 50.0 35, 27 56.4

Clear Alternation 2 50.0 29, 45 60.9

Admire/Amuse 2 50.0 134, 35 79.3

Swarm Alternation 2 50.0 79, 56 58.5

Wipe Alternation 2 50.0 35, 45 56.3

Spray/Load Alternation 3 33.3 36, 63, 48 42.9

Transitive Alternations 3 33.3 169, 79, 50 56.7

Six Locative Classes 6 16.7 36, 63, 48, 29, 45, 35 24.6

All Locative Classes 8 12.5 (above 6 and) 79, 56 20.2

All Classes 13 7.7 (above 8 and) 169, 21.0

50, 27, 134, 35

Table 6.3: Baselines: the chance baseline gives equal probability to each class. The naive

baseline always chooses the majority class.

6.5 Feature Evaluation

To see how well the different types of features (summarized in Table 6.4) in our feature

space perform, we examined what features were used by C5.0 for the ten tasks and the

different sets of features we consider. There were not many striking patterns, but a few

things are noteworthy. The first thing we noticed is that every type of feature was useful

in at least one of the tasks. Thus, every part of our feature space has some utility in the

classification of some of the verb classes we considered.

One surprising pattern is that the overlap features, which we expected to be very

useful, were not used very much when we gave C5.0 access to our core feature space or our

whole feature space, but they were used extensively when only the Levin-derived subset

was available. Presumably, these features convey useful information for the classification

tasks, but they are overshadowed by other features in our feature space.

One particular feature exhibited a rather unusual behaviour. The frequency of the
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Feature Category Defined in Section

Part of speech of the verb 2.1

Frequency of auxiliaries and modals 2.2

Combined feature: passive 2.3

Relative frequency of derived forms 2.4

Semantically empty constituents 2.5

Frequency of various syntactic slots 2.6

Animacy of NPs in various slots 2.7

Measure of slot overlap 2.8

Syntactic collocation features 2.9

Table 6.4: Summary of the feature categories

slot PPas , and the animacy of that slot, were the most useful features for the Swarm

Alternation task. However, this preposition is not expected to be relevant for this task. To

understand what was happening, we examined the sentences where SCOL identified this

slot. We found that in many cases, what SCOL identifies a PPas is really a subordinate

clause introduced by as following the clause being analyzed. For example, in the sentence

Phones rang hot as Dave set the wheels in motion on the mission to rescue Des. (BNC

§A17), SCOL inaccurately marked as Dave as a PP attached to rang and did not identify

a subject for set. Thus, our features as and as person capture the frequency of such

temporal relative clauses as well as the intended target, PPas . Examining our corpus,

we found that such temporal relative clauses are common with verbs of Sound Emission.

They often describe situations where a sound emission event and some other event occur

simultaneously (e.g.,, The phone was ringing as he entered the door, or The house cracked

as she was reading). Thus, our features seem to tap into a semantic property of Sound

Emission verbs that we had not anticipated. We leave it to future work to investigate this
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and other unexpectedly useful features, to determine the relation between the syntactic

usages and the underlying semantic regularities that are being captured.

For the Admire/Amuse task, we noticed that one SC feature was particularly useful,

namely by organism%1, the frequency with which the object of by is a descendant of

organism%1 in the WordNet noun hierarchy. When given all features (including SC)

for the Admire/Amuse task, C5.0 built the simplest classifier, using only two features,

by organism%1 and vbg adjectival, whereas with our core features and with the Levin-

derived subset, C5.0 built much larger decision trees. It is noteworthy that person%1 is

a hyponym of organism%1, and that by organism%1 is in fact also an estimate of the

animacy of the object of by. The animacy of the subject is expected to be relevant for

this task, and consequently the animacy of the object of by would also be meaningful if

passive frames were frequent. With the core features, and with the Levin-derived subset,

C5.0 used the animacy of the subject, but by organism%1 was clearly a better feature in

this case. This provides further evidence that a more restricted and better targeted set

of SC features might be more useful in the future.

Our examination of the features used by C5.0 can answer the two questions we raised

about the usefulness of the assumptions we used to identify indirect objects and to at-

tempt to improve direct object identification (see §3.5). The first question was whether

features involving the indirect object would be of any use, given that we identify them

with only about 20% precision. Indeed, we found that features involving the indirect ob-

ject were often used where they were expected to be relevant. We can therefore conclude

that some useful information is successfully extracted from the corpus by our indirect

object identification method, despite the noise.

The second question concerned direct objects, which we have two ways to identify.

The first way is to simply use SCOL’s identification of direct objects, which has good

precision (high eighties) but low recall (about half) (see footnote 2, p. 33). The second

way is to augment SCOL’s identification of direct objects in the process of identifying
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indirect objects, which has a low precision, but should still improve overall recall. Since

a number of features depend on the identification of direct object, this gave us two

redundant sets of features, the “original” set and the “augmented” set, and we let C5.0

decide which features were better. Again, we examined the features that C5.0 used in

our experiments, and we found that features in the original set were used a lot more

often than the augmented ones. We conclude that in this case, the noise added by our

attempt to increase direct object recall (see §3.5) is significantly detrimental, and that

only the original set of features should be kept. Thus, our technique for identifying

indirect objects should not be used to modify the list of direct objects, even though not

doing so leads to illogical analyses, such has having the same word labelled as both the

direct and indirect object in a clause.

6.6 Comparison with Previous Work

We compare the accuracy of our feature space with the results of Merlo and Stevenson

(2001), whose work we expand on. Merlo and Stevenson (2001) looked at the Transitive

Alternations task with a set of five features that were carefully selected as linguistically

relevant for this specific three-way class distinction. We cannot directly compare their

numerical results with ours, because we used a different set of verbs. Instead, we ran

an experiment using their five features with our verbs (see Table 6.5). We found that in

comparison, our core features, all our features (with SC), and the Levin-derived subsets

all significantly improve predictive accuracy for this task. The mean cross-validation

accuracy is increased in a statistically significant way, and the test accuracy is increased

in an appreciable way. This shows that our general feature space can outperform a

carefully selected set of features on this task.
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Feature set
Xval Test (N = 204)

%Acc SE %Acc (#)

Merlo and Stevenson (2001) 61.6 0.5 64.2 (131)

Our core features 68.3 0.7 72.1 (147)

All our features (with SC) 72.4 0.6 74.5 (152)

Levin-derived subset 68.7 0.5 77.0 (157)

Stepwise (80.1) 66.2 (135)

Table 6.5: Comparison with earlier work. We use our training and test verbs with the

original 3-way task of classifying unergative, unaccusative and object drop verbs with

various feature sets.
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Conclusions

We set out to investigate the possibility of developing a general feature space for the

semantic classification of English verbs. This feature space was to be as general as

possible, i.e., it should be usable for the distinction of a wide range of verb classes,

eliminating the need for class-specific linguistic analysis. It was also to be transferable,

i.e., the extraction of the features should be based on techniques that can be applied to

corpora in other languages.

We presented a feature space that meets these goals to a large extent. Our feature

space is comprised of nine categories of features which capture various syntactic and se-

mantic usage statistics for target verbs. These features were devised by doing a high-level

analysis of verb class distinctions, based largely on alternations in Levin. We extracted

our features from a large, unparsed corpus of English relying only on two language-specific

tools: POS tagging and partial parsing.

We showed that, using the C5.0 machine-learning system, our feature space performs

well in a number of verb classification experiments, achieving accuracies comparable to

linguistically informed feature selection. However, the syntactic collocation features we

proposed and an alternative automatic feature selection approach we considered were not

very successful. On the other hand, we have reason to believe that the approach we used

89
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to build our general feature space can be transferred to other languages, as we expect

future studies will demonstrate.

7.1 A General Feature Space

7.1.1 Contributions

We experimented with ten classification tasks involving from two to thirteen verb classes.

Our results show that we can reduce the chance error rate by more than 40% in all ten

cases, and by more than 50% in half the cases.

For each task, we compared the performance of our core feature space with the perfor-

mance of the subset of those features that we would expect to be relevant, given Levin’s

description of the verb classes involved. Because of the careful class-by-class linguistic

analysis performed by Levin, these Levin-derived subsets provided us with an objectively

defined linguistically motivated subset of our core feature space for each task. Our results

show that the Levin-derived subsets only occasionally outperformed our core features and

that this linguistic selection of features generally made no significant difference. Thus

we showed that, in most of the cases we tested, our feature space is general enough, and

that it can be given to a machine-learning system without further task-specific linguistic

analysis.

7.1.2 Limitations and Future Work—More Extensive Studies

Although we selected tasks that we believe are representative of some verb classification

difficulties to test our feature space, we have used only a small subset of the classes defined

by Levin. We have not verified, and therefore cannot claim, that our feature space is

sufficient for all class distinctions. We expect that it will be applicable to distinctions

involving many of the 191 classes defined by Levin, but a more extensive study will

be required to confirm this. We also have not encoded features to capture every type
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of alternation in Levin. For example, alternations involving a possessor (Levin §2.12

and §2.13) would motivate features dealing with possessive constructions, and reciprocal

alternations (Levin, §2.5) would motivate features capturing conjunct subjects and direct

objects, as well as the occurrence of the adverbs together and apart. Before we can expect

to apply our feature space to all Levin classes, a systematic analysis of the alternations

she covers will be required to add missing features.

Furthermore, following Levin, we have focused on alternations involving NP and PP

arguments of the verb. In future work, we would like to cover verb classes involving other

complement types, such as sentential and infinitival complements, e.g., Coerce verbs (to

force someone to do something) and Aspire verbs (to attempt to do something) (Dorr,

1997).

7.2 Syntactic Collocations

7.2.1 Contributions

We have also attempted to enhance our feature space with syntactic collocation (SC)

features, as a simple approximation to selectional preference. We used a simple encoding,

where we assign nouns to one of 30 semantic categories based on WordNet. We then

counted the occurrences of these categories in a number of syntactic slots. Like selectional

preferences, these feature give us an indication of what kinds of nouns can occur as various

arguments of the verb. Comparing classification performance with and without including

the resulting SC features, we found that accuracy was sometimes improved, but usually

reduced. Although these features sometimes provided useful information to the machine-

learning system, they proved inadequate for our purposes, at least as we have encoded

them. This confirms the results of Schulte im Walde (2000), who found that using similar

SC information reduced precision and recall in her work on clustering verbs semantically.
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7.2.2 Limitations and Future Work—An Improved Encoding

We have only tried one encoding of SC and did not try to refine it. However, since this

type of feature is not transferable to languages without a resource like WordNet, it was

not a priority to do so. In future work on verb classification in English, it would be useful

to experiment with an encoding involving only a few semantic classes that are expected to

be relevant, such as animate beings, physical objects, and possibly a few more categories.

This would provide us with a small number of targeted SC features, instead of the large

number of SC features we used, most of which were irrelevant for most classification

tasks. Having a smaller set of SC features would also reduce the likelihood of one of

them fitting the training data by chance. Given how difficult it is to encode selectional

preferences well, however, we expect that choosing appropriate semantic categories will

be a challenging task.

7.3 Automatic Feature Selection

7.3.1 Contributions

We investigated various approaches to feature selection. Our feature space is intended

to be general, and therefore, given any specific classification task, we expect a number

of our features not to be relevant for that task. The machine-learning system we use,

C5.0, performs feature selection internally. We also experimented with an alternative

automatic-feature-selection approach, stepwise feature selection. Our results show that

although this technique selects a useful subset of features, accuracy is almost always lower

with this subset than when we let C5.0 select features from our core feature space on its

own. We conclude that if a feature selection technique is to be applied to our feature

space, it needs to be significantly better than stepwise feature selection. Otherwise, it is

best to let the machine-learning system deal with all the features using its own internal
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mechanisms, at least when using C5.0.

7.3.2 Limitations and Future Work—Better Feature Selection

Techniques

We experimented with only one feature selection approach. Important improvements to

the technique have been proposed, though we have not experimented with them. The

first improvement would make more use of the information available at each step of

the feature selection process, by considering adding together multiple features that are

useful individually (Kohavi and John, 1997). The second improvement would reduce the

chances of overfitting by splitting the training data into two sets, the first being used to

identify the most useful features, the second to make sure the features selected do not

simply overfit the first set (Ng, 1998). In future work, we would like to implement these

modifications and investigate their usefulness when used with our feature space.

7.4 Transferability to Other Languages

7.4.1 Contributions

Since one of our long-term goals is to apply these techniques to other languages, we have

to consider the transferability of our techniques. Except for the SC features, which did

not prove useful anyway, the only language-specific tools that we rely on are a POS tagger

and a partial parser for English. The use of a partial parser is a considerable source of

noise in our features, but despite that, our results show good classification accuracy.

Even the features involving the indirect object—probably our noisiest features—were

useful. We therefore expect that imperfect partial parsers for other languages, which can

be developed for many languages given the current state of the art in natural language

processing, will be adequate.
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7.4.2 Limitations and Future Work—Other Languages and Clus-

tering

A potential limitation is that we used the state of the art in partial parsing for English,

the partial parser of Abney (1991, 1997). One might think that this choice would weaken

our claim that our approach is transferable to other languages. However, partial parsing

is inherently noisy, and we have shown that our method works despite the noise. We

do not believe that our choice of partial parser made much difference in obtaining our

results.

The principal limitation with respect to transferability is that we have not yet at-

tempted to transfer our feature space to another language. In future work, we would like

to develop feature spaces for other languages, using a similar approach based on similar

principles. A considerable challenge in such studies, however, will be to obtain training

and testing data. When working in English, Levin provides the gold standard, even if it

is not always perfect. In other languages, we will first have to manually develop at least

a partial verb classification to have some training and/or testing verbs, like Schulte im

Walde and Brew (2002) had to do for their clustering study of German verbs.

This, in conjunction with other work (Stevenson and Merlo, 2001; Schulte im Walde,

2000; Brew and Schulte im Walde, 2002), suggests another future research direction,

namely clustering, or unsupervised classification. In this study, we have only considered

supervised classification, where the machine-learning system can select relevant features

using the training data. Further work will be required to determine whether clustering

techniques can yield useful results with our feature space, despite the presence of many

features that may not be relevant for a given set of verbs being clustered. Given that we

would like to expand our techniques to languages where a classification such as Levin’s

does not already exist, it will be important to develop unsupervised verb classification

techniques in the future.
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When attempting to transfer our feature space to other languages, we expect to

need new feature types to reflect the characteristics of those languages. For example,

features dealing with cases and morphology will be required for many languages. The

way verbs are expressed in different languages may also present some challenges. For

example, many verbs of hitting in Chinese are expressed using the same base verb with

an accompanying adverb or PP to indicate what type of hitting is described (Gao Hong,

personal communication). Persian would pose an even bigger challenge. In English, the

verbs take and make are considered light verbs in expressions like take a hit, take root, or

make a decision, because they convey little semantic content on their own (Trask, 1993).

When classifying English verbs, we tend to ignore light verbs, but the phenomenon is

too common to be ignored in Persian (Amtrup et al., 2000; Dabir-Moghaddam, 1997). A

way of identifying and dealing with multi-word verbal expressions would be required to

classify verbs in Persian or in Chinese.

After having developed feature spaces for a number of languages, we might be able

to generalize this line of work one level higher, building a language-independent general

feature space. We could then specialize it for any language for which we want to develop

a semantic classification of verbs using the help of automatic verb classification, at least

in theory.
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Appendix A

Training Verbs

Unaccusative: Change of State verbs: advance, alter, awake, burst, cool, deterio-

rate, dissipate, expand, fill, flatten, flood, loosen, melt, moisten, multiply, overturn,

scald, taper, tear, unfold.

Unergative: Run verbs: bolt, bound, creep, float, fly, gallop, hurtle, journey, mean-

der, romp, rush, scamper, sidle, stagger, stomp, stray, stroll, travel, trundle, wade.

Object Drop: Build Performance and Preparation verbs: arrange, assemble, build,

carve, cast, chant, compose, dance, develop, embroider, hack, hammer, perform,

pound, produce, sculpt, sew, weave, whistle, whittle.

Benefactive: Build and Preparation verbs: arrange, assemble, build, carve, cast,

chisel, develop, embroider, fashion, hack, hammer, knit, light, pound, sculpt, sew,

spin, stitch, weave, whittle.

Recipient verbs: allocate, allot, assign, award, bequeath, cede, feed, give, issue, loan,

offer, owe, pay, peddle, promise, rent, repay, sell, trade, will.

Amuse verbs: alarm, antagonize, appall, astonish, astound, comfort, dazzle, demol-

ish, devastate, disgust, enthrall, enthuse, infuriate, mystify, provoke, puzzle, ruffle,

soothe, stun, tire.
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Admire verbs: adore, appreciate, deplore, detest, dislike, dread, enjoy, envy, favour,

idolize, love, pity, prize, relish, resent, respect, revere, tolerate, treasure, value.

Verbs of Sound Emission: buzz, chatter, clap, clatter, click, cling, crack, crash, crunch,

hiss, moan, murmur, purr, ring, rustle, splutter, swish, thud, thunder, whine.

Spray/Load verbs: cram, crowd, cultivate, daub, drape, inject, load, pile, plant, pump,

scatter, smear, sow, splash, splatter, spray, sprinkle, squirt, stack, string.

Fill verbs: bandage, bind, carpet, deck, decorate, douse, encircle, enrich, garnish, in-

fect, inundate, line, mask, pollute, replenish, riddle, shroud, spot, suffuse, taint.

Other verbs of Putting: curl, dip, dribble, hang, install, lay, lift, lower, perch, posi-

tion, put, raise, ram, rest, scoop, slop, stow, tuck, wedge, whirl.

Cheat verbs: bleed, burgle, cleanse, con, cure, deprive, disarm, divest, drain, ease, free,

pardon, purge, purify, ransack, render, rid, rob, sap, strip.

Steal and Remove verbs: abstract, disengage, dislodge, eradicate, evict, extract, grab,

oust, reclaim, regain, remove, rescue, retrieve, separate, sever, sneak, steal, uproot,

withdraw, wrest.

Wipe verbs: bail, comb, dust, erase, filter, flush, lick, polish, prune, rake, rub, scour,

scrape, shear, skim, suck, trim, wash, whisk, wring.
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Testing Verbs

Unaccusative: Change of State verbs: abate, accelerate, age, attenuate, awaken,

balance, bend, blacken, blast, blur, break, brighten, broaden, brown, burn, chill,

chip, clog, close, collect, compress, condense, contract, crash, crease, crumble,

crumple, crush, crystallize, darken, decompose, decrease, deepen, deflate, degen-

erate, degrade, detonate, dim, diminish, disintegrate, double, drain, dry, dull, ease,

empty, enlarge, evaporate, fade, fatten, freeze, fuse, halt, harmonize, heal, heat,

heighten, hush, ignite, improve, increase, incubate, inflate, intensify, lengthen,

lessen, level, lighten, loop, magnify, mature, mellow, narrow, neutralize, operate,

pale, pop, proliferate, propagate, quadruple, quicken, quieten, redden, reopen, re-

produce, rip, ripen, rupture, sharpen, shatter, shorten, shrink, shrivel, shut, sicken,

singe, sink, slacken, slow, smash, smooth, snap, soak, sober, soften, sour, splay,

splinter, split, sprout, steady, steam, steep, stiffen, straighten, strengthen, stretch,

submerge, subside, tan, tense, thaw, thicken, thin, tighten, tilt, topple, triple, vary,

vibrate, waken, warm, weaken, worsen, wrinkle.

Unergative: Run verbs: amble, bowl, canter, charge, clamber, climb, crawl, dart,

dash, file, flit, fly, hobble, inch, limp, lumber, lurch, nip, pad, plod, prowl, ram-

ble, roam, run, saunter, scuttle, shuffle, slither, sneak, speed, streak, stride, strut,
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stumble, stump, swim, tack, totter, tramp, trek, troop, trudge, walk, whiz, zoom.

Object Drop: Build Performance and Preparation verbs: blend, brew, chisel,

churn, compile, draw, fashion, forge, grind, hatch, hum, intone, light, make, mix,

pour, prepare, scramble, set, shape, sing, spin, toss, write.

Benefactive: Build and Preparation verbs: blend, brew, churn, compile, forge,

grind, hatch, make, mix, pour, prepare, scramble, set, shape, toss.

Recipient verbs: concede, grant, guarantee, lease, lend, refund, yield.

Amuse verbs: affect, afflict, aggravate, agitate, alienate, amaze, amuse, anger, an-

noy, appease, arouse, assuage, baffle, bore, bother, bug, calm, captivate, charm,

cheer, chill, concern, confound, confuse, console, content, convince, delight, de-

moralize, depress, disappoint, disarm, discourage, disillusion, distract, distress,

disturb, electrify, embarrass, enchant, encourage, engross, enlighten, enliven, en-

rage, entertain, entice, entrance, exasperate, excite, exhaust, fascinate, flatter, flus-

ter, frighten, frustrate, gall, galvanize, gratify, grieve, harass, haunt, horrify, hu-

miliate, hypnotize, impress, inspire, insult, interest, intimidate, intrigue, irritate,

jolt, lull, mesmerize, muddle, numb, offend, overwhelm, perplex, perturb, placate,

plague, please, reassure, refresh, relax, relieve, repel, revitalize, revolt, sadden, sat-

isfy, scare, shame, shock, startle, stimulate, stump, surprise, tease, tempt, terrify,

terrorize, threaten, thrill, torment, trouble, try, unnerve, unsettle, upset, worry,

wound.

Admire verbs: abhor, admire, cherish, despise, distrust, fancy, fear, hate, lament,

like, loathe, mourn, regret, trust, worship.

Verbs of Sound Emission: bellow, blare, blast, boom, bubble, chime, clash, crackle,

creak, cry, groan, growl, hoot, howl, hum, jangle, pipe, pop, rasp, rattle, roar,
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rumble, scream, screech, shriek, splash, squeak, squeal, thump, tick, ting, trumpet,

wail, wheeze.

Spray/Load verbs: dab, hang, heap, jam, plaster, seed, settle, shower, spatter, spread,

stick, stock, strew, stuff, wrap.

Fill verbs: adorn, anoint, bathe, block, blot, bombard, choke, clog, clutter, coat, con-

taminate, cover, dirty, dot, drench, edge, embellish, emblazon, endow, entangle,

face, fill, frame, imbue, intersperse, interweave, lash, litter, ornament, pad, pave,

plug, ripple, saturate, smother, soak, soil, staff, stain, stud, surround, veil.

Other verbs of Putting: arrange, channel, coil, dangle, drip, dump, hoist, immerse,

lean, lodge, loop, mount, place, pour, push, sit, situate, sling, spew, spill, spin,

spoon, spurt, squash, squeeze, suspend, twirl, wind.

Cheat verbs: absolve, acquit, cheat, defraud, deplete, milk, plunder, relieve, wean.

Steal and Remove verbs: abduct, capture, confiscate, delete, discharge, dismiss, eject,

eliminate, excise, expel, kidnap, liberate, omit, partition, pry, recover, redeem, re-

possess, rustle, seize, smuggle, snatch, subtract, wrench.

Wipe verbs: distill, leach, mop, pluck, rinse, scrub, shave, shovel, smooth, soak,

sponge, strain, wear, weed, wipe.
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