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Abstract

We use token-level clustering methods to simulate children’s
acquisition of the senses of a polysemous verb. Using ac-
tual child-directed data, we show that simple syntactic features
commonly used in distributional models are sufficient to rea-
sonably distinguish verb senses. However, these features are
inadequate to account for the order of acquisition of polysemy
as observed in children, and we argue that future models will
need to incorporate other types of information in order to better
explain child behaviour.

Keywords: Verb semantics; polysemy; child language acqui-
sition; Bayesian models; clustering.

Introduction
The acquisition of verb polysemy has become an important
target of study in cognitive linguistics and developmentalpsy-
chology (e.g., Nerlich, Todd, & Clarke, 2003; Theakston,
Lieven, Pine, & Rowland, 2002). Some of the most highly
frequent and earliest learned English verbs, likeput, make,
get, go, anddo, are also among those with the largest num-
ber of senses (Clark, 1996). Children as young as two years
of age freely understand and use many of these polysemous
verbs, often with little apparent confusion (Theakston et al.,
2002; Israel, in press). Computational models can help to elu-
cidate the kinds of mechanisms capable of distinguishing the
senses of massively polysemous verbs from very little input,
as well as the linguistic features necessary to achieve this.

Information about verb senses has been said to correlate
strongly with verb argument structure. Several computational
models have been developed that make use of a verb’s possi-
ble arguments to identify semantic structure and similarity to
other verbs. Most of these models operate at a coarse-grained
semantic level, clustering verb types into general classesof
similar verbs (e.g., Versley, 2008; Korhonen, Krymolowski,
& Marx, 2003). On the other hand, computational models of
child language acquisition have found success by clustering
word usages(e.g., Alishahi & Stevenson, 2008), that is, in-
dividual instances of verbs along with their contexts. In this
paper, we argue that such usage-based models can be used to
study children’s acquisition of verb polysemy.

We analyze the English verbget as a case study.Get is
a particularly interesting target since it is highly frequent,
highly polysemous, and is one of the first verbs children learn
(Clark, 1996). Table 1 outlines the major senses ofget, with
their frequencies estimated from a corpus of adult spoken lan-
guage (Berez & Gries, 2009). Other sets of senses may be
found in the literature, but this offers a good assessment ofthe
breadth of meaning captured by the verb. Here, we conflate
literal and metaphorical senses. For example, the metaphor-

Sense Freq. (%) Example
obtain 52.3 I got a book.
cause obtain 1.3 I got you a book.
move 16.5 You should get on that bus.
cause move 5.2 It’ll get you to Buffalo.
become 15.0 Jim got fired.
cause become 2.5 Suzie got Jim fired.
must 6.3 I’ve got to go home.
other 0.8 You get to eat cake!

Table 1: Coarse-grained senses ofget.

ical useI got an ideafalls under the general senseobtain.
Various infrequent senses are gathered underother.

Children tend to learn more frequent verb senses earlier
than less frequent senses (Theakston et al., 2002; Israel, in
press). However, the order of acquisition does not completely
follow the frequency ordering, and this shows that something
other than the frequencies of these related polysemous senses
contributes to the ease of acquisition. This is a challenge for
distributional clustering models, where performance is gener-
ally improved with greater amounts of data.

In this paper, we use a hierarchical Bayesian clustering
model to group individual usages of the verbget, drawn from
a corpus of child-directed speech. We show good clustering
results by using a set of simple, automatically extracted syn-
tactic features. We argue that while these features are com-
monly used in distributional models of verb semantics, they
are inadequate to explain order of acquisition behaviour in
children.

Related work

Several recent computational models have demonstrated the
value in using argument structure information to learn about
verb semantics. Versley (2008) and Schulte im Walde (2008)
cluster verb types using various syntactic dependencies such
as noun phrases, prepositional phrases, and adverbs. Joanis,
Stevenson, and James (2008) achieve similar goals using syn-
tactically shallow slot features – subject, direct and indirect
object, for example. In each case, the simple argument struc-
ture patterns correlate with human judgements of semantic
verb classes.

Few approaches explicitly address the problem of multi-
ple senses of a single verb type. The work of Korhonen et
al. (2003) uses a soft-clustering method that allows a verb to
belong to multiple possible clusters, allowing a degree of pol-
ysemy in a verb’s representation. Verbs are clustered by the



distribution of their subcategorization frames. If two senses
of a verb differ strongly in their subcategorization patterns,
the verb will more likely be distributed across multiple clus-
ters. Vlachos, Korhonen, and Ghahramani (2009) use sim-
ilar subcategorization features in their approach, employing
a Dirichlet process mixture model (DPMM) as the cluster-
ing algorithm to give the flexibility of learning an unspecified
number of clusters. In this case a probabilistic soft-clustering
is possible, although the authors do not examine this aspect
of the model.

Each of these approaches is concerned withtype-levelclus-
tering of verbs, that is, clustering verbs based on the distribu-
tional properties of all the verb’s usages, taken together.The
model may recognize thatrun, skipandwalk are similar, and
in the case of Korhonen et al. (2003), thatrun is also simi-
lar to flow, as inthe river runs east. However, the verb itself
is still represented as a single point in distributional space.
A token-levelmethod, on the other hand, clusters individual
usages of verbs. This way, different senses can occupy dis-
tinct representations of the same verb. Evidence from psy-
cholingusitics suggests that such a method may be necessary
to fully explain polysemy (Theakston et al., 2002). Very few
models address token-level verb clustering. Lapata and Brew
(2004) use subcategorization patterns to perform token-level
classification (not clustering) of verbs, thereby presupposing
a defined set of verb classes. Alishahi and Stevenson (2008)
cluster individual verb usages to simulate the acquisitionof
verb argument structure in children. Their method of clus-
tering by using basic argument information is similar to our
perspective, although the incremental algorithm is necessarily
sensitive to the order of presentation of the input.

Verb usage clustering

In this section, we describe our modelling framework for
clustering verb usages into senses. We discuss the feature rep-
resentations of individual verb usages, then describe our ap-
plication of a DPMM, a Bayesian clustering framework well
suited to models of human category learning.

Verb features

Following from the type-level verb clustering approaches de-
scribed above, we designed our feature space to capture some
of the general argument structure distinctions between verb
senses. We primarily use syntactic “slot” features, similar to
those used by Joanis et al. (2008), to encode basic argument
information about a verb usage. These are not subcategoriza-
tion frames, but rather a set of individual features that record
the presence or absence of syntactic positions – subject, di-
rect and indirect object, for example – that potentially contain
verb arguments. In any particular usage, a certain slot may
be analyzed as an adjunct rather than a true argument. Such
slot features are easier to extract than full subcategorization
frames, and Joanis et al. (2008) show that in verb classifi-
cation tasks, subcategorization frames offer no improvement
over simple slot features.

Symbol(s) Feature values
SUBJ, CSUBJ, XSUBJ Subjects
OBJ, OBJ2, IOBJ Objects
COMP, XCOMP Clausal complements
PRED, CPRED, XPRED Nominal, adjectival or

prepositional complements
LOC Locatives
JCT, CJCT, XJCT Adjuncts
PREP Preposition (nominal value)
NSLOTS Number of slots used

Table 2: Slot features.

Table 2 presents the 17 features used in our representa-
tion. The first 15 are binary features denoting the pres-
ence or absence of a slot. Since our input data is extracted
from the CHILDES database of child-directed speech and
child language (MacWhinney, 2000), the labels correspond to
the grammatical relations used by the CHILDES dependency
parser (Sagae, Davis, Lavie, MacWhinney, & Wintner, 2007).
When one of the other relations is a prepositional phrase, the
nominal feature PREP denotes the preposition used.

Dirichlet process mixture model

As stated earlier, the goal of our approach is to learn clusters
of verb usages that approximate verb senses. To achieve this,
we use a DPMM, a non-parametric Bayesian model that has
gained significant attention in the machine learning commu-
nity (Neal, 2000). A DPMM brings two main advantages over
other clustering methods. Firstly, the modeller need not spec-
ify in advance the number of clusters necessary to represent
the data. This is the “non-parametric” aspect of the model:
as part of the learning process, the model itself determines
an appropriate number of clusters, dependent on the data.
Secondly, the DPMM has been shown to be a good model
of human category learning behaviour (Sanborn, Griffiths, &
Navarro, 2006). In addition to basic category-learning tasks,
DPMMs and related models have successfully been applied to
word segmentation (Goldwater, Griffiths, & Johnson, 2009)
and type-level verb clustering (Vlachos et al., 2009).

A DPMM specifies a probability distribution over possible
cluster arrangements of data. In contrast to typical algorithms
that seek a single “best” clustering of data points, a DPMM
gives a distribution overall possible clusterings. Given the
observed verb usage data, we can estimate the parameters of
that distribution to find the most likely clusterings.

We assume that each verb usageyi belongs to a cluster, and
that its features are drawn from a set of multinomial distribu-
tions (one per feature). Different clusters are associatedwith
different feature distributions. Thus, one cluster may prob-
abilistically represent a pattern of features such as SUBJ V
OBJ, while another cluster may represent the pattern SUBJ
V OBJ COMP. The number of clusters in turn depends on a
Dirichlet Process (DP), a stochastic process which gives the



model its non-parametric flexibility. The full model is:

yi j |θ jzi ∼ Mult(θ jzi )

θ jzi |G∼ G

G|α,G0 ∼ DP(α,G0)

The∼ symbol should be read as “is distributed according to”.
In the above,yi j denotes featurej of usagei. zi is the cluster
chosen for usagei, andθ jzi are the multinomial parameters
for feature j in the probabilistic pattern represented by the
cluster. G andG0 are probability distributions over the pa-
rametersθ, andα is a concentration parameter that affects
how many clusters we expect to find.

In the above,G generates the parameters of the multino-
mial distribution (θ jzi ) that in turn generatesyi j . SinceG se-
lectsθ from across the set of clusters (e.g., θ j1 or θ j2), it is
in effect a mixing distribution that gives the probabilities of
choosing each cluster.

The DP, being defined by both the concentration parameter
α and abase distribution G0, gives a prior distribution on the
number and size of the clusters as well as on the parametersθ
to represent them.G0 defines the prior distribution forθ. We
setG0 to Dir(1), a noninformative Dirichlet prior. Also, the
DP gives a prior probability on the entire partitioning of the
data into clusters. It is derived from the following stochas-
tic process: assume that all verb usages have been clustered
exceptyi . Then the prior probability of a clusterk is given by

P(k) =

{

nk
N−1+α if nk > 0 (existing cluster),

α
N−1+α otherwise (new cluster),

(1)

wherenk is the number of verb usages in clusterk andN is
the total number of usages. Larger values ofα make it more
likely that overall, more clusters will be used. In all our exper-
iments, we setα = 1, a moderate setting that compares with
similar DPMM applications. This formulation has two inter-
esting properties. Firstly, larger clusters tend to attract more
usages. Secondly, as more data is processed, the probability
of choosing a new cluster decreases.

The above model, as written, specifies a prior distribution
over the complete set of possible parameters to the model
(i.e., all possible values forθ andz). To find clusters of verb
usages, we update this distribution using the observed data,
thus obtaining a posterior distribution over parameters.

Parameter estimation
Given the set of verb usage data, we estimate the posterior
distributions over the model parameters using Gibbs sam-
pling, a Markov Chain Monte Carlo (MCMC) method (Neal,
2000). Essentially, to estimate a probability distribution, we
draw a large number of samples from that distribution. The
samples give an approximation of the distribution, and as the
number of samples approaches infinity, the approximation be-
comes exact. With Gibbs sampling, we choose an initial ran-
dom setting for the model parameters (i.e., the cluster assign-
mentsz and the cluster parametersθ), then iteratively adjust
these settings according to the observed data.

In our experiments, we randomly set eachzi to one of a
small number of clusters (1, 2, or 3). For each cluster, we
set theθ parameters to random values drawn from a Dirichlet
distribution. We iteratively update eachzi andθ jk individu-
ally by drawing it from a posterior distribution conditioned on
the data and all theotherparameters in the model. In the case
of a cluster assignmentzi , we do this by sampling a cluster
for yi given assignments for all the other usages, as ifyi were
the last usage observed. We may choose a new cluster (as
in Equation 1), thus potentially changing the total number of
clusters. We repeatedly cycle through the model parameters,
sampling eachθ jk and eachzi many times. By averaging over
a large number of these samples, the posterior approximation
converges on the exact solution. In practice, we can achieve
a good estimate in a few thousand samples, depending on the
complexity of the data and the details of the algorithm.

Experiments

In our experiments, we use child-directed speech data drawn
from the CHILDES database of parent-child interactions
(MacWhinney, 2000). We use four longitudinal corpora
from the American English component of the database, corre-
sponding to four children: Eve, Naomi, Nina, and Peter. To-
gether, the data cover an age range from 1;2 (years;months) to
4;9. We extract each child-directed utterance of the verbget,
then randomly split the utterances into development and test
sets (1275 and 1276 utterances respectively), dividing each
child’s data equally. The corpora contain part-of-speech tags
and syntactic dependencies, obtained using an automatic tag-
ger and parser (MacWhinney, 2000; Sagae et al., 2007). As
described above, we extract 17 slot features for each usage
of get. Due to errors in the automatic part-of-speech tag-
ging, parsing and feature extraction, the data contains some
noise. Some utterances were dropped when parsing errors
prevented extraction of the features, and others contain mul-
tiple instances ofget. The final development set and test set
contain 1272 and 1290 usages, respectively. For evaluation
purposes, we manually annotate each of the usages with one
of eight sense labels, corresponding to the eight senses in Ta-
ble 1. We refer to this labelling as the gold standard.

We implement the DPMM in OpenBUGS, a general frame-
work for performing MCMC simulations of hierarchical
Bayesian models. We run five chains with different initial
conditions: one chain is initialized with all usages in one clus-
ter, two chains start with two clusters, and two with three clus-
ters. Each chain is randomly initialized as described in the
previous section. As per standard practice, we run each chain
for 60,000 iterations, discarding the first 10,000 as burn-in.
To reduce correlation in the samples, we keep only every 25th
sample, giving 2,000 samples per chain, 10,000 in total.

Each sample contains one clustering of the verb usages. To
evaluate the model’s performance, we score each of the sam-
ples against the gold standard, then average the results over
all samples. As a result, the reported scores give a weighted
evaluation of the entire distribution of clusterings, not just the



Sense P (%) R (%) F (%) Freq. (N)
1. obtain 61.3 53.1 56.9 576
2. cause obtain 26.0 44.2 32.8 56
3. move 62.4 50.7 56.0 196
4. cause move 30.9 46.2 37.1 115
5. become 59.7 58.2 59.0 253
6. cause become 6.7 50.2 11.8 52
7. must 2.9 75.3 5.6 19
8. other 3.9 64.8 7.3 23

Table 3: Precision (P), recall (R) and F-measure (F) for each
sense ofget.

single “best” cluster. We evaluate each sample using the clus-
ter F-measure (Larsen & Aone, 1999). Given one sample, for
each senses, we score each clusterk as follows. Leta be the
number of usages ink with senses. Let b be the total number
of usages in the cluster, and letc be the total number of us-
ages with senses, over all clusters. Then precision (P), recall
(R), and F-measure (F) are given by:

P =
a
b
, R=

a
c
, F =

2PR
P+R

. (2)

We record P, R, and F for the cluster with the best F-measure
for that sense, then report averages over all 10,000 samples.

Results
Table 3 presents the results of clustering using the DPMM on
the test set usages ofget. The model uses on average 5.2 clus-
ters. The more frequent senses,obtain, move, andbecome,
achieve the best performance. The less frequent causative
senses show worse clustering behaviour, although the recall
scores indicate that the model recognizes some internal simi-
larity among the usages. In these cases, low precision scores
suggest that the features of the causative senses are quite sim-
ilar to those of other senses.

We examine this possibility in Figure 1, which shows the
likelihood of grouping together verb usages from different
senses. We calculate the likelihood of each usage of a given
gold standard sense being placed in the same cluster as each
other usage of the gold standard senses, taken over all 10,000
samples and averaged over usages within each sense. A per-
fect clustering would give a diagonal matrix. High values
along the diagonal roughly translate to high recall, and low
values on the off-diagonal indicate high precision. The figure
shows thatcause obtain, cause moveandcause becomeare
frequently grouped together (column 2, rows 2, 4 and 6). One
possibility is that the model distinguishes causative meanings
from non-causatives based on the larger number of arguments
in causative forms, but lacks features that would effectively
distinguish the various causative meanings from each other.

A common observation in child language acquisition stud-
ies is that the more frequent senses of a verb tend to be the
earliest senses children produce (Theakston et al., 2002; Is-
rael, in press). This role of frequency is unsurprising froma

Figure 1: Likelihood of grouping usages from each pair of
senses, averaged over all usages. Indices correspond to senses
as in Table 3.

machine learning perspective, since we expect more data to
make learning easier. Indeed, we see this effect in the results
above: the more frequent senses tend to be easier to learn.

On the other hand, the role of frequency in acquisition is
not a hard-and-fast rule. There are notable exceptions that
can shed light on distributional semantic methods. Israel (in
press) studied the order of acquisition of various senses of
get, using the same transcripts as in our own study. Using the
same sense categories as ours (excluding our categorymust),
Israel compared the frequencies of senses in child-directed
speech with the order in which the children first produce these
senses. He notes that, in most cases, what a child hears most
frequently, he or she learns quickly. The most common ex-
ception iscause obtain: despite comprising only 2-3% of
the input, children often produce it before far more frequent
senses likebecomeor cause move.

This effect does not appear in our own results. We sim-
ulate the learning of verb senses over time by running the
model on different-sized subsets of data, randomly sampled
from the test set. Table 4 shows F-measures of each of the
senses, for 400- and 800-usage subsets as well as the full test
set. To replicate Israel’s observations, we should expect to
see high scores forcause obtainfrom small amounts of data,
that is, earlier than when the scores improve for more frequent
senses likebecomeor cause move. We do not see this effect.
Rather,cause obtainshows relatively poor performance for
all three dataset sizes. It appears then that while slot features
give promising clustering behaviour, they do not lend them-
selves to the kind of order of acquisition effects we observe
in child behaviour.

Israel (in press), as well as Gries (2006), have suggested
that the acquisition of polysemous verb senses may depend
on complex inferential mechanisms on the part of the child.
For example, thebecomesense ofget may be a metaphori-
cal extension of themovesense, for which children must ob-
serve a metaphorical connection between states and locations.



Sense N=400 N=800 N=1290
obtain 55.1 53.2 56.9
cause obtain 22.1 22.4 32.8
move 34.7 43.9 56.0
cause move 29.1 35.3 37.1
become 42.4 49.0 59.0
cause become 6.7 11.3 11.8
must 4.1 3.9 5.6
other 4.4 5.1 7.3
Number of clusters 2.8 3.6 5.2

Table 4: F-measures for varied amounts of data, simulating
order of acquisition.

As an explanation for the early acquisition ofcause obtain, a
child could extendobtainby adding a causal agent, a connec-
tion which children appear to make quite early (Fisher, 2002).
Our model does not make explicit inferences like these, which
may explain why our results do not exhibit the same order of
acquisition as in children. However, it may be that the be-
haviour we see in our model is due to the simplicity of our fea-
tures, or the noise inherent in using automatically extracted
data. Children may attend to some other aspect of the input
not captured in our fairly simple feature set, something that
helps them to acquire certain senses at an early age from com-
paratively little input. To investigate this, in the next section
we apply our model to a richer set of hand-annotated features
drawn from a corpus of adult spoken language.

Richer syntactic features

Berez and Gries (2009) analyzed 600 adult-language in-
stances ofget, sampled from the British component of the
International Corpus of English, ICE-GB. The authors anno-
tated the data with 47 fine-grained senses, which we regroup
into the 8 coarse-grained labels of Table 3. Each usage has
been tagged with 13 features commonly used in verb cluster-
ing, drawn from the manual annotations of ICE-GB. These
features cover a broad range of phenomena, including verb
transitivity, verb form, grammatical relations such as thepres-
ence of auxiliary verbs, and clausal features including depen-
dency types and the transitivity of dependent clauses.1

By encoding verb arguments and certain semantic relation-
ships among them, transitivity patterns capture more infor-
mation than subcategorization frames or slot features alone.
For example, in the “copula” pattern used in this data, an ad-
jectival or prepositional complement describes a propertyof
the subject, as in,I got rid of the car. This semantic prop-
erty distinguishes the copula from the syntactically similar
intransitive pattern. Since these features are hand-annotated,
we expect the data to contain fewer extraction errors and less
noise than our own automatically extracted data. We cluster
the verb usages using the DPMM and present the results in
Table 5, scored as in the above experiments.

1See Berez and Gries (2009) for the full list of features.

Sense P (%) R (%) F (%) Freq. (N)
obtain 68.4 56.7 62.0 314
cause obtain 2.0 49.9 3.8 8
move 29.9 44.5 35.7 99
cause move 13.4 61.3 22.0 31
become 59.0 23.7 33.8 90
cause become 4.4 44.1 7.9 15
must 75.8 99.9 86.2 38
other 1.2 46.8 2.3 5

Table 5: Precision (P), recall (R) and F-measure (F) from
clustering the data of Berez and Gries (2009).

Overall, these results show a similar pattern to the experi-
ments on CHILDES data. The more frequent senses,obtain,
move, andbecome, perform reasonably well, while the less
frequent causative senses perform poorly. The exception is
must, with a remarkably high F-measure of 86.2%. This sense
is nearly always used in a form similar toI’ve got to X, with
highly consistent auxiliary use, verb form and clausal form,
all missing from our simple slot representation.

Even with a richer, manually annotated data set, the clus-
tering results do not exhibit Israel’s key observation thatthe
cause obtainsense can be learned earlier than its frequency
might predict. These results suggest that in order to accu-
rately model this pattern in acquisition, we would need ei-
ther a different type of information, or a different approach
to learning. The model’s excellent performance on themust
sense shows that given suitable features, a DPMM is capable
of learning an infrequent sense very well. Accordingly, our
focus will be on determining the appropriate features.

Detailed semantic distinctions may be difficult to capture
automatically, particularly given the assumption of a child’s
limited linguistic development. One option would be to in-
clude argument fillers in addition to syntactic slot features.
Such an approach may offer additional developmental plau-
sibility: children may associate verb senses with specific lex-
ical items before they are able to access more general ar-
gument types. However, selectional preferences have been
shown to be largely ineffective for type-level verb clustering
(Joanis et al., 2008), although they may offer some benefit
at the token level of our approach. Results from sentence
processing experiments show that the semantic category of
a subject can bias an adult reader’s interpretation of a verb
sense, which in turn predicts argument structure (Hare, El-
man, Tabaczynski, & McRae, 2009). We may be able to in-
corporate this effect by using a word space model for NP ar-
guments (Baroni, Lenci, & Onnis, 2007), or perhaps a simple
animacy feature (Joanis et al., 2008).

Conclusions and future directions
In this paper, we use token-level clustering methods to sim-
ulate children’s acquisition of the senses of a polysemous
verb. With the English verbget as a case study, we use a
Bayesian framework to cluster usages ofget drawn from a



corpus of child-directed speech. We show that simple, auto-
matically extracted syntactic slot features give reasonably ac-
curate clustering results on the senses ofget. However, these
features are insufficient to account for the order of acquisition
of polysemy as observed in children. Children do not show
a consistent correlation between frequency and age of acqui-
sition. We show that even with a more detailed, manually-
annotated feature set, clustering results in the model do not
reflect child behaviour. This suggests that for a token-level
clustering method to accurately model this pattern in child
language acquisition, it would need either a different kindof
information or a substantially different learning mechanism.

One other possible explanation for children’s apparent ease
in learning certain infrequent verb senses is that childrenmay
generalize meaning from other similar verbs. For example,
children may recognize that the ditransitive use ofget, as in
I got you a sandwich, is similar to that of other benefactive
verbs like buy, catch, or find. This class of verbs is sys-
tematically used in both causative and non-causative forms,
and children may recognize this regularity and use it to their
advantage. Children are known to generalize verb argument
structure and its associated semantic knowledge across many
different verbs, and computational simulations suggest that
this is an important factor in children’s ability to learn verbs
with such ease (Alishahi & Stevenson, 2008). Accordingly,
our ongoing work investigates the ways that developing argu-
ment structure knowledge affects the acquisition of polysemy
across a range of early verbs.
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