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Abstract Sense Freq. (%) Example

obtain 52.3 I gotabook.
We use token-level clustering methods to simulate children’s  -guse obtain 1.3 I gotyou a book.
acquisition of the senses of a polysemous verb. Using ac- 165 Vi hould hat b
tual child-directed data, we show that simple syntactic features ~ MOV€ - ou should get on that bus.
commonly used in distributional models are sufficient to rea- cause move 5.2 Itll get you to Buffalo.
sonably distinguish verb senses. However, these features are  pecome 15.0 Jim got fired.
inadequate to account for the order of acquisition of polysemy b L 55  Suzi Jim fired
as observed in children, and we argue that future models will ~ CauS€ become : uzie got Jim fired.
need to incorporate other types of information in order to better must 6.3 I've gotto go home.
explain child behaviour. other 0.8 You get to eat cake!
Keywords: Verb semantics; polysemy; child language acqui-
sition; Bayesian models; clustering. Table 1: Coarse-grained senseget

I ntroduction

The acquisition of verb polysemy has become an importa
target of study in cognitive linguistics and developmeptj-

chology €.g, Nerlich, Todd, & Clarke, 2003; Theakston,
Lieven, Pine, & Rowland, 2002). Some of the most highly

frequent and earliest learned English verbs, Wt make follow the frequency ordering, and this shows that somethin

get go, anddo, are also among those with the largest num- .
ber of senses (Clark, 1996). Children as young as wo yearother than the frequencies of these related polysemoussens

of age freely understand and use manv of these polvsemo Sontributes to the ease of acquisition. This is a challenge f
v rbg ft nywith litt] rent conf iyn Th kpt )rﬁl ; Wstributional clustering models, where performance isage
eros, often v € apparent contusio (Theakstonlst a ally improved with greater amounts of data.

2002; Israel, in press). Computational models can helpito el

cidate the kinds of mechanisms capable of distinguishieg thmtlnr(;etlhtli pr?nzer’invgi(\e/ i(l:ijjzl 3Sg'eé2rgpt'ﬁzlszedsr'zvr\]mcfl:]:;?”ng
senses of massively polysemous verbs from very little input group 9

as well as the linguistic features necessary to achieve this a corpus of child-directed speech. We show good clustering

Information about verb senses has been said to correla{gsmts by using a set of simple, automatically extracted sy

. . actic features. We argue that while these features are com-
strongly with verb argument structure. Several computatio 9

models have been developed that make use of a verb’s posénl_only used in distributional models of verb semantics, they

ble arguments to identify semantic structure and simjlarit are inadequate to explain order of acquisition behaviour in

._children.
other verbs. Most of these models operate at a coarse-gralng dre

semantic level, clustering verb types into general clas$es

similar verbs €.g, Versley, 2008; Korhonen, Krymolowski, Related work

& Marx, 2003). On the other hand, computational models ofSeveral recent computational models have demonstrated the

child language acquisition have found success by clugterinvalue in using argument structure information to learn abou

word usagege.g, Alishahi & Stevenson, 2008), that is, in- verb semantics. Versley (2008) and Schulte im Walde (2008)

dividual instances of verbs along with their contexts. listh cluster verb types using various syntactic dependencigs su

paper, we argue that such usage-based models can be used@sonoun phrases, prepositional phrases, and adverbss Joani

study children’s acquisition of verb polysemy. Stevenson, and James (2008) achieve similar goals using syn
We analyze the English verjet as a case studyGetis  tactically shallow slot features — subject, direct and rieck

a particularly interesting target since it is highly freqtie object, for example. In each case, the simple argument-struc

highly polysemous, and is one of the first verbs childrernriear ture patterns correlate with human judgements of semantic

(Clark, 1996). Table 1 outlines the major sensegaifwith ~ verb classes.

their frequencies estimated from a corpus of adult spokenla Few approaches explicitly address the problem of multi-

guage (Berez & Gries, 2009). Other sets of senses may ke senses of a single verb type. The work of Korhonen et

found in the literature, but this offers a good assessmethieof al. (2003) uses a soft-clustering method that allows a verb t

breadth of meaning captured by the verb. Here, we conflatbelong to multiple possible clusters, allowing a degreeadf p

literal and metaphorical senses. For example, the metaphoysemy in a verb’s representation. Verbs are clustered by the

ical usel got an ideafalls under the general sensbtain
MWarious infrequent senses are gathered uotiear.

Children tend to learn more frequent verb senses earlier
than less frequent senses (Theakston et al., 2002; Israel, i
press). However, the order of acquisition does not comiglete



distribution of their subcategorization frames. If two ses Symbol(s) Feature values

of a verb differ strongly in their subcategorization patter SUBJ, CSUBJ, XSUBJ | Subjects

the verb will more likely be distributed across multiple £lu OBJ, OBJ2, IOBJ Objects

ters. Vlachos, Korhonen, and Ghahramani (2009) use sim- COMP, XCOMP Clausal complements

ilar subcategorization features in their approach, emptpy =~ PRED, CPRED, XPRED Nominal, adjectival or

a Dirichlet process mixture model (DPMM) as the cluster- prepositional complements
ing algorithm to give the flexibility of learning an unspeeifi LOC Locatives

number of clusters. In this case a probabilistic soft-eting JCT, CJCT, XJCT Adjuncts

is possible, although the authors do not examine this aspect PREP Preposition (nominal value)
of the model. NSLOTS Number of slots used

Each of these approaches is concerned tyjle-levektlus-
tering of verbs, that is, clustering verbs based on theidistr
tional properties of all the verb’s usages, taken togefhiee
model may recognize thatin, skipandwalk are similar, and
in the case of Korhonen et al. (2003), tlman is also simi-
lar to flow, as inthe river runs eastHowever, the verb itself
is still represented as a single point in distributionalcgpa

Table 2: Slot features.

Table 2 presents the 17 features used in our representa-
tion. The first 15 are binary features denoting the pres-
ence or absence of a slot. Since our input data is extracted
o from the CHILDES database of child-directed speech and
A token-levemethod, on the other hand, clusters individual child language (MacWhinney, 2000), the labels correspond to

usages of verbs. This way, different senses can occupy d'?ﬁe grammatical relations used by the CHILDES dependency

tht. reprgs_entatlons of the same verb. Evidence from psy'arser (Sagae, Davis, Lavie, MacWhinney, & Wintner, 2007).
cholingusitics suggests that such a method may be necess ; . "
hen one of the other relations is a prepositional phrase, the

to fully explain polysemy (Theakston et al., 2002). Very few : i
models address token-level verb clustering. Lapata ang Brenomlnal feature PREP denotes the preposition used.

(2004) use subcategorization patterns to perform tokesi-le
classification (not clustering) of verbs, thereby presisiupp

a defined set of verb classes. Alishahi and Stevenson (200%)S stated earlier, the goal of our approach is to learn disiste

cluzter individual verb usggef]_ltg S|mu1l_?]te_ the aﬁqglsfjbln of verb usages that approximate verb senses. To achieye this
ver argumgnt stru_cture In chiidren. - their _met. 0d Of ClUSyy6 yse a DPMM, a non-parametric Bayesian model that has
tering by using basic argument information is similar to our

i ithouah the i tal alaorithm i i gained significant attention in the machine learning commu-
perspective, altnough the incrementafaigontnm IS nesegs nity (Neal, 2000). A DPMM brings two main advantages over
sensitive to the order of presentation of the input.

other clustering methods. Firstly, the modeller need netsp
Verb | . ify in advance the number of clusters necessary to represent
erb usageclustering the data. This is the “non-parametric” aspect of the model:
In this section, we describe our modelling framework foras part of the learning process, the model itself determines
clustering verb usages into senses. We discuss the feapire r an appropriate number of clusters, dependent on the data.
resentations of individual verb usages, then describe pur a Secondly, the DPMM has been shown to be a good model
plication of a DPMM, a Bayesian clustering framework well of human category learning behaviour (Sanborn, Griffiths, &

Dirichlet process mixture model

suited to models of human category learning. Navarro, 2006). In addition to basic category-learnindg¢as
DPMMs and related models have successfully been applied to
Verb features word segmentation (Goldwater, Griffiths, & Johnson, 2009)

Following from the type-level verb clustering approaches d and type-level verb clustering (Vlachos et al., 2009).

scribed above, we designed our feature space to capture someA DPMM specifies a probability distribution over possible
of the general argument structure distinctions betweeh vercluster arrangements of data. In contrast to typical aigors
senses. We primarily use syntactic “slot” features, sintiba  that seek a single “best” clustering of data points, a DPMM
those used by Joanis et al. (2008)’ to encode bhasic argum@ﬂ/es a distribution oveall possible Clusterings. Given the
information about a verb usage. These are not subcategoriz@Pserved verb usage data, we can estimate the parameters of
tion frames, but rather a set of individual features thavrec ~that distribution to find the most likely clusterings.

the presence or absence of syntactic positions — subject, di We assume that each verb usggkelongs to a cluster, and
rect and indirect object, for example —that potentiallytaim  that its features are drawn from a set of multinomial distrib
verb arguments. In any particular usage, a certain slot mations (one per feature). Different clusters are associattd

be analyzed as an adjunct rather than a true argument. Sudifferent feature distributions. Thus, one cluster maybpro
slot features are easier to extract than full subcategtiza abilistically represent a pattern of features such as SUBJ V
frames, and Joanis et al. (2008) show that in verb classifiOBJ, while another cluster may represent the pattern SUBJ
cation tasks, subcategorization frames offer no improveme V OBJ COMP. The number of clusters in turn depends on a
over simple slot features. Dirichlet Process (DP), a stochastic process which gives th



model its non-parametric flexibility. The full model is: In our experiments, we randomly set eagho one of a
small number of clusters (1, 2, or 3). For each cluster, we
ii 85z ~ Mult(8jz,) set thed parameters to random values drawn from a Dirichlet
0iz|G~G distribution. We iteratively update eaghand 8 individu-
Gla,Gp ~ DP(a,Gp) ally by drawing it from a posterior distribution conditioned on
the data and all thetherparameters in the model. In the case
‘of a cluster assignmeit, we do this by sampling a cluster
for y; given assignments for all the other usages, gs\fere
the last usage observed. We may choose a new cluster (as
in Equation 1), thus potentially changing the total numifer o
clusters. We repeatedly cycle through the model parameters
sampling eacB« and eaclz; many times. By averaging over
a large number of these samples, the posterior approximatio
converges on the exact solution. In practice, we can achieve
a good estimate in a few thousand samples, depending on the
complexity of the data and the details of the algorithm.

The~ symbol should be read as “is distributed according to”
In the abovey;; denotes featurg¢ of usagd. z is the cluster
chosen for usagg and®j; are the multinomial parameters
for featurej in the probabilistic pattern represented by the
cluster. G and Gy are probability distributions over the pa-
rametersd, anda is a concentration parameter that affects
how many clusters we expect to find.

In the aboveG generates the parameters of the multino-
mial distribution @j;) that in turn generateg;. SinceG se-
lects® from across the set of clusters.g, 81 or 0j7), it is
in effect a mixing distribution that gives the probabilgief
choosing each cluster.

The DP, being defined by both the concentration parameter
a and abase distribution @, gives a prior distribution on the In our experiments, we use child-directed speech data drawn
number and size of the clusters as well as on the paranteterfrom the CHILDES database of parent-child interactions
to represent theno defines the prior distribution fdd. We ~ (MacWhinney, 2000). We use four longitudinal corpora
setGy to Dir(1), a noninformative Dirichlet prior. Also, the from the American English component of the database, corre-
DP gives a prior probability on the entire partitioning oéth sponding to four children: Eve, Naomi, Nina, and Peter. To-
data into clusters. It is derived from the following stochas gether, the data cover an age range from 1;2 (years;months) t
tic process: assume that all verb usages have been clusterg®. We extract each child-directed utterance of the getp
exceply;. Then the prior probability of a clustéris given by  then randomly split the utterances into development artd tes

N ) . sets (1275 and 1276 utterances respectively), dividing eac
P(K) { if nk > O (existing cluster)

Experiments

N—1+a . 1) child’s data equally. The corpora contain part-of-speegs t
N-1i7g Otherwise (new clustey) and syntactic dependencies, obtained using an automgtic ta
ger and parser (MacWhinney, 2000; Sagae et al., 2007). As
described above, we extract 17 slot features for each usage
of get Due to errors in the automatic part-of-speech tag-
ging, parsing and feature extraction, the data containgesom
noise. Some utterances were dropped when parsing errors
prevented extraction of the features, and others contalh mu
lee instances ofiet The final development set and test set
contain 1272 and 1290 usages, respectively. For evaluation
ppurposes, we manually annotate each of the usages with one

over the complete set of possible parameters to the mod f eight sense labels, corresponding to the eight sensesin T

(i.e., all possible values fod andz). To find clusters of verb le 1. We refer to this Iabelllr_1g as the gold standard.
usages, we update this distribution using the observed data V€ implementthe DPMM in OpenBUGS, a general frame-

wheren is the number of verb usages in cluskeandN is
the total number of usages. Larger valuesiahake it more
likely that overall, more clusters will be used. In all oupex-
iments, we sett = 1, a moderate setting that compares with
similar DPMM applications. This formulation has two inter-
esting properties. Firstly, larger clusters tend to attracre
usages. Secondly, as more data is processed, the probabil
of choosing a new cluster decreases.

The above model, as written, specifies a prior distributio

thus obtaining a posterior distribution over parameters. work  for performing MCMC simulations of hierarchical
_ _ Bayesian models. We run five chains with different initial
Parameter estimation conditions: one chain is initialized with all usages in ohese

Given the set of verb usage data, we estimate the posteri¢@r, two chains start with two clusters, and two with threesel
distributions over the model parameters using Gibbs samters. Each chain is randomly initialized as described in the
pling, a Markov Chain Monte Carlo (MCMC) method (Neal, previous section. As per standard practice, we run eacn chai
2000). Essentially, to estimate a probability distribatiswe ~ for 60,000 iterations, discarding the first 10,000 as barn-i
draw a large number of samples from that distribution. TheTo reduce correlation in the samples, we keep only every 25th
samples give an approximation of the distribution, and as thsample, giving 2,000 samples per chain, 10,000 in total.
number of samples approaches infinity, the approximatien be Each sample contains one clustering of the verb usages. To
comes exact. With Gibbs sampling, we choose an initial ranevaluate the model’s performance, we score each of the sam-
dom setting for the model parameteiig ( the cluster assign- ples against the gold standard, then average the resuits ove
mentsz and the cluster parameted} then iteratively adjust all samples. As a result, the reported scores give a weighted
these settings according to the observed data. evaluation of the entire distribution of clusterings, ngtjthe



Sense P(%) R(%) F (%) Freq.(N)
1. obtain 61.3 53.1 56.9 576
2. cause obtain | 26.0 44.2 32.8 56
3. move 62.4 50.7 56.0 196
4. cause move 30.9 46.2 37.1 115
5. become 59.7 58.2 59.0 253 2
6. cause become¢ 6.7 50.2 11.8 52 &
7. must 2.9 75.3 5.6 19
8. other 3.9 64.8 7.3 23

Table 3: Precision (P), recall (R) and F-measure (F) for eac
sense ofjet

Sernse

single “best” cluster. We evaluate each sample using the clu

ter F-measure (Larsen & Aone, 1999). Given one sample, foFigure 1: Likelihood of grouping usages from each pair of
each senss, we score each clustéras follows. Letabe the  senses, averaged over all usages. Indices correspondstssen
number of usages ikwith senses. Letb be the total number gs in Table 3.

of usages in the cluster, and lebe the total number of us-

ages with sensg over all clusters. Then precision (P), recall

(R), and F-measure (F) are given by: machine learning perspective, since we expect more data to
make learning easier. Indeed, we see this effect in thetsesul
P— 'i" R— 97 F— ﬂ ) above: the more frequent senses tend to be easier to learn.
b ¢ P+R On the other hand, the role of frequency in acquisition is

We record P, R, and F for the cluster with the best F-measurBot & hard-and-fast rule. There are notable exceptions that

for that sense, then report averages over all 10,000 samplescan shed light on distributional semantic methods. Istiael (
press) studied the order of acquisition of various senses of

Results get using the same transcripts as in our own study. Using the
;$ame sense categories as ours (excluding our categasy,
Israel compared the frequencies of senses in child-diecte
speech with the order in which the children first producedhes

achieve the best performance. The less frequent causatif§"Ses: He notes that, in most cases, what a child hears most
senses show worse clustering behaviour, although thel recd[€duently, he or she learns quickly. The most common ex-
scores indicate that the model recognizes some internal simCePtioN iscause obtain despite comprising only 2-3% of
larity among the usages. In these cases, low precisionsscord€ INPUL, children often produce it before far more frequen

suggest that the features of the causative senses areiquite s SENSes likdecomeor cause move
ilar to those of other senses. This effect does not appear in our own results. We sim-
We examine this possibility in Figure 1, which shows theulate the learning of verb senses over time by running the
likelihood of grouping together verb usages from differentmodel on different-sized subsets of data, randomly sampled
senses. We calculate the likelihood of each usage of a giveffiom the test set. Table 4 shows F-measures of each of the
gold standard sense being placed in the same cluster as eg&#nses, for 400- and 800-usage subsets as well as the full tes
other usage of the gold standard senses, taken over alldL0,06€t. To replicate Israel's observations, we should expect t
samples and averaged over usages within each sense. A pé¢e high scores farause obtairfrom small amounts of data,
fect clustering would give a diagonal matrix. High valuesthatis, earlier than when the scores improve for more frejue
along the diagonal roughly translate to high recall, and lowsenses likdbecomeor cause moveWe do not see this effect.
values on the off-diagonal indicate high precision. Therbgu Rather,cause obtairshows relatively poor performance for
shows thatause obtaincause movandcause becomare all three dataset sizes. It appears then that while slafifest
frequently grouped together (column 2, rows 2, 4 and 6). Ond&ive promising clustering behaviour, they do not lend them-
possibility is that the model distinguishes causative rivegn ~ Selves to the kind of order of acquisition effects we observe
from non-causatives based on the larger number of argumenid child behaviour.
in causative forms, but lacks features that would effeitive  Israel (in press), as well as Gries (2006), have suggested
distinguish the various causative meanings from each .other that the acquisition of polysemous verb senses may depend
A common observation in child language acquisition stud-on complex inferential mechanisms on the part of the child.
ies is that the more frequent senses of a verb tend to be theor example, thdbecomesense ofget may be a metaphori-
earliest senses children produce (Theakston et al., 2802; Ical extension of thenovesense, for which children must ob-
rael, in press). This role of frequency is unsurprising fram serve a metaphorical connection between states and Insatio

Table 3 presents the results of clustering using the DPMM o
the test set usages@ét The model uses on average 5.2 clus-
ters. The more frequent sensebtain move andbecome



Sense N=400 N=800 N=1290 Sense P(%) R(%) F (%) Freq.(N)
obtain 55.1 53.2 56.9 obtain 68.4 56.7 62.0 314
cause obtain 22.1 22.4 32.8 cause obtain 2.0 49.9 3.8 8
move 34.7 43.9 56.0 move 29.9 44.5 35.7 99
cause move 29.1 35.3 37.1 cause move 13.4 61.3 22.0 31
become 42.4 49.0 59.0 become 59.0 23.7 33.8 90
cause become 6.7 11.3 11.8 cause becom¢ 4.4 441 7.9 15
must 4.1 3.9 5.6 must 75.8 99.9 86.2 38
other 4.4 5.1 7.3 other 1.2 46.8 2.3 5
Number of clusters 2.8 3.6 5.2

Table 5: Precision (P), recall (R) and F-measure (F) from
Table 4: F-measures for varied amounts of data, simulatinglustering the data of Berez and Gries (2009).
order of acquisition.

Overall, these results show a similar pattern to the experi-
As an explanation for the early acquisitionazuse obtaina  ments on CHILDES data. The more frequent sense&in
child could extenabtainby adding a causal agent, a connec-move andbecome perform reasonably well, while the less
tion which children appear to make quite early (Fisher, 2002 frequent causative senses perform poorly. The exception is
Our model does not make explicit inferences like these, lvhic must with a remarkably high F-measure of 86.2%. This sense
may explain why our results do not exhibit the same order ofs nearly always used in a form similar kwe got to X with
acquisition as in children. However, it may be that the be-highly consistent auxiliary use, verb form and clausal form
haviour we see in our model is due to the simplicity of our fea-all missing from our simple slot representation.
tures, or the noise inherent in using automatically exédct  Even with a richer, manually annotated data set, the clus-
data. Children may attend to some other aspect of the inpuering results do not exhibit Israel’s key observation tiat
not captured in our fairly simple feature set, something thacause obtairsense can be learned earlier than its frequency
helps them to acquire certain senses at an early age from commight predict. These results suggest that in order to accu-
paratively little input. To investigate this, in the nextden  rately model this pattern in acquisition, we would need ei-
we apply our model to a richer set of hand-annotated featurether a different type of information, or a different apprbac

drawn from a corpus of adult spoken language. to learning. The model’'s excellent performance onrthest
. ) sense shows that given suitable features, a DPMM is capable
Richer syntactic features of learning an infrequent sense very well. Accordingly, our

ocus will be on determining the appropriate features.

Berez and Gries (2009) analyzed 600 adult-language inf- . N e
stances ofget sampled from the British component of the Detallgd semant.|c d|st|nc_t|ons may be d|ff|.cult to cap.ture
automatically, particularly given the assumption of a d&il

International Corpus of English, ICE-GB. The authors anno-_ " inauisti I . | :
tated the data with 47 fine-grained senses, which we regrouI ited linguistic c'ieve qpmen?.' One option wou d be to in-
into the 8 coarse-grained labels of Table 3. Each usage h ude argument fillers in addition to syntactic slot feasure

been tagged with 13 features commonly used in verb cluster2Uch an approach may offer additional developmental plau-

ing, drawn from the manual annotations of ICE-GB. These;ibility: children may associate verb senses with speafie |

features cover a broad range of phenomena, including ver§@ items before they are able to access more general ar-
transitivity, verb form, grammatical relations such asphes- gument types. However, selectional preferences have been

ence of auxiliary verbs, and clausal features includingedep shown to be largely ineffective for type-level verb clustgr

dency types and the transitivity of dependent cladses. (Joanis et al., 2008), although they may offer some benefit

By encoding verb arguments and certain semantic relation‘hth the token level of our approach. Results from sentence

ships among them, transitivity patterns capture more mforprocessing experiments show that the semantic category of

mation than subcategorization frames or slot featuresealon @ iUbJes\}h?ar? it;'atlsrﬁn ‘:‘d duilttrearderns; |rr11:ertprret£a t:on HOf ? veErIb
For example, in the “copula” pattern used in this data, an ad>e"se c urn predicts argument structure (Hare, El-

jectival or prepositional complement describes a propefty man, Tatb a;;_zyn;kh t&chRae, 2009()1' We may E)jela;ble,\fg n-
the subject, as inl, got rid of the car This semantic prop- corporate tis eliect by using a word space modet for ar-

erty distinguishes the copula from the syntactically samil guments (Baroni, Lenci, & Onnis, 2007), or perhaps a simple

intransitive pattern. Since these features are hand-atetht animacy feature (Joanis et al., 2008).
we expect the data to contain fewer extraction errors argd les
noise than our own automatically extracted data. We cluster
the verb usages using the DPMM and present the results ith this paper, we use token-level clustering methods to sim-
Table 5, scored as in the above experiments. ulate children’s acquisition of the senses of a polysemous
verb. With the English verlget as a case study, we use a
1See Berez and Gries (2009) for the full list of features. Bayesian framework to cluster usagesget drawn from a

Conclusions and futuredirections



corpus of child-directed speech. We show that simple, auto- Bayesian framework for word segmentation: Exploring the

matically extracted syntactic slot features give reashyrat> effects of contextCognition 112(1), 21-54.
curate clustering results on the sensegeif However, these Gries, S. Th. (2006). Corpu;-based methods and cogniFive
features are insufficient to account for the order of actjaisi semantics: the many meanings of to run. In S. Th. Gries

of polysemy as observed in children. Children do not show & A. Stefanowitsch (Eds.)Corpora in cognitive linguis-

a consistent correlation between frequency and age of-acqui tics: corpus-based approaches to syntax and |€uis57-

sition. We show that even with a more detailed, manually- 99)- New York: Mouton de Gruyter.

annotated feature set, clustering results in the model ¢io nd'@re, M., Eman, J. L., Tabaczynski, T., & McRae, K. (2009).

reflect child behaviour. This suggests that for a tokentleve 1Nn€ wind chilled the spectators, but the wine just chilled:

clustering method to accurately model this pattern in child S€Nse, structure, and sentence comprehensiagnitive

language acquisition, it would need either a different kifid SC|enc333(4), 610-628. . .

information or a substantially different learning mectsami Israel, M (in press). How children get constructions. In
One other possible explanation for children’s apparerd eas M. Fried & J.-O. Ostman (Eds.pragmatics in construc-

il . tain inf tverb is that child tion grammar and frame semantici¥ohn Benjamins.
n learning certain infrequent verb senses 1s that chranay Joanis, E., Stevenson, S., & James, D. (2008). A general fea-
generalize meaning from other similar verbs. For example

. . . o . ' ture space for automatic verb classificatiavatural Lan-
children may recognize that the ditransitive usegyef as in guage EngineeringL4(3), 337-367.

| got you a sandwichis similar to that of other benefactive Korhonen, A., Krymolowski, Y., & Marx, Z. (2003). Clus-
verbs likebuy, catch or find. This class of verbs is sys- tering polysemic subcategorization frame distributioas s
tematically used in both causative and non-causative forms mantically. InProc. of ACL2003p. 64-71).

and children may recognize this regularity and use it torthei| apata, M., & Brew, C. (2004). Verb class disambiguation
advantage. Children are known to generalize verb argument ysing informative priorsComp. Ling, 30(1), 45-73.

structure and its associated semantic knowledge acrosg maparsen, B., & Aone, C. (1999). Fast and effective text mining
different verbs, and computational simulations suggest th  using linear-time document clusteringDD 99, 16—22.

this is an important factor in children’s ability to learnrke ~ MacQueen, J. B. (1967). Some methods for classification and
with such ease (Alishahi & Stevenson, 2008). Accordingly, analysis of multivariate observations.Pnoc. of 5th Berke-
our ongoing work investigates the ways that developing-argu ley Symposium on Mathematical Statistics and Probability
ment structure knowledge affects the acquisition of patyse (Vol. 1, p. 281-197).

across a range of early verbs. MacWhinney, B. (2000).The CHILDES Project: Tools for
analyzing talk(3rd ed., Vol. 2). Lawrence Erlbaum.
Acknowledgments Neal, R. M. (2000). Markov chain sampling methods for

We are deeply grateful to Andrea Berez and Stefan Gries for [.)'”Chlet Procesg Mlxturg Models.]ournal of Computa-
! . tional and Graphical Statistic9(2), 249-265.
sharing their annotated corpus data. We thank the anonymoys

. tor their heloful q ull erlich, B., Todd, Z., & Clarke, D. D. (2003). Emerging
reviewers for their helpful comments, and we gratefully ac- patterns and evolving polysemies: the acquisition of get

knowledge the financial support of NSERC of Canada and e yeen four and ten years. In B. Nerlich, Z. Todd, V. Her-

the University of Toronto. man, & D. D. Clarke (Eds.)}olysemy: Flexible patterns of

of meaning in mind and languag&louton de Gruyter.

References Sagae, K., Davis, E., Lavie, A., MacWhinney, B., & Wint-

Alishahi, A., & Stevenson, S. (2008). A probabilistic model ner, S. (2007). High-accuracy annotation and parsing of
of early argument structure acquisiticdBognitive Scienge CHILDES transcripts. IfProc. ACL-2007 Wkshp on Cog-
32(5), 789-834. nitive Aspects of Computational Language Acquisition.

Baroni, M., Lenci, A., & Onnis, L. (2007). ISA meets Lara: Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2006). A
An incremental word space model for cognitively plausi- more rational model of categorization. Bmoc. of the 28th

ble simulations of semantic learning. Froc. of ACL- annual conference of the Cognitive Science Society
2007 Workshop on Cognitive Aspects of ComputationaSchulte im Walde, S. (2008). Human associations and the
Language Acquisition. choice of features for semantic verb classificatioRe-

Berez, A. L., & Gries, S. Th. (2009). In defense of corpus- search on Language and Computatién79-111.
based methods: a behavioral profile analysis of polysemousheakston, A. L., Lieven, E. V. M., Pine, J. M., & Rowland,
get in English. InProc. of 24th Northwest Linguistics Con-  C. F. (2002). Going, going, gone: the acquisition of the

ference(Vol. 27, p. 157-66). verb ‘go’. Journal of Child Language?9, 783-811.

Clark, E. V. (1996). Early verbs, event-types, and inflawio  Versley, Y. (2008). Decorrelation and shallow semantie pat
In C. E. Johnson & J. H. V. Gilbert (EdsQhildren’s lan- terns for distributional clustering of nouns and verbs. In
guage(Vol. 9, p. 61-73). Lawrence Erlbaum. Proc. ESSLLI wkshp. on distributional lexical semantics

Fisher, C. (2002). Structural limits on verb mapping: TheVlachos, A., Korhonen, A., & Ghahramani, Z. (2009). Unsu-
role of abstract structure in 2.5-year-olds’ interpretas pervised and constrained dirichlet process mixture models
of novel verbs Developmental Sciencg(1), 55-64. for verb clustering. IrProc. of EACL workshop on geomet-

Goldwater, S., Griffiths, T. L., & Johnson, M. (2009). A rical models of natural language semantics.



