
Learning the Abstract Motion Semantics of Verbs from Captioned Videos

Stefan Mathe Afsaneh Fazly Sven Dickinson Suzanne Stevenson
Department of Computer Science, University of Toronto
{mstefan, afsaneh, sven, suzanne}@cs.toronto.edu

Abstract

We propose an algorithm for learning the semantics of a
(motion) verb from videos depicting the action expressed by
the verb, paired with sentences describing the action partic-
ipants and their roles. Acknowledging that commonalities
among example videos may not exist at the level of the input
features, our approximation algorithm efficiently searches
the space of more abstract features for a common solution.
We test our algorithm by using it to learn the semantics of
a sample set of verbs; results demonstrate the usefulness
of the proposed framework, while identifying directions for
further improvement.

1. Introduction
Extracting meaningful information from perceptual fea-

tures generally involves a process of abstraction. While
some interpretation problems—e.g., detecting and identi-
fying a specific exemplar within a 2D image—may be re-
ducible to a process of feature selection, interpreting a vi-
sual scene in terms of general categories of objects or ac-
tions necessitates constructing the appropriate features to
represent the distinguishing properties. Low-level visual in-
put features, such as the contours extracted from an exem-
plar (in an image) or the detailed trajectory of an exemplar
(in a video), must be segmented, grouped, and abstracted
in some manner to support the interpretation of a particular
object or action category in the visual scene. Determining
the common features of a category across a set of images
or videos requires searching this space of more abstract fea-
tures to find the appropriate level of abstraction to capture
the depicted object/action. Unfortunately, the input features
may give rise to an exponential number of feature group-
ings/abstractions, making the problem intractable.

This situation is unavoidable when learning the seman-
tics of a verb from videos depicting a variety of objects
moving and interacting in a manner expressed by the verb.
If the object motions and interactions were highly regular
across the training set for a verb, learning the verb seman-
tics might be reducible to an input feature selection prob-

lem. Consider, for example, a set of videos of different
people throwing an object, each video captioned with the
sentence “[Name-X] throws [Object-Y] on [Place-Z].” Fur-
thermore, in each video, the person throws the object on a
place with an underhand movement. Provided that our input
feature set included horizontal and vertical motion primi-
tives and relative motion between objects, then the videos
could be time-segmented and “aligned” to yield a categor-
ical model consisting of a number of states. In this case,
there are four states, including a joint up-and-forward mo-
tion of a hand and an object (in contact), followed by an up-
and-forward motion of the object (moving away from the
hand), followed by a down-and-forward motion of the ob-
ject, followed by zero object motion while the object is in
close proximity to a place. Such a model correctly captures
the regularities of the input training data.

However, the motion and/or interaction of objects de-
scribed by a verb generally precludes a one-to-one corre-
spondence at the input feature level. For example, let’s add
a few videos to our training set. In one video, the person
is running while throwing the object; in another video, the
person throws the object overhand, while still in another, the
person throws the object while moving his/her hand side-
ways. If we insist on one-to-one input feature correspon-
dence across the training set, there is no solution, i.e., there
does not exist a segmentation (in time) of each input video
such that corresponding intervals agree in terms of their in-
put features. The correct solution—i.e., the person’s hand
and the object move together while in contact (regardless of
how they move), followed by the object moving away from
the hand (regardless of how the object moves, and whether
the hand moves or remains still), followed by the conver-
gence of the object and the place—does not exist at the level
of the input features. We must address the combinatorial
problem of grouping and abstracting input features to find
commonality at some higher level of abstraction.

The problem lies not with defining the abstract mo-
tion/interaction features, for we could easily define a
“scale space” of motion/interaction primitives, ranging
from highly detailed (at the lowest levels) to highly abstract
(at the highest levels). One could envision computing such a

scale space for each video and then searching for the lowest
levels at which commonality occurs. Unfortunately, pre-
computing such a scale space is problematic, for a prim-
itive is computed over an interval in time, and its correct
value will be attained when the time interval spans one of
the states in the verb model (e.g., the duration over which
the hand and the object move while in contact). Not only do
we not know a priori the state boundaries in each video, we
don’t even know the appropriate number of states needed to
model the verb semantics. Thus pre-computing such a scale
space for a given video amounts to enumerating all possible
time segmentations of the video, and computing each fea-
ture over each interval—a process that is clearly intractable.

To address this issue, we adopt an approach inspired by
[8] who formulate the learning of a categorical shape model
as a search for the lowest common abstraction among a
set of increasingly-abstract representations of the training
images. We begin with a set of candidate interval (state)
boundaries in each of a set of input videos. Considering the
space of possible alignments of these boundaries across the
videos, we generate abstract features over the possible inter-
vals and search for an alignment that maximizes the shared
features across corresponding states. Moreover, we seek
an alignment that maximizes the feature overlap among the
input videos, yielding a lowest common abstraction. Since
the space of possible alignments is intractable, we propose a
polynomial-time approximation that converges on the low-
est common motion/interaction abstraction over a set of
training videos. Returning to our two example scenarios of
throwing an object, we would expect to generate the much
more detailed model in the first case, and the more abstract
model in the second case.

2. Previous work
The earliest attempts at human action recognition have

looked at low-level appearance-based features. These could
be as simple as the background-subtracted images which
were then time-warped to the input data, as in [3], or
vector-quantized versions of the background-subtracted sil-
houettes, which were used to train Hidden Markov Mod-
els (HMMs), as in [11]. Others use motion histories of the
2D silhouettes ([1],[12]) or the 3D volumes ([10]) as global
models for action. All these approaches assume a one-to-
one correspondence between the low-level image and model
features. This is reflected in the low within-class variability
of the action classes they target, like human gestures, tennis
strokes, and ballet movements.

Using features similar to ours, Siskind ([9]) trains
HMMs over relative positions and velocities of body parts
and objects to model simple manipulative human actions.
As with previous HMM approaches, the number of states
in the model has to be known in advance. The approach
does not abstract away the actual velocities and accelera-

tions in each subevent. The level of abstraction is lifted in
[4] by using force-dynamic features describing interactions
between objects in the world, such as attachment, contact,
and support. These features are grouped into states, then
into sequences of states, and finally into parallel timelines.
While handling the grouping problem over features, these
works fail to acknowledge that abstraction needs to be car-
ried out over time intervals as well. This makes the systems
sensitive to noise and variation in the manner of execution
of a particular action.

Other methods to deal with the problem of abstraction
have been proposed. Stochastic parsing techniques are used
by [7] to abstract away structure and order of subevents.
Possibly overlapping subevents are detected using HMMs.
A hand-built probabilistic grammar is used to model hu-
man gestures with subevents occurring in varying orders.
While looking for the most probable parse, the parser min-
imizes the total overlap between subevents. Unlike [4], the
system handles noise by insertions, deletions, and misde-
tections explicitly encoded in the grammar. Although the
possibility is mentioned, no grammar learning capabilities
are included. Grammar induction is used in [5] to detect co-
occurring patterns in the joint-angles of humans performing
body movements, but the grammars are not used to abstract
away structure in these patterns. The WordNet semantic
lexicon is used as a hand-built source of abstraction in [6]
to find high-level concepts matching low-level features de-
tected in videos.

As alluded to earlier, in the domain of object recogni-
tion, a system for finding a common abstraction from a set
of oversegmented objects is presented in [8]. The approach
explores a lattice obtained by grouping and abstracting re-
gions in two exemplars in all possible ways. In order to
compute the lowest common abstraction of a set of exem-
plars, least common abstractions over all possible pairs of
inputs are generated and a minimum distance criterion is
used to choose the best solution. Because there are an ex-
ponential number of increasingly-abstract representations,
a top-down polynomial-time approximation algorithm is
proposed. Our system is based on the same least com-
mon abstraction paradigm and approximation approach, but
adapted to the particular requirements of action recognition.

3. Overview of our Approach
Verbs are commonly used in natural language to express

events or actions taking place in the environment. Our goal
is to learn the semantics of certain (motion) verbs from a set
of videos showing an action (e.g., a person throwing a ball
on a book) labeled with a full sentence describing the action
(e.g., [Name-X] throws the ball on the book). We define the
meaning of such a verb to be the sequence of motions and/or
interactions of objects that are in common across the train-
ing examples for the verb. We represent an object motion or

interaction maintained over time as a state in which relevant
features hold over the object(s); for example, ↓ d(a, o) indi-
cates that objects a and o are near in space. State boundaries
occur when the values of the features change, indicating a
change in the object motions or interactions. Learning the
semantics of a verb thus means finding state boundaries in
each training video such that a consistent sequence of states
holds over the set of videos.

In addition to indicating what verb is to be learned, the
association of a video with a sentence describing the de-
picted action helps us to establish correspondences between
information gleaned from the sentence and from the video.
These linkings are crucial to forming the appropriate se-
mantics of the verb. Consider the above video–sentence pair
again. There are three participants in the action expressed in
this example, which appear in the video as three visual ob-
jects that move around and interact with each other, and in
the sentence as three noun phrases (NPs), [Name-X], ball,
and book. We first apply a context-free parser to each sen-
tence that uses general rules of the language to extract two
pieces of information: the NPs to associate with objects in
the video, and the semantic roles that those objects will play
in the definition of the verbal semantics. In this case, the
parser determines that [Name-X], ball, and book are the rel-
evant objects, and that, in the verb semantics, they will take
on the roles of AGENT, OBJECT, and PLACE, respectively.

We can now use this language information to guide in-
terpretation of the video. For each identified NP, we assume
an object recognition component can locate the object of
that type in the video, and that some process (either man-
ual or automatic) initializes a convex hull around each rigid
subpart of the object (or entire object, if non-articulating).
We then label each of these subparts with the semantic role
indicated by the parse of the sentence (e.g., AGENT). Now
tracking the subparts over the course of a video (i.e., their
2D image positions as a function of time) will provide the
input features that capture the motions and interactions of
the semantic participants in the action. This enables us to
extract meaningful representations from the video; e.g., in
the feature mentioned earlier, ↓ d(a, o), we assert a relation
between the AGENT and the OBJECT in the component state
of the verb meaning, abstracting away from the specific en-
tities involved in a particular video.

The challenge is to find a sequence of states that holds
consistently across all the training videos for a verb. Two
problems arise. First, we must determine where to locate
state boundaries in each video; that is, we need to partition
each video into a sequence of time intervals over which a
number of features hold. Note that there is no prior infor-
mation about how many states are needed to encode the verb
semantics, so we must consider partitions of varying sizes.
Moreover, given the possible partitions for each video, we
must find an alignment—a set of partitions, one per video,

v
1

v
N

v
3

v
2

Input V
ideos V i

, i=
1,...

,N

one possible alignment

state s
2

state s
3

state s
1

F
1

1

F
N

1

F
2

1

F
3

1

F
N

2

F
3

2

F
2

2

F
1

2

F
N

3

F
3

3

F
2

3

F
1

3

Goal:
find an alignment

that maximizes the
number of states K

such that
F

1
k = F

2
k = ... = F

N
k, for k=1,...,K

Problem:
no solution is likely to exist

(i.e., K=0) among set of input features F

F
1

1

F
2

1

F
3

1

abstract features
generated from
input

A
1

1

A
3

1

A
2

1

A
1

1
 ∩ A

2
1 ∩ A

3
1 ≠ ∅

abstract feature
correspondences

a)

b)

Figure 1. (a) From a set of N input videos, we seek an alignment
of the partitions, one per video, where each partition has the same
number of intervals or states (in this case, three), and correspond-
ing states across the videos have similar features. (b) While no
feature commonality may exist at the input feature level, common-
ality may exist at a more abstract level. For the first state in the first
three videos, two abstract features are in common.

where each partition has the same number of intervals—
in which the features within corresponding time intervals
have consistent values. See Figure 1: the input is a set
of N videos, each yielding a set of time-varying features
over convex subparts of objects. In Figure 1(a), an example
alignment is shown in which the N input videos are each
partitioned into three states. Recall our first “throw” exam-
ple in Section 1, in which the input videos were highly reg-
ular. Such a highly constrained set of training videos may
indeed yield an alignment with the same input features (or
perhaps a subset of the features) across all the videos.

However, this raises the second issue: given more real-
istic training data for a typical action verb, there may not
be an alignment that provides a non-empty set of consis-
tent input feature values across corresponding partitions of
the videos. That is, the input features that we extract are
unlikely to capture the higher-level commonality across the
videos that abstracts away from very specific motion and
interaction primitives. In order to form a successful align-
ment, we need to find the right level of abstraction of the in-
put features that yields a consistent sequence of states repre-
senting the meaning of the verb. Figure 1(b) illustrates this
more ambitious formulation, where we have focused on the
first state in the first three input videos in Figure 1(a). If
we could generate an appropriate set of abstract features,
then our strategy of searching for a non-empty intersecting
set of features across corresponding intervals would yield a
common abstraction.

It is important to note here that one useful way to gener-
ate abstract features is to summarize the values of local in-
put features over an interval of time. Therefore the compu-
tation of such abstract features depends on the time interval
over which they are computed—that is, the abstract features
cannot be pre-computed. Thus our strategy is to hypothe-
size an alignment, compute abstract features for each inter-
val (in each video) induced by the alignment, and search for
a non-empty intersection of the abstract features.

A successful alignment will yield a sequence of states
that each represent a subpart of the meaning of the verb.
For example, our system may learn the following meaning
of throw from several videos showing a “throwing” action:

STATE1 STATE2 STATE3

λo, p, a.
z }| {
↓ d(a, o);

z }| {
↑ d(a, o)∧ ↑

‚‚‚‚ d

dt
c(o)

‚‚‚‚;
z }| {
↓ d(o, p)

near(a, o); far(a, o) ∧ moving(o); near(o, p)

where a stands for the AGENT, o for the OBJECT, and p for
the PLACE. The lambda expression is the output of our sys-
tem, whose semantics will be explained in Section 4 below.
(The text underneath the lambda expression indicates an in-
tuitive label for each feature, for illustrative purposes only.)
The lambda expression shows that the learned semantics of
throw in this example consists of three successive states:
First, the AGENT a is in contact with the OBJECT o; second,
o is not in contact with a and is moving (quickly); third, o
is in the proximity of the PLACE p.

4. The Abstract Feature Space
To produce our abstract feature space, we extend the

set of input features (extracted as explained above), using
operators that generate simpler, higher-level, and/or com-
bined features. These abstract/combined features are in-
tended to capture some higher-level semantics of object mo-
tion and/or interaction (compared to the low-level input fea-
tures), e.g., the speed of the movement of an object (irre-
spective of the manner of motion), and the relative distance
between two objects (regardless of their absolute positions).

We use these operators in our current system:

• c(o): computes the centroid of a moving object o as a
2D signal.

• d(o, o′): computes the distance between the convex
hulls of two moving objects, o and o′, as a scalar sig-
nal.

• rp(o, o′): computes a vector representing the relative
position of object o with respect to object o′. Because
both o and o′ can have several parts, the relative po-
sition is defined as the vector connecting the centroids
of the parts of o and o′ which are closest to each other.

• d

dt
(s): evaluates the time derivative of a 1D or 2D sig-

nal.

• ‖s‖: returns the norm of a 1D or 2D signal at each time
instant.

• ↑σ , ↓σ , ↑+
σ , ↑−σ : soft threshold operators on a 1D sig-

nal. Operator ↑ will respond whenever the magnitude
of its argument is large, while operator ↓ will respond
whenever its magnitude is small. Operators ↑+ and ↑−
respond to large positive (respectively negative) values
of their scalar argument. We use the Geman-McClure
estimator to evaluate these operators:

↑+ (s) =
s2

σ2 + s2
· [s ≥ 0] ↑ (s) =

s2

σ2 + s2

↑− (s) =
s2

σ2 + s2
· [s ≤ 0] ↓ (s) =

σ2

σ2 + s2

• holds(s): computes a global measure of how close the
signal s (in the range [0,1]) is to the true value (1) over
an entire interval. The comparison is done by calculat-
ing the squared error between s and the constant sig-
nal 1, and then using a fixed threshold to yield a single
boolean value.

In order to generate meaningful abstract motion features,
we use the following grammar rules:

OBJECT → a | o | p

DISTANCE → d(OBJECT, OBJECT)

POS → c(OBJECT)

VEL →
d

dt
c(OBJECT)

REL POS → rp(OBJECT, OBJECT)

REL VEL →
d

dt
(REL POS)

REL ACC →
d

dt
(REL VEL)

VECTOR → VEL | REL VEL | REL ACC

SCALAR → DISTANCE | ‖VECTOR‖ | VECTORx | VECTORy

SCALAR− → VECTORx | VECTORy

σM → 0.125 | 0.25 | 0.50 | 1.0 | 2.0 | 4.0

MAG → ↑σM SCALAR| ↓σM SCALAR| ↑+σM
SCALAR−| ↑−σM

SCALAR−

QUAL → holds(MAG)

The first 10 rules constrain the possible combinations of the
operators. The σM nonterminal generates the set of scales
used when applying the soft threshold operators (those sub-
scripted with σ).1 The MAG nonterminal expands to soft-
thresholded magnitude features. The start symbol is QUAL,
which expands to an evaluation, holds(MAG), of all possi-
ble abstract features. The language of this grammar thus de-
fines the set of abstract features, which are the elements out
of which our higher-level verb semantics are constructed.

1We choose six values for σM because they cover a wide range of scales
occurring in practice. For example, we can capture movements as slow as
0.25 pixels/frame and as fast as 8 pixels/frame.

5. Learning Verb Meanings
In this section, we present a formal statement of our

search problem (Section 5.1), reformulate it into a search
over a graph (Section 5.2), and propose an efficient approx-
imation algorithm for finding a solution (Section 5.3).

5.1. A Formal Specification of the Problem

Let us denote byF the set of abstract features (generated
as explained in Section 4), by V the domain of input videos,
and by I the set of time intervals. Given an input video
v ∈ V and a time interval [a, b] ∈ I, we can evaluate any
feature f ∈ F yielding a truth value:2

val : F × V × I → {true, false}

We formally represent a state as a set of abstract features;
the domain of states, S, is thus the power set of F . We in-
terpret a state s as the conjunction of its component features
f : a state evaluates to true iff all its features evaluate to true:

val(s, v, [a, b]) = ∧
f∈s

val(f, v, [a, b])

We represent an event as an ordered sequence of states,
and use R to denote the set of all events, which also speci-
fies the domain of representations for verb semantics:

R = S∗

Such a representation can only match an input video v with
respect to a time partition (because features need to be eval-
uated over a time interval). Let us denote by ∆(v) the set of
all time partitions for video v, defined formally as:

∆(v) = {(t1, t2, . . . , tn) ∈ N∗|t1 = 1, tn = l(v), ti < ti+1}

where l(v) is the length of video v.
A representation r ∈ R matches an input video v for

a partition δ ∈ ∆(v), if the number of time intervals in
δ matches the number of states in r, and the evaluation of
each state on the corresponding time interval yields true:

eval(r, v, δ) =

|δ|
∧

i=1
val(ri, v, [ti, ti+1]) , r has |δ| states

false , otherwise

where ri is the ith state in the representation r. We define
the set of all representations that match a given video as:

Rtrue(v) = {r ∈ R|∃δ ∈ ∆(v), eval(r, v, δ) = true}
2The start symbol of the feature grammar, QUAL, expands to a boolean

expression by application of the holds operator to soft-thresholded fea-
tures. Other means of generating boolean expressions using novel opera-
tors can be added without affecting our algorithm.

The size of a representation is the total number of features
in its states:

|r| =
n∑

i=1

|ri|

We can now reformulate our problem as finding, for a set
of videos V = {v1, . . . , vk}, a representation r∗ of maximal
size which matches all the videos:3

r∗(V) = argmax
r∈∩v∈V Rtrue(v)

|r|

To see if any given r is an element of Rtrue(v), a set of k
partitions has to be determined, one for each input video.
We thus have a two-fold search problem, where we need
to simultaneously search over R and ∆(v). However, it
can be shown that the maximization problem above, due to
the nature of its objective function, can be formulated as a
search over the set of partitions alone. Due to lack of space,
here we only present a statement of this claim without proof.

A tuple of partitions (one from each of the input videos)
having the same length defines an alignment. We define the
set of all possible alignments for a set of inputs as:

A = {(δ1, · · · , δk) ∈ ∆(v1)× · · · ×∆(vk) | |δ1| = · · · = |δk|}

We define the set of all features that hold in input video v
over interval [a, b] as:

F true(v, [a, b]) = {f ∈ F|val (f, v, [a, b]) = true}

For an alignment η = (δ1, . . . , δk), an optimal representa-
tion r(η) can be obtained by intersecting the sets of states
that match the corresponding time intervals in each video:

r(η)i = ∩
vj∈V

F true(vj , [δj,i, δj,i+1])

where [δj,i, δj,i+1] is the ith interval in partition δj . Then,
our optimization problem is equivalent to:

η∗ = argmax
η∈A

|r(η)| (1)

with the optimal solution given by r∗ = r(η∗).

5.2. A Graph Search Formulation

Here, we present a graph search formulation of our
problem. We assume that a set of candidate interval
boundaries—which we call cut points—have been selected
for each input video. (Section 5.3 explains how the cut
points are chosen.)

3We aim for a maximal representation because that captures the most
commonality among the input videos, avoiding a trivial solution of one
state with a single feature, which simply says that the videos, in their en-
tirety, are equivalent—i.e., all depict the same verb.

Consider a set of k training videos, and let Ci be an or-
dered set,

{
c1
i , . . . , c

ni
i

}
, of all candidate cut points in video

vi, with c1
i and cni

i corresponding to the beginning and end,
respectively, of vi. We construct a graph G = (U,E),
where each vertex corresponds to a tuple of candidate cut
points, one from each training video, i.e.:

U = C1 × · · · × Ck

Considering two vertices, ua = (ca1
1 , . . . , cak

k) and ub =
(cb1

1 , . . . , cbk

k), we add an edge e = (ua, ub) if and only if:

ai < bi, i = 1, . . . , k (2)

That is, the cut points corresponding to the video vi in ua

and ub respect the time ordering, such that the cuts in ub

always follow cuts in ua.
G includes two special vertices: ustart = (c1

1, . . . , c
1
k) that

aligns the cuts at the beginning of all videos (with no incom-
ing edges); and uend = (cn1

1 , . . . , cnk

k) that aligns all cuts at
the end of the input videos (with no outgoing edges). Any
path from ustart to uend defines an alignment of the videos.
Furthermore, the set of all such paths covers the entire set
of possible alignments, restricted to using only the candi-
date cut points.

Let P be a path corresponding to an alignment η. In
order to compute the objective function |r(η)| in (1) above,
we assign a weight to each edge e = (ua, ub) ∈ P that
is the number of features that hold over the corresponding
intervals in all videos:4

w(e) =
∣∣∣∣ k
∩

i=1
F true(vi, [cai

i , cbi
i])

∣∣∣∣
It is easy to see that the sum of the weights of all the edges
in P gives the size of the maximal representation r(η) for
the corresponding alignment η. Hence, the longest (maxi-
mum weight) path in G corresponds to the optimal solution
we are looking for. Because G is a directed acyclic graph,
dynamic programming can be used to find the longest path
in time polynomial in the number of vertices. Next, we
present two heuristics for reducing the number of vertices
in the search graph.

5.3. Heuristics for Pruning the Search Space

The complexity of our full optimization problem is pro-
hibitive because the hypothesized interval boundaries (can-
didate cuts) within a partition may appear at any time point
in a video. We use heuristics for selecting a set of promising
cut points, narrowing the search space substantially.

In practice, transitions between states are likely to oc-
cur when local minima or maxima are encountered in the

4To reduce the effect of outliers, in practice, we compute the weight as
the number of features that are true in a majority of the videos.

feature values. Our first heuristic is to reduce the search
space to only these local minima or maxima, which we de-
tect by using a 1D version of the Canny edge detector [2].
This involves applying a derivative of Gaussian filter on the
signal resulting from the evaluation of each feature. Non-
maximal suppression is then carried out for each signal in-
dependently. Finally, the resulting extrema from all signals
are clustered together using robust M-estimation, yielding a
small set of candidate cut points. To bound the complexity
of the subsequent computations, we limit our search space
to the cuts corresponding to the Ncuts largest clusters.

For an average number n of candidate cuts across the
videos, the graph constructed as explained in Section 5.2
has O(nk) vertices. The time for computing the longest
path in this graph is thus exponential in the number of train-
ing videos, O(n2k). The time ordering constraint (2) gen-
erates a total number of edges which is approximately half
the number of vertex pairs. Computing the longest path re-
quires evaluating all the features on all the edges, which is
linear in the number of abstract features, |F|. This gives a
total running time for both generating the graph and com-
puting the longest path of O(|F| · n2k).

The search space can be further reduced by removing
less likely alignments. Our second heuristic is based on the
observation that the pattern of transition of features in the
vicinity of aligned cuts should be similar. We define a cut
profile that encodes the pattern of transition for all features
in video j around a given cut c ∈ Cj . The profile is ob-
tained by computing the slope of the feature values over a
set of different scales. For each scale and feature, we clas-
sify the slope as upwards (an increase in the feature value),
downwards (a decrease in the feature value) or horizontal
(no change). We then take the majority vote on these transi-
tion types over all scales to obtain a single transition pattern
for each feature and cut. A cut profile is the vector of such
transitions for all features.

We label each vertex u = (ca1
1 , . . . , cak

k) with the aver-
age similarity among the profiles corresponding to the cuts
in u. Similarity between a pair of cut profiles is measured
using the Hamming similarity between the corresponding
vectors of discrete transition patterns. We then restrict our
graph to contain only the top T vertices (those with the
highest similarity scores), and search for the longest path
in this new graph. Pruning the original set of O(nk) ver-
tices using a constant number of features (|F|) leads to a
complexity of O(|F| ·nk), a significant reduction in the ex-
ponent from O(|F| · n2k).

6. Experimental Results
We perform experiments on four verbs; for each, we have

a set of monocular videos of persons performing the corre-
sponding manipulative action. The verbs include put, with 8
training videos, and push, pull, and touch, with 10 training

1 2 3

4 5 6

Figure 2. Six equally spaced frames from a video labeled Calden
pushes the cup.

videos each. The contrasting semantic properties of these
verbs allow us to investigate relevant aspects of our system.

We manually segment each video to determine the posi-
tion of the upper limb involved in the action and the torso,
as shown in Figure 2 (avoiding full-body segmentation due
to time constraints). Candidate cut proposals are then gen-
erated for each video. We use a threshold of 0.01 for non-
maximal suppression, a value of σ = 4 for the robust es-
timator, and a value of Ncuts = 9 (including the beginning
and the end of the videos) for trimming the cut points. The
average number of frames per video ranges from 58.2 (for
push) to 102 (for put). The average number of cut points
per video ranges from 6.6 (for push) to 8.4 (for put). Had
it been generated, the size of the full graph using these can-
didate cuts would range from 2.83×106 to 3.61×108 ver-
tices. Using the cut similarity heuristic, we limit our search
to a graph consisting of only the best 1000 vertices. The
solutions we obtain contain three states for push and touch
and four states for pull and put, with an average of 47.3 fea-
tures per state, selected out of a total number of 192 abstract
features generated by our grammar.

6.1. Learned Models of Verbs

We display the semantic representation learned for a verb
in a format as shown in Table 1, where the features are listed
in the column titled FEATURE, and the final states of the
solution are presented in columns titled STATEs. Because
the number of features in a solution may be large, the ta-
ble only presents a subset of them.5 The scalar feature that
is abstracted is indicated in the FEATURE column of the ta-
ble. The abstract features may have had differing scales
(σM) and soft thresholding operators (↑ or ↓) applied. Each
colored rectangle in a STATE cell of the table corresponds
to a different abstract feature whose value of the scale pa-
rameter σM ranges from .125 to 4 (left to right in the table).
The color of the rectangle—blue or red—reflects which soft
threshold operator (↑ or ↓) is selected in the learned model;
a blank rectangle indicates that no commonality was found
for the feature at that scale. For example, the third cell of the

5Features involving accelerations and the ↑+ and ↑− operators are not
shown here for simplicity and space reasons, although they do carry intu-
itive semantic meaning.

Table 1. Semantic representation learned for push.
FEATURE STATE1 STATE2 STATE3

1 d (a, o) ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑

2 d
dt rp (a, o)x ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑

3 d
dt rp (a, o)y ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4
∥∥ d

dt rp (a, o)
∥∥

↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑

5 d
dt c (o)x ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

6 d
dt c (o)y ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

7
∥∥ d

dt c (o)
∥∥

↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Table 2. Semantic representation learned for touch.
FEATURE STATE1 STATE2 STATE3

1 d (a, o) ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑

2 d
dt rp (a, o)x ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↓

3 d
dt rp (a, o)y ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4
∥∥ d

dt rp (a, o)
∥∥

↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↓

5 d
dt c (o)x ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

6 d
dt c (o)y ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

7
∥∥ d

dt c (o)
∥∥

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

first row (Table 1) shows all the abstract features appearing
in state number 2 of the solution, which have been derived
from the relative distance between the agent and the object,
namely d(a, o), through thresholding at different scales.

Consider the first row of Table 1, containing the feature
d (a, o)—the distance between the agent (a) and the object
being pushed (o)—and its values (the color rectangles) se-
lected in each state of the model representation. We can see
that in STATE2, the value of this feature is low (specified
by the red color) at all scales, reflecting that a and o are in
close contact while the object is being pushed by the agent
(frames 3-5 in Figure 2). In STATE1 and STATE3, there is
a non-zero distance between a and o, as shown by the blue
color at small scales (frames 1, 2, and 6 in Figure 2).

The values of the last three features (the velocity of o)
show that the object is not moving in the first and the fi-
nal states, but it makes a horizontal movement at a slow,
and bounded, speed (blue color at small scales, red color at
large scales) during the second state (while being pushed by
a). Looking at the values of the second and fourth features
(the horizontal speed of a relative to o), we can see that
in STATE1 and STATE3, a is moving (recall from the above
explanation that o is not moving)—although the speed is
considered high only at smaller scales (up to .5).

To summarize, the three states of the learned model for
push correspond to the following: The agent comes into
contact with the object (o is stationary, while a is moving
relative to o in STATE1), the agent pushes the object (a and
o move while in contact in STATE2), and finally the agent is
no longer in contact with the object (o is stationary, while a
is moving relative to o in STATE3). For the verb pull (not
shown here), the semantics is very similar to push, with

the exception that an intermediate state is present which en-
codes that there is a time interval in which both the agent
and the object are at rest. The semantics of touch resem-
bles that of push and pull (see Table 2); its distinguishing
properties are discussed below. For the verb put (also not
shown), the model naturally describes the agent holding the
object (STATE1 and STATE2), the object reaching its final
location (STATE3), and finally the agent releasing the object
(STATE4). The first two states differ only in that humans in
our videos tend to move the object faster at the beginning
and then slower just before reaching the target place.

6.2. Analysis of the Learned Models

Many regularities of the training data are reflected in the
model semantics learned for the four verbs. State 2 for push
is an example where the system has bounded the speed of
the object being pushed both from below and above, lock-
ing on the range of speeds at which the human subjects have
executed the event (row 7 of Table 1). Also in the second
state of push, the system has detected a horizontal move-
ment as part of the model semantics because all our ob-
jects are pushed on a horizontal surface (row 5 of Table 1).
Such “accidental” regularities in the training set will be cap-
tured by the solution. However, as more training videos are
added, such regularities are less likely to persist across the
entire data set, and will be factored out as the search for
commonality is driven to higher levels of abstraction.

Conversely, there are cases where the learned models are
too weak. For example, in the case of put, the proximity
of the object to the target place at the final state is missed
because no appropriate scale can be found (in the provided
range) at which all (or most) videos show a similar pattern.

Comparing Tables 1 and 2, we see that the system suc-
cessfully distinguishes between push and touch in the differ-
ent values of the fifth and seventh features. In STATE2, the
representation of push includes movement of the object (the
blue rectangles for these features), while the representation
of touch has no movement (all red rectangles for those fea-
tures). However, for push and pull, our system fails to iden-
tify a discriminating feature that reflects the direction of the
movement of the object relative to the agent (in both cases
the hand and the object move while in contact). This reveals
an insufficiency in our feature space, which we need to aug-
ment with an operator for projecting the velocity of an ob-
ject onto its relative position with respect to another object,
indicating motion toward or away from the other object.

7. Conclusions

We have presented a graph theoretic formulation for
learning the motion/interaction semantics of a verb from
captioned training data. Our approach is novel in two im-
portant ways: we assume neither knowledge of the num-

ber of states representing an action nor that the training
videos necessarily share some subset of input features. De-
termining the meaning of a verb may require searching an
intractable space of abstract features for the lowest com-
mon abstraction capturing the maximum degree of regular-
ity across the training examples. Focusing on feature dis-
continuities across scales, we effectively reduce this search
space, yielding approximate solutions successfully demon-
strated on four verbs. We currently are working on two
extensions: modifying our learning algorithm to support
classification of a video (to enable automatic annotation),
and simultaneously learning the semantics of verbs (mo-
tions/interactions) and nouns (object appearance/shape).

8. Acknowledgements
We are grateful to NSERC, OCE and Idée, Inc. for fi-

nancial support, and to Yulia Eskin and Calden Wloka for
helping us generate and annotate the videos.

References
[1] A. F. Bobick and J. W. Davis. The recognition of human

movement using temporal templates. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 23:257–267, 2001.

[2] J. F. Canny. A computational approach to edge detection.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
8:679–714, 1986.

[3] T. Darrell and A. P. Pentland. Space-time gestures. In CVPR,
335–340, 1993.

[4] A. Fern, R. Givan, and J. M. Siskind. Specific-to-general
learning for temporal events with application to learning
event definitions from video. Journal of Artificial Intelli-
gence Research, 17:379–449, 2002.

[5] G. Guerra-Filho and Y. Aloimonos. A language for human
action. IEEE Computer Magazine, 40:60–69, 2007.

[6] A. Hoogs, J. Rittscher, G. Stein, and J. Schmiederer. Video
content annotation using visual analysis and a large semantic
knowledgebase. In CVPR, 327–334, 2003.

[7] Y. Ivanov and A. Bobick. Recognition of visual activities and
interactions by stochastic parsing. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 22:852–872, 2000.

[8] Y. Keselman and S. J. Dickinson. Generic model abstrac-
tion from examples. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 27, 2005.

[9] J. M. Siskind and Q. Morris. A maximum likelihood ap-
proach to visual event classification. In European Confer-
ence on Computer Vision, 347–360, 1996.

[10] D. Weinland, R. Ronfard, and E. Boyer. Free viewpoint ac-
tion recognition using motion history volumes. Computer
Vision and Image Understanding, 104:249–257, 2006.

[11] J. Yamato, J. Ohya, and K. Ishii. Recognizing human ac-
tion in time-squential images using hidden markov model.
In CVPR, 379–385, 1992.

[12] A. Yilmaz and M. Shah. A differential geometric approach to
representing the human actions. Computer Vision and Image
Understanding, 109:335–351, 2008.

