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Abstract— Given an unstructured collection of captioned im- bottom-up grouping hints, it is a nearly hopeless task tamglie
ages of cluttered scenes featuring a variety of objects, owyoal meaningful feature configurations from a single image-ioapt
is to simultaneously learn the names and appearances of the pair. Given acollection of images, however, one can look for

objects. Only a small fraction of local features within any dgven patterns of features that appear much more often than edpect
image are associated with a particular caption word, and cafions . :
may contain irrelevant words not associated with any image by ghancg. Usually, though, oqu a fr.actlon of these rengrri
object. We propose a novel algorithm that uses the repetitio of ~ configurations correspond to salient objects that arenefen by

feature neighborhoods across training images and a measue words in the captions. Our system searchesrfeaningfuffeature
correspondence with caption words to learn meaningful featre  configurations that appear to correspond to a caption woamF
configurations (representing named objects). We also intrduce these starting points it iteratively constructs flexiblepe@rance
a graph-based appearance model that captures some of the ,o4els that maximize word—model correspondence.

structure of an object by encoding the spatial relationshis Our aporoach is best-suited to learing the appearance of
among the local visual features. In an iterative procedure & ur-app : ul Ing Pp

use language (the words) to drive a perceptual grouping prazss objects distinguished by their structured, logos or landmarks)
that assembles an appearance model for a named object. Retsul rather than their color and texture.g, tigers or blue sky). By
of applying our method to three data sets in a variety of detecting the portions of an object with distinctive struiet
conditions demonstrate that from complex, cluttered, reaworld  we can find whether the object is present in an image and
scenes with noisy captions, we can learn both the names andynere (part of) the object appears, but we do not determe it
appearances of objects, resulting in a set of models invaria full extent. Therefore our system is appropriate for antima

to translation, scale, orientation, occlusion, and minor banges but onlv limited localizati 0 ific f . lei
in viewpoint or articulation. These named models, in turn, ae  Put ONly limited localization. Lur Specific Tocus IS on e

used to automatically annotate new, uncaptioned images, éneby ~ Correspondences between the names and appearances ofsgxemp
facilitating keyword-based image retrieval. objects from relatively noisy and complex training dataheat

than attempting to learn the more highly-variable appezrasf
object classes from less ambiguous training sets. Howexer,
framework and the structure of our appearance model argrossi
to learn to recognize any objects that appear as multiples fpar
a reasonably consistent configuration. We therefore beltbat
Manual annotation of new images in large image collectiongith the right choice of features, our framework could bepedd
is prohibitively expensive for commercial databases, anetlp to learn the appearance of object classes such as carspiets,
time-consuming for the home photographer. However, lost-comotorcycles.
imaging, storage and communication technologies havedjre
made accessible millions of images that are meaningfubpés
ated with text in the form of captions or keywords. It is teingt
to see these pairings of visual and linguistic represemtatias  The literature on automatic image annotation describesge la
a kind of distributed Rosetta Stone from which we may leamumber of proposals [1], [3]-[8], [10], [12], [13], [17], &1,
to automatically translate between the names of things eid t [21], [23]. Like our previous efforts ([15], [16]) and the wo
appearances. Even limited success in this challengingegrojpresented here, these systems are designed to learn nfekning
would support at least partial automatic annotation of meages, correspondences between words and appearance models from
enabling search of image databases by both image featudes @nttered images of multiple objects paired with noisy @aps,
keywords that describe their contents. i.e., captions that contain irrelevant words.
Any such endeavor faces the daunting challenge of the percepMany of these approaches associate a caption word with a
tual grouping problem. Regardless of the type of image featuprobability distribution over a feature space dominatedcbior
used, a word typically refers not to a single feature, but to and texture (though the set of features may include position
configuration of features that form the object of interesteT [1], [6], or simple shape information [2], [12]). This typef o
problem is particularly acute since any given image mayaiant representation is less reliant on perceptual grouping ¢hahape
multiple objects or configurations; moreover, the meanihgfmodel or a structured appearance model because color gndetex
configurations may be easily lost among a huge number afe relatively robust to segmentation errors and the coraiigun
irrelevant or accidental groupings of features. Withodissantial of features is not critical. This type of representation igcad
fit for relatively structureless materials such as grasad sar
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in articulation and pose that the structure is difficult teadirn in method makes these structured appearance models moreaappli
2D images. However, highly structured objects, such aslingis ble to automatic image annotation by relaxing that constrai

and bicycles, that may lack distinctive color or texture nsajt While many structured appearance models use features de-
be recognized if individually ambiguous parts of appeagacan signed for object classes, our system uses features thdteate

be grouped together into a meaningful configuration. suited to learning the appearance of exemplar objects (aach

A number of researchers have addressed the problemsSéf Paul's Cathedral) rather than a broad class of objectsh(s
perceptual grouping and learning of configurations in aafilen aS cathedrals in general). The world is full of exemplarg an
annotation. For instance, Barnaet al. [2] acknowledge that there has been a great deal of work in sorting and annotating
coarse granularity features, such as regions, may be gvers@xemplar images, such as the method proposed by Sieton
mented during feature extraction and propose a rankingnsehe@l- [24] for organizing collections of related photographsoint
for potential merges of regions based on a similarity of wordabeled canonical views. While our current detection metf
region associations. It is possible, however, for differparts Not as scalable as high-performance exemplar image reftriev
of an object to be associated with very different words, arfystems such as that proposed by Philetnal. [22], our use
hence such an approach is problematic for grouping the tbje®f language can improve text-based querying and link tageth
parts in such cases. In a similar vein, Quattenial. [23] use Widely different appearances or views of a single exemplar.
the co-occurrence of caption words and visual features tgene The proposed learning algorithm here is an extension and a
together “synonymous” features. This lowers the dimeraign refinement of the algorithms presented in our previous work,
of their bag-of-features image representation and thezeftiows [15], [16]. In [15] we represented appearance as an unstemtt
image classifiers to be trained with fewer labeled exampldgcal collection of features and used a translation modéfinit
Such a system, which models visual structure as a mixture @¥respondences between words and appearance. In [16ded ad
features, can represent complex objects as the co-occerein SPatial relationships to the appearance model and intemtliac
distinctive parts within an image [6], [8], [13], [17], [21]23]. More direct word—model correspondence measure. Here tie in
However, these models contain no spatial relationshiper(evduce a novel unified framework for evaluating both the gosdne
proximity) between parts that would allow them to represems ©Of & detection and the appropriateness of associating teetm
part configurations. Carbonettt al. [7] use a Markov random With a caption word. We have also modified the improvement
field model that can successfully recognize a set of adjacéRgchanism to learn more spatial relationships betweemriest
regions with widely varying appearance as being associaitd and present extensive new evaluation and analysis.

a given word. Their method is not capable of learning stmectu
configurations of features, however, since the spatiatiogiships B. An Overview of Our Approach

between the object parts are not part of the learned regior-w  The goal of this work is to annotate exemplar objects appgari
pairings. The multi-resolution statistical model propbs®y Li in images of cluttered scenes, such as the images shown -n Fig
and Wang [19] can represent configurations of visual featurgre 1(a). A typical such image, with hundreds (or even thodsp
across multiple scales. However, the system does not perfogf |ocal features, contains a huge number of possible featur
grouping, as each semantic class is associated with a ldyout configurations, most of which are noise or accidental grugsi
the entire image, where the division into parts is predefineg complex configuration of features that occurs in many insage
Other work avoids the perceptual grouping problem by fawsi js unlikely to be an accident, but may still correspond to €om
on domains where there exists detailed prior knowledge ef thyon elements of the background or other unnamed structures.
appearance of the objects of interest, as in the task of matchThe only evidence on which to establish a connection between
names with faces [4]. Our work focuses on using correspareen words and configurations of visual features is their co-oence
between image features and caption words to guide the giQuphcross the set of captioned images. The key insight is thgt th
of image features into explicit, meaningful configurations evidence can guide not only the annotation of complex featur
Methods for grouping individual features of various type®i configurations, but also the search for meaningful configpma
meaningful configurations are reasonably common in thedenoa themselves. Accordingly, we have developed a novel algorit
object recognition literature. For instance, Fergusl.[14] learn that uses language cues in addition to recurring visuakepett
object appearance models consisting of a distinctive $uliise to incrementally learn strong object appearance models fao
local interest features and their relative positions, bgking collection of noisy image—caption pairs (as in Figure I)a-c
for a subset of features and relationships that repeat @a@osThe result of learning is a set of exemplar object appearance
collection of object images. Crandall and Huttenlocher] [dde models paired with their names, which can be used for aringtat
graph models in which vertices are oriented edge templatbsr similar objects in new (unseen and uncaptioned) imagesnalea
than local feature detections, and edges represent spalial annotation is shown in Figure 1(b).
tionships. Sharing elements with both of the above appemch The overall structure of our proposed system is depicted in
our appearance models (carried over from [16]) are coblesti Figure 2. The system is composed of two main parts: a learning
of distinctive local interest features tied together in apyr in component, and an annotation component. Both componenmks wo
which edges represent constrained spatial relationshtps.type with a particular representation of the images and objeutsl,
of representation is sufficiently flexible to handle ocamsiminor use the same algorithm to detect instances of an object model
changes in scale and viewpoint, and common deformationdeWhn an image. Details of our image and object representation,
both [14] and [11] can learn an appearance model from veag well as the detection algorithm, are presented in Sedttion
noisy training images, the methods (like most object reitimgn The two stages of the learning component, including methads
systems) require training images in which a single object ekpanding and evaluating appearance models, are elatharate
the desired category occupies a large portion of the image. On Section Ill. Finally, in Section IV, we present the anrima
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this way is a reliable descriptor of the object appearanck&in
the same time flexible enough to handle common deformations.
Details of our choices for the representation of images jelts

are given in Sections II-A and II-B, respectively. Given djext
model (in the form of a graph), we need a method for detecting
instances of the object in an image—that is, to find a matching
between model vertices and local image features. Our detect
algorithm is presented in detail in Section II-C.

Mats Sundin of the Toronto Maple Leafs Toronto Maple Leafs vs. A. |mage Representation
misses a scoring chance against Ryan Miller Montreal Canadiens. . . .
of the Buffalo Sabres. We represent an image as a getf local interest pointe,,

(b) i.e, I = {pm|m = 1...]I|}, referred to hereafter as points

3 or image points. These points are detected using Lowe’s SIFT
method [20], which defines a poipty, in terms of its Cartesian
position x,,,, scale),, and orientatiord,,. In addition to spatial
parameters, for each point we also extract a feature vefgtor
that encodes a portion of the image surrounding the pointeSi
f,, is extracted relative to the spatial coordinatespgf, it is
invariant to changes in position, scale and orientationil&Wbur
approach is not dependent on a particular point detectichade
or feature encoding, we use the PCA-SIFT feature encoding
developed by Ke and Sukthankar [18] because it allows for
fast feature comparison and low memory requirements. This

Florida's Olli Jokinen gets bumped “Maple Leafs” ” " o .

by Alexei Ponikarovsky of the Maple feature encoding is reasonably robust to lighting changesor

Leafs. deformations and changes in perspective. Since individaalires
(©) (©) capture small, independent patches of object appearahee, t

overall representation is robust to occlusion and artt@a
Fig. 1 (a-c) A sample input image—caption collection, veheach ir_nage The continuous feature vects, is supplemented by a quan-
contains hundreds of local (SIFT) features (yellow crossesom the input . . . . .
training collection, associations between structuredsstsbof local features tized descriptor,,, for each image point, in order to support the
and particular nouns are learned. (d) A sample output of psiem, where ability to quickly scan for potentially matching featuréllow-
the object (the Maple Leafs logo) is detected (shown with femtures and ing Sivic and Zisserman [25], we use the K-means algorithm to
green“ relationships in a _yellow box), anq annotated withnédme (“M'ap_le generate a set of cluster centafsy= {f.|c = 1...|C|}, from a set
eafs”). The annotation is performed using a word—appe&araassociation ;
discovered from the training image—caption collection. of features randomly selected from a stock image collecfitre
index of the cluster center closestfig is used as the descriptor
cm associated withp,,.
component, demonstrating the promising performance of ourin addition to describing each point individually, we also
system in discovering meaningful word—appearance pairs.  attempt to capture the local spatial configuration of poirging
neighborhoods that describe the local context of a pointchEa
Il. REPRESENTING ANDMATCHING OBJECTS point p,,, is associated with a neighborhoagl, that is the set of
Our learning framework allows a one-to-many relationshifis spatially closest neighboys,, according to the\z,,., distance
between words and appearance models. It is thus not neges#agasure taken from Carneiro and Jepson [9]:
that a single model capture object appearance from all Iplessi [%m — ||
viewpoints. Moreover, since we deal with exemplar objeots, Armn = min (o, ) (1)
method need not handle the changes in texture and structural ’
detail that are possible within a class of objects. In ordegserve This normalized distance measure makes neighborhoods more
as a robust object detector, however, it is important thatap- robust to changes in scale, as newly-introduced fine-saaif@sp
pearance model representation be invariant to reasonhhteges are less likely to push coarse-scale points out of the neigtuod
in lighting, scale, orientation, articulation and defotina. The Wwhen the scale of an object increases.
representation must also be reliably detectable, in o@ewoid To summarize, each image is represented as a set of points,
false annotations. I = {pm|lm = 1...|I|}, in which p, is a 6-tuple of
We represent our images using easily-extractable locatéat the form (£, xm, Am, 0m,cm,nm). In addition, a vector of
features that can be used reliably to detect exemplar abjact transformation-invariant spatial relationships,, is defined be-
highly cluttered scenes. We represent small patches ofséarice tween each pair of neighboring poings,, andp,, including the
of an object using such local features, and capture its tsireic relative distance between the two point&a(,,), the relative
using the pairwise spatial relationships between the patdfrom scale difference between them X,..».), the relative heading from
the object instances, we then construct an abstract ohjpeaa- pn, to pn (Admn), and the relative heading in the opposite di-
ance model in the form of a graph, by modeling the recurrergction (\¢y.m). That is,rmn = (AZmn, Admn, Admn, Adnm),
local features as vertices and the recurrent spatial oalsttips where the spatial relationships are taken from CarneiraJapdon
between pairs of local features as edges. The model thatlis b[9], and are calculated as in Equations (1) above, and (2)X2)nd
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Images

Fig. 2. A pictorial representation of our system for leagnand annotating objects.

below: from the corresponding parameters of the images (pointstand
Am — An spatial relationships between them) through an iteraticegss
Admn = min(Am, An) () of model construction and detection (see Sections II-C #ijpd |
_ -1
Admn = Ag(tan” (xm —xn) = 0m) G c Detecting Instances of an Object

where Ay (.) € [, +x] denotes the principle angle. The spatial We use a heuristic algorithm that searches for high-conéielen
relationships are not part of the stored image representalbut instances of an appearance model in an image. Though each
are calculated on demand when object appearance models raoglel is intended to robustly describe an object’'s appeatam
being built (see Section 11-B) or detected (see Section)ll-C  observed instance of an object is expected to fit its modadtlyxa
Deformation, noise, and changes in perspective can difitert
features encoded at points and/or the spatial relatioadigpween
them. Our detection algorithm should thus be capable ofrindi
BArtial matches of a model (representing some visible part o
an object). At the same time, the algorithm should distislyla

B. Object Appearance Model

An object model describes the distinctive appearance of
object as a particular set of local features that have a reless

structured arrangement. We represent this structuredgeoafion partial match which has only a few observed vertices from an

of features as a grapl = (V, E). Each vertexv; € V IS gecidental collection of background elements. Our alforithus
composed of a continuous feature vectgrand a cluster index gggigns, to each observed instance of a model, a confideore sc
vegtorci containing indiceg fqr théc;| nearest cluster cgnters tOthat meets the above requirements, thereby determiningwresiv
fi, i.e, v; = (f;,¢;). Associating each model vertex with a sefne instance fits the model. Below we first explain our profose
of clusters allows for fast comparison of features duringdeio yetection confidence score, and then present the detailsirof o
detection while minimizing the effects of quantizationsmiNote yataction algorithm.
that model vertices, unlike image points, do not includetiapa 1) Detection ConfidenceAn observed instanc® of an ob-
information {.e., position, orientation, and scale), because tr]gct appearance model is a set of vertex—point associations,
model must be invariant to translation, rotation, and sda&eh 5 _ {(vi,pm)|vi € V,pm € I}, where O defines a one-to-one
edgee;; € E encodes the expected spatial relationship betweg{hnping between a subset of the model vertices and sometsubse
two verticesv; andvj, in four partsie;; = (Azij, AXij, Adij,  of points in an image. Our detection confidence score defines
A¢;;) (as defined in Equations (1)—(3) above). the goodness of fit between a modgland an observatio® as

We assume objects are spatially coherent, and hence twoyneahe |ikelihood of O being a true instance af and not a chance
points on an object are expected to be related non-acclentaconfiguration of background features. Lt be the hypothesis
i.e, through a geometric relation. Thus in our framework onlyhat O is a true instance of the appearance madekwhile Hp
a connected graph is considered to be a valid object appEarag the competing hypothesis thet is a chance assortment of
model; edges are allowed between any pair of vertices (ausl trbackground features. Thietection confidencs:
models are not restricted to trees). Models that can endbtieea

non-accidental relationships between pairs of nearby énpeints Confgerect(0,G) = P(Hg|O) (4)
are generally more distinctive, and more robust to occtusiod _ p(OlHg)P(Hg)
inconsistent point detection, than models that are résttito p(O|Hg)P(Hg) +p(O|Hp)P(Hp)
trees. wherep(O|Hp) is the background likelihood a, andp(O|Hg)

The parameters of a model's vertices &nd c;) as well as is the model likelihood ofD. We useP(.) to indicate probability
those of the edgesNz;;, A);;, Ag;;, and A¢;;) are calculated functions andp(.) to indicate probability density functions.
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The above equation can be rewritten as: with probability ap.* In matching an image point,, to a model
p(O|He) P(Hg) vertex v;, we do not require the feature vectéy, of p,, to

Conf goroet (0, G) = p(OlHp) P(HE) (5) be precisely equal td;, but we assume that,, is normally

’ p(O|Hg) P(Hg) | 4 distributed with mearf; and standard deviation;. This vertex

p(OlHz) P(Hz) feature deviatiorv ¢ is approximately equal to the background's

Thus the detection confidence can be calculated from the prigean cluster variancez. While a graph vertex; € V defines

likelihood ratio, P(H¢)/P(Hp), and the observation likelihood {he expected feature vector of a model observation, a graph

ratio, p(O|Hg)/p(O|Hp). The prior likelihood ratio is set 10 @ gqgec,;: ¢ I defines the expected spatial relationships between

fixed value, empirically determined from experiments on &-he artain pairs of observed points. P contains observations

out s_ubset of the training data (see t_he App_endix). Next, W8:, pm) and (vj,pn) and e;; € E, then the elements of the

explain how we estimate the observation likelihood rationfr - gpatia) relationship.,, are independent and normally distributed

a set of training image-caption pairs. o with means (Az;;, AX;;, Agij, A¢;;) and standard deviations
The background likelihood of an observation(i.e., p(O|Hg)) (02,05, 04,04). If the model does not specify a relationship

is independent of the mode! and depends only on the features,anyeen the verticesef; ¢ E), then the elements of,,, are

f of the observed points and their spatial relationships.. gistributed according to the background hypothesis.

In other wordsp(O|H) can be estimated from the background grom the above formulations for the background and model

feature probability.p(fm|Hz), and the background distributionjiyelihoods of an observation, we can calculate the obsierva

of spatial relationshipsy(rmn|H ). p(fm|H ) reflects how com- ivelihood ratio as:

mon a feature is across a set of stock images with a wide yanfet

objects, whilep(rmn|H p) reflects the distribution of relationships

observed between neighboring points across the stock isgige p(OlHg) _ H (1—aw) H aw p(Em|fi) H p(rmnlei;)
According to the background hypothesis, all point featurB(O1115) v €0 (vi.pm) €0 p(fm|HB)ew inoP(rmnHB)

vectors f,,, are i.i.d. (independent and identically distributed). 9)

While some local features represent one of a few very commuwhere p(fn|f;) and p(rmnle;;) reflect how well the observed

visual patterns, other local feature values are quite rargl points and their spatial relationships match the valuesetel by

therefore more distinctive. A Gaussian mixture model (GMMbhe appearance modél (as explained in the paragraph above).

allows us to approximate such a structured background rieatWVe consideg;; to be inO if both (v, pm) € O and(v;, pn) € O.

distribution: Note that the observation likelihood ratio takes into actahe
Is] size of the observed and unobserved portions of the model,
p(fm|Hp) = ch.n(fm|fc7gc) (6) the background likelihood of the observed features andiapat
—i relationships, as well as how well the observed points aatiap

relationships fitG.

where w. is a weight term = 1) and n(f,|f., is i . . .
c g L we ) (fm|fe, o) 2) Detection Algorithm: To detect an instance of an object

a multivariate normal distribution with meaft and diagonal ) ) i . ) D
covariance values2. Each mearf. is a member of the cluster model in an image, we need to find a high-confidence assatiatio
c.

centroid set”, found using K-means as explained in Section [[P€Ween the model vertices and image points. Given thatieatyp

A above. Given these fixed means, the weightsand standard image c_ontgins thougands C_’f points, _determining the optima
deviationss. are determined using tHel7 algorithm on the same @ssociation is potentially quite expensive. We thus prepas
(large) set of stock images that we use to find clusters.ifhis 9'€€dy heuristic that efficiently searches the space ofilpess
approach provides a smoother background feature distibut @ssociations for a nearly-optimal solution. Ir?dlwduartutes of
than using the statistics of the K-means clusters direatly s 2 model may.be unobserveelg, due to occluqon), gnd therefore
less computationally expensive than full GMM clustering. some edges in the model may also not be instantiated. Our-dete

According to the background hypothesis, all spatial refehip tion heuristic thus allows for a connected model to be msised
vectors rmy between neighboring points are also i.i.d. Sinc@s disconnected components. To reduce the probability Isé¢ fa

histograms of relative distanca ) and relative scaleXAmr) def[ectlons, the search for dlsc.onnected.parts is gonflngdeto
are unimodal in the stock set, we model them with a noer?'ghborhOOd of observed vertices, and isolated singlptonts
are ignored. That is, in a valid model instance, each obderve

distribution: . )
vertex shares a link with at least one other observed vertex.
pP(Azmn|Hg) = n(AZmn|pzp,0zB) (7) Also, our detection algorithm only reports those obseoveti
p(AdmnlHg) = n(Admnlprg,orB) (8) O with a detection confidence greater than a threshok,

o Conf jetect (0, G) > T, We setT, to be quite low so that
where the meansu(z and ;\) and standard deviations{(z  potentially meaningful detections are not overlooked.
ando) p) are the sample statistics for pairs of neighboring points a|gorithm 1 presents the greedy heuristic that detectsiress
in the stock image set. For the two relative heading teiis:{n,  of an appearance modelwithin the image representatian The
A¢nm) we did not observe any tendency to a particular valug:tyal implementation can detect more than one instanag of

g! tths tSt(;)Ck image set, hence we model them as uniformyinin 1 by suppressing points in previously detected instances.
istributed.

Calculation of the model likelihood of an observation, More accurately, we treat, not as the empirically observed probability
p(O|Hg), is more complex, since the components of the appe@f.mode_l vertex survival, but rather as \_Nhat we would likeoitbe (i.e., as a
ance model are not identically distributed. In order to amto User-defined parameter to guide detection). We chase= 0.5 because it is

. . a reasonable compromise between a highwhich requires that almost all
for model vertices that are occluded or lost due to incoestst ejements of a model be reproduced, and a tawwhere a great majority of

interest point detection, we assume each verstex V' is observed the model vertices can be absent with little impact on disteatonfidence.
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The first step is to find the set of potential associations betweenA. Word—Appearance Correspondence Confidence

image points and model vertices, that is, all vertex—po@itp  Here, we explain the word—appearance correspondence score
whose match(fi.|f;)) is higher than expected by chance. Thgsed by our learning algorithm. The learning algorithm seggirs
algorithm then calculates the set of potential model edybsk-  of words and appearance models that are representatiof of t
ing these vertex—point pairs. The set of observed correpwes, same object in different modalities (linguistic and viguale

O, is assembled across several iterations by greedily adti®g 3ssume that both the word and the model instance are present
vertex—point pairs frorpd that maximize the detection confidencej gn image because thabject is present. We thus define the
Conf gerect (0, G). Each timeO is expanded, elements of and  correspondence score as a measure of confidence that a given
L that are incompatible with the current observed set areqitungppearance model is a reliable detector for the object resfer
away. The greedy expansion of continues until there are noo py a word. In other words, the correspondence score reflect
available correspondences that could inCre@sef je;c..(O,G).  the amount of evidence, available in a set of training images
that a word and an object model are generated from a common
underlying source object.

Algorithm 1 Detects instances a¥ in I

FindModellnstanceg, /) Consider a set of (training) captioned images. We represent
1) Find the setA of all potential vertex—point associations:  the occurrence pattern of a worgdin the captions of these images
A = {(vi,pm) | em € ci, p(fm [£:) > p(fm|HB)} as a binary vector,, = {r.;|i = 1,...,k}. Similarly, we use a
2) Find the setC of all potential links between elements df binary vector,qc = {qq;li = 1,...,k} to indicate, for each
L = {((vi;pm), (vj,Pn)) |Pn € N, P(rmnlei;) > training image, whether it contains at least one true olasienv of
p(rmn|Hp)} model G. However, even if we detect modél in the i'” training

3) Set the initial instanc® to the pair{(vi, pm), (vj, pn)}, such

, - image, we cannot be certain that this is a true observatio@ of
that the link ((vi, pm), (vj,pn)) € £ and Conf jetect (O, G) IS g

(ga: = 1) instead of a random assortment of background features

maximum. . .
4) Remove(v;, p.) from A if either v; or p,, are part of another (¢ci = 0). Therefore, we treac; as a hidden variable and
vertex—point associatiog O. o o associate it with an observed valug;; € [0, 1], that reflects the
5) Remove((vi, pm), (v, pn)) from L if neither end is inA. likelihood of modelG being present in imagie We seto; to the

6) Ie_leetn;tarﬁ gfeothe subset aft that is linked throughC with an o vimum of the detection confidence SCOMsAf gorees (O, G),

7) If A, contains associations that could increas@Ver all the detected instances of a given object madeh a
Conf gerect (0, G), add to O the association that leads to9iven imagei.

the greatest increase, and go to step 4. It is always possible that the word occurrence pattegn,and
8) Let L,.ign be the subset of within the union of the neigh- the observed confidence pattesy; = {o¢;li = 1,...,k}, are
borhoods of observed points @. independent (the null hypothesis #i). Alternatively, instances

9) If Lyeign contains observed links that could increase . -
Conf gerect (O, G), add toO the pair of associations with the of the wordw and modelG may both derive from a hidden

link that produces the greatest increase, and go to step 4. common source object (the common-source hypothesid ©y.
10) Return(O, Conf getect (O, G)). According to Ho, some fraction of image—caption pairs contain
a hidden sources, which may emit the wordw and/or the
appearance modeli. The existence of the appearance model
I1l. DISCOVERINGWORD—APPEARANCEASSOCIATIONS in turn influences our observed confidence values;. We

We propose an unsupervised learning algorithm that build€fine the correspondence betweenand G as the likelihood
structured appearance models for the salient objects dpgaa I (Hclrw,0¢), and rewrite it as in Equation (11) below:

a set of training image—caption pairs. Salient objectsfase that conf .. (G, w) = P(Ho|rw,oq) (10)
appear in many images, and are often referred to in the cegptio p(rw, oc|Ho)P(He)
Because each image contains many features of non-saligttsb = p(tw, oc|Ho)P(Hc) + p(rw, oc|Ho) P(Ho)

and each caption may contain words irrelevant to the digplay ]

objects, the algorithm has to discover which image featares where:

words are salient. The algorithm learns object models tfirou p(rw,o¢|He) HZP(si)P(rwi|si)p(oGi|si) (11)
discovering strong correspondences between configusatibui- P8

sual features and caption words. The output is a set of appear p(rw,oc|Hy) = H P(rw;) ploc:) (12)
models, each associated with a caption word, which can ba& use i

for the annotation of new images. _ ~__ wheres; € {0,1} represents the presence of the common source
The learning algorithm has two stages. First, an initiéi@ , jmage—caption pairi. To calculate the likelihoods of the

stage determines a structured seed model for each captigh W@hserved confidence values under the two competing hypsthes
by finding recurring neighborhoods of features that als@cwur ((ocils;) and plog;)) we marginalize over the unobserved
with the word. Second, an improvement stage iterative\a8®s \,5riable GGt

i

each initial seed model into an appearance model that cavers

larger portion of the object of interest, and at the same fisne plogilsi) = plogilac: =1)P(qGi = 1|si)
more strongly associated with the corresponding captiordwo +p(ogilagi: = 0)P(qa; = 0]s;) (13)
The two stages qf learning use a novel measure of correspoqde . ploci) = plocilici = 1)Pgai = 1)
between a caption word and an appearance model, which is
+p(ogilaci = 0)P(qci = 0) (14)

explained in Section IlI-A. We then explain the initializat and
improvement stages of the learning algorithm in Sectioh® 1l where we choosg(og;i|gg; = 1) to be proportional to the detec-
and llI-C, respectively. tion confidenceong; (hencep(og;lgg; = 0) will be proportional
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to 1 — og;). The intuition is thatog; is usually high when the  The initialization module measures the association baiwee
model G is present in image, and is low when the model is noteach caption wordwv and neighborhood clustel, using the
present. correspondence confidence score of Equation (11) abawe,

To get the likelihood of observed data undéy;, defined in  Conf cor (N, w).2 We assume that occurrences of a neighborhood
Equations (11) and (13), we also need to estimate the pagasnetluster\ that has a better-than-chance correspondence to a word
P(s;), P(rwilsi), and P(qg;ls;)- Plrwilsi) and P(gails; = 0)  w may spatially overlap the object referred to oy We therefore
are given fixed values according to assumptions we make abeatect for each woray the 20 neighborhood clusters/ with the
the training images, which we elaborate on in the Appendistrongest correspondence score and attempt to extractefamim
P(s;) andP(qg;|s; = 1) are given maximum likelihood estimatescluster a seed appearance model with the best possible- corre
(MLEs) determined using expectation maximization over thgpondence withw. Since the simplest detectable and structured
training data. The MLEs for parameters unddp are more appearance model is a single pair of linked vertices, weckear
straightforward. P(r,,;) in Equation (12) is the observed prob-for two-vertex seed appearance modélshat could explain the
ability for word occurrence in the training data whil&(¢c;) is presence of frequently-occurring point pairsAif and that also

the inferred probability of model occurrencg;,; og; /. have strong correspondence with
Two neighboring points are considered to be a pair in a
B. Model Initialization neighborhood clustek if at least one end of the pair belongs to

The goal of the model initialization stage is to quickly find®"€ of the neighborhoods iW. We extract groups of “similar”

for each word a set of seed appearance models that are Ifruiﬁairs inA, i.e, those that sha_lre t_he Same appearance clustgr pairs
starting points for building strong object detectors. katiee seed me’ cn)- tEa(t:.hlsthh groturP is viewed as a sde;] O,i observt?nons
object models are iteratively expanded and refined intetaagd or a potential two-veriex appearance mo or eachp

more distinctive appearance models using image captiors a&"th men&_be_rs appearnng in morgz lthanhone f|mage, we dpropo_sel
guide. The existence of good starting points strongly &ffelee Up 1020 distinct appearance models whose features and spatia

final outcome of the iterative improvement process. Noretize relationships are randomly drawn (without replacememinfthe

a balance must be reached between time spent searchingoir gﬁairs inP. For each mode(z, we calculate a score that reflects

seeds and time spent in the improvement stage refining this.se ow well Pbsuppo.rts mpdeb‘, by treating thek pairs in the
The most straightforward starting points are singletorufiess, group as observationsy,:

but their relationship to an object may be too tenuous toifeov Supp(P,G) = > p(OxlHe) (15)

effective guidance for building strong object models [14].the k=1, K

same time, trying all possible configurations of even a small K h del with the high ¢ h

number of features as seeds is impractical. The neighbdrho\fye gept e model with the higheStipp(P, G) for €ach group

pattern introduced by Sivic and Zisserman [25] roughly déss of pairs. Then, for as many as) models from different pair

the appearance of a point's local context as a bag of featurEUPs with _the highest support, we calculalen_fcorr(G_, w).
The neighborhood pattern is more distinctive than a singléut The model with the highest correspondence confidence istedle

less complex than our configurational models. Our initatian as wordw's seed model for the current neighborhood cluster

module uses neighborhood patterns with potentially meginin N. Each starting seed model is therefore initialized from a

word correspondences to help construct seed appearan@smo&“ﬁerem neighborhood cluster. While it is possible thiﬂetdent_
Recall that each poini. in an image has associated with it €€ Models may converge on the same appearance during the

vector of neighboring pointsi,,. The neighborhood patters,, following iterative improvement stage, ideally the set e&rned

is a sparse binary vector that denotes which quantized rieat@PPearance models will cover different distinctive partstre
descriptorsc are present inpm’s neighborhood (including:y). object and also provide coverage from a variety of viewmint

Thus 7., roughly captures the types of feature vectors present
within the small portion of the image centeredpat. Two neigh- C. Iterative Improvement

borhood patterns;,, and are conS|dere¢$|m|!ar (77’"_ ~m) if The improvement stage iteratively makes simple changes to

they have at Ie_a_stn quar_mzed feature descriptors N COMMONye geed object models found at the initialization stagédegl

\éVe u;ga ; .mocélged vgdrsmn oflthe two-?tagellcluste.nri:g methgg the correspondence between caption words and modelg Mor
escribed in [ ],t9 ! .entn‘y custer; of simifar neig bod_ui specifically, the improvement algorithm starts with a seeaxtieh
patterns in the trgmlng IMages. The .f|r.st ;tage identifigenitl G for a given wordw, makes a simple modification to this model
cluster c_enters with relatlve_ly low S|m_|lar|ty threshold, (= 6) (e.g, adds a new vertex), and detects instances of the new model
but requires that the quantized descriptor of the centra'nlt_er ' in the training images (using the detection algorithm pmes

of the nelghborhoods_ match_. The_second pass that greedfsfo in Section II-C). The new model is accepted as a better object

the clust_ers has a h|gher similarity t_hreshotq € 8) but does detector and replaces its predecessor if it has a higheespn-
noItEre(;]]ulre al matchlnr?bce;tra:jl d?SC”Fxr' . ¢ neigh dence score with, i.e., if Confcorr(G’',w) > Confcorr (G, w).

b r?c dresg :]lngne|g °r_°9| custeNm '_S a set of neigh- | qiher words, the improvement algorithm performs a greedy
orhoods with patterns similar tgn (Vm = {mlm ~ 1m}).  gearch through the space of appearance models to find aleeliab

Each neighborhood cluster represents a weak, unstrucapeq object detector for any given word.

pearance coptext that occurs multiple times across thgingau At each iteration, the algorithm tries to expand the current
'mage collection. We rgpresent .th_e occurrence patt.ern ofeng model by adding a new vertex and linking it with one of the
neighborhood clustel in the training images as a binary vector

ayv = {qnili=1,--- Kk}, Wherg%\/i = 1if imagei contains a 2y gyr calculation ofConf corr (N, w), We replaceyg with q - indicating
member ofA\/, and zero otherwise. the occurrences of/ in the training images.
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existing vertices. Vertex candidates are drawn from poihtd confidence that the observed instarizés a true instance of the
fall within the neighborhood of the detected instances & ttgiven modelG and not a chance configuration of background
current model. To ensure a strong correspondence between fdatures—ke., the detection confidend@onf 4.;..: (O, G); and (ii)
growing model and its associated word, only model detestionur confidence that the appearance mo@ebnd the wordw
that occur within images with the desired caption waesdare represent the same object-e; the correspondence confidence
considered for this purpose. Consider a detected peintthat Confcorr(G, w). We can thus associate annotation confidence
corresponds to a model vertex. Each pointp,, that is in the to every object instance that is to be labeled in a new image. T
neighborhood of,, but not part of the detection is a candidat@nnotation confidence is defined as the product of the detecti
to form a new vertex;. The corresponding edge candidaig, confidence and the correspondence confidence, as in:

inherits the spatial relationship vectar, between the two points
pm andpn. As in the initialization stage, from the observations
and their neighboring points, we form groupseach containing
observations of a potential one-vertex extension to theeotr
model. The observations are paifs», p») with their first points
being observations of the same existing vertgx and their
second points sharing the same cluster indgxFor each pair
group P, we propose up t@0 two-vertex incremental models
AG = ({v;,v;},e45) that bridge the gap between the existin
model and the new vertex. We keep the incremental model wi
the highesBupp(P, AG). The incremental models from different
pair groups form a queue of potential (vertex, edge) adustio
prioritized by their degree of support.

Conf gnnotate (O, w, G) = Conf gepect (0, G) X Conf corr (G, w)

(16)
We annotate a new instance of an object only if the
annotation confidence is greater than a threshald, if
Conf gnnotate (O, w,G) > T,. The value ofT, could be deter-
mined by a user, depending on whether they desire more detec-
tions (higher recall) or fewer detections with higher coefide
higher precision). In all experiments reported here, wetlse
€?Weshold very highi.e., T, = 0.95.

The following sections present the results of applying our
learning, detection, and annotation algorithms to two sypé
data sets: a small set of real images of toys that we captured

An augmented model(’, is constructed by removing the @nd annotatec_zl ourselves (Section_IV-A) and two larger and
top incremental modenG from the queue and incorporatingMore challenging sets of real-world images of sports scanes
it into the existing model @ — G U AG). If the augmented landmarks, r.espectlvely, downloaded .from thelweb (Sedﬁpn
model does not improve the correspondence score witthen B). Our choices for the parameters involved in the confidence

the change is rejected and the next iteration begins with tREC®S and the algorithms are given in the Appendix.

next candidateAG to be tested. If the augmented modkdes

improve the correspondence score, the change is accepigd, A. Experiments on a Controlled Data Set

the algorithm attempts to establish additional edges tesivike Here, we report the performance of our method applied to a

ex.|st.|rllg (\j/el;tlcez and t:h? new vertex. Thed edgg cand}:d::s 86t of 228 images of arrangements of children’s toys, generated
prioriized based on their support among detections o N under controlled conditions. The data set was first used m ou

! H .
modeIG , as this reflects the number of times the two end Po”é&periments presented in an earlier paper [15]. ThrougHst
vertices have been observed together, as well as the camsgjst article, we refer to this data set as theys data set. The

of their sg)aUaI rela}n:l)nsmg (;]ver thhosg observaﬂons. Neelges original color photographs are converted to intensity iesagith
are teste se(tjq(;xe(;]tla yan IT os_fe that |mpdro|vet € connﬁspme a resolution of 800x600. Most images contain 3 or 4 toy oBject
score are added. Generally, if the model vertices have VERM: ot 4 ool of 10, though there are a handful of examples of up
con5|stent spatial relationships across the current niemsc tr“we to 8 objects. The objects are not arranged in any consistes p
model will tend to accgpt many edges.. If the “”de”y'“,g abjec and many are partially occluded. The images are collectathsiy
more deformable or viewed from a variety of perspectivesgfe approximately 15 different backgrounds of varying comiiex
edges are likely to be _accggte(rjd. q q h del The pool of228 images is randomly divided into a training set
O_n_ce a new vertex IS added an °°””e9te to the model, %?d128 and a test set of00. Each training image is annotated
add_ltlona! edges are either accepted or reJect_ed, a neatider i, the unique keyword for each object of interest shown and
begins with the new mpdel as the starting point. If.none _of ﬂl?etween 2 and 5 other keywords uniformly drawn from a pool
proposed model extensions are accepted, the ni@geired with of distractor labels. Note that the objects of interest neygpear

the caption WOI’dw. ',S added to the set of dlscovereo! WordTndividually and the training data contains no informatias to
appearance associations to be used for future annotatiosvof the position or pose of the labeled objects.
Images. Figure 3 displays some example images from the test set
and the associated annotations produced by our systene Fals
IV. EVALUATION : ANNOTATING OBJECTS INUNCAPTIONED  gpnotations are written in italics and missed annotatiams i
IMAGES parentheses. While there is no direct limit on the size ofried
In previous sections, we have presented the componentsappearance models, they tend to cover small, distinctivehpa
our learning framework for discovering object models aneirth of the objects. In many cases, the size of learned modelwitet
associated names from a set of training image—caption .paivy the availability of sufficient repeatable visual struetuSome
Ultimately, we want to use the discovered model-word pairs bbjects with large areas of sufficient detail, such as theshCa
detect and annotate new instances of the objects in unsekn abject and the two books ‘Franklin’ and ‘Rocket’, can suppor
uncaptioned images. For detection of new instances of agikle larger models (as in Figure 3(d)). Our method learns maualtipl
ject model, we use the detection algorithm presented in@ellt appearance models for many of the objects, such as the two
C.2. Our confidence that a word is appropriate to annotate amodels shown in Figure 3(b) for ‘Bongos’. It is thus possitde
detected objec in an image depends on two factors: (i) oudetect an object even when a distinctive part of it is ocaludée
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Performance on the TOYS Image Set

1 Tl - == ==L
0.9F
0.8F
c
2
8 07
[}
IS
(S 4 %G = 0.6 Current
Ci t (No Spatial
(b) Horse, Drum, Bus, Bongos, urrent (No Spatial)
CaSh Bu 05f = = =ICCV
— ,, CVPR
V<] 0.4 : : : . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Fig. 4. A comparison of precision-recall curves over tizer's test set, for
four systems: current, current without spatial relatigpshiccv [16], and
CVPR [15]. cvPR used a local bag-of-features models that were initialized
with singleton featuresiccv added spatial relationships and neighborhood
initialization. The current system adds detection and tatimm confidence
scores and builds models with more spatial relationships.

»

(c) Ernie, Hbrse, Rocket, (d) Franklin, Rocket, Cash

Cash, (Bongos) Name || Precision | Recall || Frequency

HorEe 1.00 0.82 28

. . . . . R t 1.00 0.82 44

Fig. 3. Sample detections of objects in thevs test set. False detections Dorﬁn? 1.00 0.81 32

are shown in italics while missed detections are placed ientheses. Franklin 1.00 0.73 33

Bus 1.00 0.60 57

Bongos 1.00 0.53 36

] ] Bug 1.00 0.53 51

system can sometimes detect planar objects such as theeéRock 8lnoh é.gg 8.% 2%

book under. significant perspective distortion (as in F_@B(r@). Ernie 0.94 0.41 39

Our earlier work ([15], [16]) has shown promising results
on the ToYs data set, while using simpler appearance models TABLE |

and/or less efficient learning or detection algorithms. Valeate PERFORMANCE RESULTS ON THE TOYS TEST SET, = 0.95.

the improvement in annotation performance, we performed a
single training run for our method on the samgs training contain at least one instance of the corresponding wordoAll
images used in previous work and compared results on tthe precision and recall values we report are based on word
100-image test set. Figure 4 shows the precision—recall curvescurrence in the captions of the test set; if the system does
for four systems: the current system (with and without gpatinot detect a word that appears in the caption, that instasice i
relationships), theccv system presented in [16], and tbePR counted as a false positive, even if the named object does not
system described in [15]. To implement a system withoutiapatactually appear in the image. The method performs best @tthj
relations, we remove all spatial contributions to the ditec that have large, roughly planar surfaces and distinctikecsiral
confidence measur&onf ;.;...(O, G). Therefore, edge position details, such as ‘Rocket’, ‘Franklin’, ‘Drum’ and ‘HorseThe
and connectivity play no role in the detection mechanisme Tlonly instances of these objects that cannot be detectedvetth
only remaining spatial constraint in the resulting badezftures high precision either are highly occluded or are viewed fraum
model is that each vertex added to a detection must fall witihe  atypical angle (such as edge-on for a book). Our system feas th
neighborhood of a vertex that is already part of the detacfio greatest difficulty with the ‘Ernie’ and ‘Dino’ objects, geaps be-
constraint of the underlying detection algorithm). Our reygtem cause they lack fine-scale surface details and distinotiveites.
achieves the high annotation precisioniotv with about15% For instance, the striped pattern of the shirt of the ‘Errell
higher overall recall due to our new detection confidencesmea is somewhat distinctive within the image set, but the fackda
Training without spatial relationships generates appnately a sufficient keypoints to build a reliable model. The ‘Dino’jett
12% penalty in recall, indicating that more distinctive objendd- is particularly difficult, as specular reflections signifitg alter
els can be constructed by finding recurring spatial relatiges the local-feature description of its surface appearangem#ing
among image points. While trevPR system and the ‘No Spatial’ on perspective and lighting.
variant of our current system both represent appearancenas aPrecision and recall indicate whether the system is detgcti
unstructured collection of local features, a variety of rafes objects in the correct images, but not how often the modeds ar
in the initialization mechanism, the representation ofiviittial detected on the objects themselves. To evaluate the loahtio
features and the detection and correspondence measusdly graccuracy of the detections we manually defined bounding sboxe
improve overall performance. for all named objects in the test image set (this data was not

Table | shows the per-object precision and recall values afailable to the system). A detection was considered atxiifra
our current system. In this and subsequent tables, the &negu all of the detected model vertices were located within theemd
column shows the number of captions within the test set thadunding box. Overall98.8% of above-threshold detections on

— o ~ the Tovs data set are completely within the boundaries defined
q The improved precision of thecCv system over thecVPR system is ¢ the ohject. The lowest accuracy was for the ‘Franklinjeal,

ue in part to the addition of spatial relationships to thpegpance models, . . . . .
as well as to improvements in the correspondence confiderezsure and ©N Which 5.2% of detections were partially outside the object
initialization method. bounds.
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Precision vs. Recall for Different Spatial Settings

T e = = =

B. Experiments on Web Data Sets 1

This section reports the performance of our system on tv 0.95}
larger and more challenging sets of images downloaded fram f A
web. The first set, which we refer to as th@CKEY data set,
includes2526 images of National Hockey League (NHL) players
and games, with associated captions, downloaded from atyari
of sports websites. The second set, which we refer to as 1 075}

0.85F

0.8F

Precision

LANDMARK data set, containg258 images of27 well-known I | en ]
buildings and locations, with associated tags, downlodteah — = ]

the Flickr websité. Due to space considerations, our analysi | No Spatial \ 1
focuses mainly on the results on theCKEY data set (IV-B.1 085 008 o1 YT o2 Y 03
through 1V-B.3), though most of the same phenomena alsoaapp - Recall

in the LANDMARK results (IV-B.4). ) . .
. ] Fig. 5. Precision—recall curves of our current system ohHesKEY images,
1) Annotation Performance on theockey Data Set: The qyer a wide range of spatial settings. Although the systemdesect objects

HOCKEY set contains examples of al0 NHL teams and is even without spatial constraints (the ‘No Spatial’ cask$ tise of moderate
divided into 2026 training and 500 test image—caption pairs. SPatial constraints (wheli = 10) offers the best performance.

About two-thirds of the captions are full sentence desicnis,

whereas the remainder simply name the two teams involved in

the game (ITee Figure 1, page 3fforr] examples of each type). ey 5oser spatial constraints in detection. Figure 5 shaie
automatically process captions of the training Images oy e 4| precision—recall curves for various settings &f dpatial

capitalization, punctuation, and plural indicators, qrrdp@ing tolerance parametdr, including a version in which the spatial
words that occur in less thar of the captions. Captions of therelationships between points do not contribute to the detec

test |mages are only us.ed for evaluat|o_n purposes_. confidence function (No Spatial). We use the notatigrio refer
Most images are on-ice shots and display multiple players ig o, implementation of the system whtés given the value.

a variety of poses and scales. We thus expect our system to o . . ) )
learn distinctive appearance models for the players of ézam, The curves |nd!cate that the implementation Fhat |gr10ras$lp
s factors (No Spatial) and'; (where model spatial variances are

and to discover meaningful associations between the maeaels | X : . c
the corresponding team names. A team'’s logo is perhaps mgnncal to background spatial variances) are roughlyivedgnt.

most distinctive appearance model that our system coulth leAX6Maining differences are due to the fact thatcan learn some
for the team. In addition, there may be other visual appeasn edge connectlon_ structure _Wh'le the “No Spatial quel ‘_m“”
that unambiguously identify a particular team, such as lsteou Very strong s_patlal const_ralnts, as ]inoo,_may result in brittle _
patches or sock patterns. Note that we do not incorporat@ory model detections, but still the systgm is capable of proupci
knowledge into our system about which objects or words are @fasonably good resuljre.g, substantially better than a bag-of-
interest. The system is expected to learn these from thimgsiof features mode]; see Flggre 5). Nonetheless, results (?Omam
the images and captions in the training data. The only inddion moderate spanal constraints are generally more effecz_nmwnh
we provide to our system is a link between a team’s naeng, ( T'10. One might expect that stronggr spatial (_:o_nstralnfts _(Imghe
Bruins) and its city namee(g, Boston) because most NHL teamsvalues of_F) would always lead to higher precision. This is n(_)t
are referred to by both names. Our system thus treats the {ippessarily the case, because even a configuration ovetjati

words (team name and city name) as the same word when lear ﬁ‘ﬁ obse.rvledl vgruoEg may fhave h'r?h de(;eﬁtlo.n hcﬁonfujence if
model-word associations. The final vocabulary extractech fthe their spatial relationships conform to the model's tightsiaints.

training captions contain®37 words, of which only30 are team l\goreovelr, n’]la_ny of the falzelagnotat_lons on test Images are no
designations. As we will see later, our system learns appear the ;esut cl) mc_orrect mode etegtlon at annotation t'md
models for many of these words, including team names as wglf due to leamning a Spurious word—appearance correspoade
as other words. Finally, a model that requires a rigid spatial configuratégnong
We experiment with different degrees of spatial constgain{'® componentsdrrlgy n%t1 grow Itt(') the S|Iz|e of 3 :nodel tgtl 'S
imposed by our detection algorithm, in order to see how th ore accommodating. The resutiing smatier models may es
Istinctive, even though each edge is more precise in dagtar

affects the learning and annotation performance of ouregyst . A . .
Our detection confidence score, presented in Section lla€,ah particular spatial configuration.
set of parameters corresponding to the model spatial caktiip To analyze the sensitivity of our method to the precise value
variances. We set each of these to a fractigh of the corre- the spatial tolerance parameter we perform experiments with
sponding background variance, whereis the spatial tolerance & smaller range of values for this parameter. Figure 6 shbes t
parameter that determines the amount of spatial constraént precision—recall curves fof' set to5, 10, and 20. The results
quired by the detection algorithm to consider an obsermatioa confirm that our method is not sensitive to small changes én th
true instance of a given model. value of I". This might indicate that the iterative improvement
High values of " thus imply a narrow acceptability rangeProcess can optimize appearance models to compensatef-for di
for spatial relationships between any two connected \estiaf ferent spatial tolerance values within a reasonable rdbhgealso
a model, resulting in tighter spatial constraints when ciéig possible that the models themselves are effective acroasger

instances of the model. In contrast, a low valuel'ofranslates Of I' values, such that, for example, system performance would
not be adversely affected if different values lofwere used for

4www.flickr.com training and annotation.
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Sensitivity to Small Changes in I

specific to be useful for detecting new instances (which nigrd

in viewpoint, for example). On average, teams detecteddrteht

set are mentioned in the captions df4 training images, while
teams with no test set detections are mentioned in the ceptio
1 of 57 training images. The system detects only two teams (the
] Bruins and the Canadiens) with fewer thémh caption-mentions,
and fails to detect only one team (the Flyers) with more té@n
caption-mentions in the training set.

0.95F

0.9F

0.85F

0.8F

Precision

0.75F

o7l - = -r=20 1 Note also that a team name’s mention in the caption of an image
065 Fzéo : does not necessarily mean that the corresponding olgaxtthe
06 z . . . . team’s logo) appears in the image. After analyzifngf the teams

0 0.05 0.1 0.15 0.2 0.25 0.3

Recall in Table Il, we found that only30—40% of the training images
that mention a team’s name also contain a visible (less thain h

Fig. 6. Precision—recall curves for our current system elagively unaffected obscured) instance of one of the team’s logos. Thereforearm t
by modest changes in the spatial tolerance paranieter with fewer than60 training examples will almost always have
fewer than24 usable instances of the team logo. In addition, in

Name Precision | Recall [ Frequency . o . g
Tampa Bay Lightning 1.00 051 49 some cases these instances will display various versioribeof
hg@@g?flﬁsﬁaﬁg‘gé i'gg 8'%2 28 team’s logo. For example, images of the Maple Leafs regularl
Calgary Flames 1.00 0.31 26 show three different versions of their logo. The training se
ynallas Stare 1001 93t e contains four completely different Buffalo Sabres chegbky and
Chicago Blackhawks 1.00 0.24 35 many of these are placed on different backgrounds for horde an
New rork Rangers || 1.00 | 0.21 e away jerseys. As we see later in Figure 7(d), the system does n
Carolina Hurricane 1.00 0.17 30 learn the new Sabres logo, but it does have a strong modéiéor t
g&z*;;’gf A"Jgg?]tggz 109 o5 - older version of the logo displayed by the fan in the backgebu
Toronto Maple Leafs 0.96 0.30 73 For teams detected with relatively high recall, the system
P%;%"L‘J’%Spee”rf‘gtﬂirﬁs 8'38 8'%2 gg tends to learn separate models for each variation of thet ches
Atlanta Thrashers 0.86 0.17 35 logo and often additional models for other distinctive paof
New Jersey vl:\)/i%ls 08 | 3% 3 a player's uniform, such as shoulder patches or sock pattern
San Jose Sharks 0.83 0.22 23 In some cases, the system learns several high-confidencelsnod
volorida Panthers || 0.83 | 0.20 = for the same logo. Some of these are redundant models that hav
Vancouver Canucks 0.57 0.10 40 nearly identical detection patterns, while in other cabesnodels
Boston Bruins 0.44 0.24 17 describe the logo in different modes of perspective distort
TABLE Il Teams with lower recall tend to only have one or two high-

confidence appearance models describing a single logaivaria
The training restriction of onl\20 seed appearance models for
each named object is perhaps ill-advised, given that nieltip
appearance models are helpful and only alloint 6 seed models

2) An Analysis of the Annotation Results for theckey Set: l€ads to a high-confidence object appearance model.
Our results presented above show thag has the best overall The visual properties of a team’s logo also affect whether
performance. We thus focus @, analyzing various aspects ofthe system learns an association between its appearandhend
its performance. Table Il shows the annotation performasfce team’s name. For example, whereas the Philadelphia Flyers a
I'1o on the test images, focusing on the team names only. TR@nNtioned in the captions a8 training images, their primary
system has high-confidence detections 46rof the 30 teams. 1090 lacks detailed texture and so attracts relatively feterest
(There are2 additional teams for which the system learns highoints. This may explain why the system did not learn a rédiab
confidence models, but does not detect them in the test imagéigtector for this logo.
Results show that the annotation of the test images gepéradl 3) Sample Annotations from teOCKEY Set: Figure 7 shows
high precision but low recall. The low recall is partly besawf some example annotations in the test image¥{gr As expected,
our choice of a high annotation threshold, but also due tdabe team logos tend to be the most useful patches of appearance fo
that the captions that we use as ground truth often mentamsge recognizing the teams. The system is often able to detegtdda
that are not visible in the image. In addition, a hockey ptdyas a logos that are distorted or partially occluded. In some sase
highly variable appearance depending on viewing angle asd.p however, the system fails to detect learned logos that tatvely
A model that captures the appearance of the front logo will nolean and undistorted. These might be due to contrastgaver
help annotate a view of a player from the side. from a logo appearing against a different background, onayes

An important factor that determines whether the system canissed detections of the underlying interest point detecto
learn high-confidence models for a team, and detect instanceWhile the team logos tend to be the most distinctive aspeat of
of it in the test images, is the number of training examplext thplayer's appearance, the system has learned alternatdsrfoda
contain both the team’s name and some appearance of it.dtds hvariety of teams. Figure 8 displays two such examples, diotu
for the system to learn a high-confidence model for a teameif tla shoulder patch and sock pattern. The system might also lear
team’s logo appears in a small number of training imagesnkve an association between a team name and an appearance atch th
the system learns a model for such a team, the model may be oot part of a player at all.

INDIVIDUAL PRECISION AND RECALL VALUES FOR23 OF THE TEAM
NAMES (OF 30) DETECTED WITH HIGH CONFIDENCE IN THE HOCKEY TEST
SET,I' = 10 AND T, = 0.95.
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(a) Flémes shoulaer patch (b) Blackhawks sock pattern

Fig. 8. Alternate models can be learned, such as shouldehgsbr sock
patterns.

(a) Red Wings (b) Canucks

Fig. 9. Due to overfitting, our system learns bad models (demnet on a
dark background) for several teams.

visual correspondences solely for team names. Figure Mssho
few example detections of models learned for other word Tw
of the models associate the distinctive pads of the Calgamés
goalie Mikka Kiprusoff with the labels ‘mikka’ and ‘kiprug.
ol ! Most of the other high-confidence model-word associationis |

(f) Lightning and Red Wings  the appearance of a team logo with other words associatéd wit
[0y el the team. For instance, Figure 10(b) shows a learned atisocia

DA between the Islanders logo and words related to their home

W arena of “Nassau Coliseum in Uniondale, New York”. Other
associations are with fragments of a team’s name that are not
among the words we manually linked to identify a team. For
instance, the system learned associations between the wordg
and los and the logos of the Detroit Red Wings and the Los
Angeles Kings. We associate the woraisgelesand kings with
Fig. 7. Sample annotations of our system in the hockey teagém The the same caption token, so that either word could be used to
system automatically discovers chest logos as the mostbtelimethod for represent the team. The wolds was not one of the words we
recognizing a team. linked, but it still has a strong correspondence in our trgjrset
with the Los Angeles Kings logo. The fact that the componefts
a multi-word name can independently converge on similanalis

) Figure_ 9 displays instances of a parti_cular type of falseotan descriptions means that it may be possible to automatizdign
tion. Variants of a white net pattern against a dark backgglare g, compound names based on visual model similarity, ddste

learned independently as reasonably high-confidence eppma ¢ manually linking the components prior to learning.
models for several teams. This appears to be a result of tiveyfi

While this back-of-the-net appearance is quite commonsacitte
NHL image collection, certain variations of this appeamhave
a weak initial correspondence with particular teams. Dyitara-
tive improvement, the system is able to tailor each teanrsioe
of the net appearance model to fit only the specific instanc
of the net appearance in the training data that are annotate
with the desired team name. In this way, a model can hav
few false positives in the training set, even though the rilesd :
appearance is not meaningfully associated to the team name. (&) ‘mikka’, ‘kiprusoff’ (b) ‘nassau’, ‘coliseum’,
are currently considering approaches for reducing the roesce ‘uniondale’, ‘new’, ‘york

of such overfitting while still allowing the improvement g&ato Fig. 10. Words other than team names for which the systenised

encode mganingful d_ifferences in appearance. ~ strong models include the name of the Calgary Flames’ galiename and
As mentioned previously, the system is not restricted tarfignd location of the New York Islanders’ arena.

—

TwinCitiesecom

(g) Stars (h) Wild and Canadiens
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Name Precision | Recall [] Frequency
Vork’ .00 077 3T Name Precision | Recall ][] Frequency
‘new’ 0.95 0.16 120 Ru_shmore 1.00 0.71 35
‘los’ 0.92 0.34 32 St. Basil's Cathedral 1.00 0.69 35
‘maple’ 086 016 37 Statue of leerty 1.00 0.61 36
‘uniondale’ 0.85 031 35 Great Sphinx 1.00 0.45 40
‘coliseum’ 0.85 020 35 Notre Dame Cathedra 1.00 0.40 40
‘nassau’ 083 | 0.29 35 Stonehenge 100 | 036 42
‘wings’ 073 017 47 St. Peter's Basilica 1.00 0.15 41
‘rutherford’ 070 033 21 Chichen Itza 1.00 0.05 37
‘canada’ 047 016 20 CN Tower 1.00 0.03 34
‘california’ 0.40 020 20 Golden Gate Bridge 0.97 0.73 45
: : Christo Redentor 0.96 0.55 44
Eiffel Tower 0.95 0.61 33
TABLE IlI Taj Mahal 0.89 0.52 33
Big Ben 0.88 0.68 44
PRECISION AND RECALL VALUES FOR11 WORDS WITH AT LEAST10 Colosseum 087 033 39
DETECTIONS IN THE TEST IMAGEST" = 10, T,, = 0.95. Tower Bridge 0.82 0.79 47
White House 0.81 0.38 45
; i US Capitol 0.80 0.80 45
Table Il gives precision and recall val_ues for all Worq:;héﬂt Reichsta 0'80 0’53 45
than the team names) with at leastdetections in the test images. St. Paul's Cathedral 0.75 0.69 48
; Arc De Triomphe 0.71 0.57 42
Thes_e results may be so_mewha_lt under_sta_ted, as the test image Parthenon 071 029 a5
captions are not as consistent in mentioning these backdrou Burj Al Arab 0.71 0.23 43
; ; ; Leaning Tower 0.70 0.93 43
words as they are with the team names. For mstance,_ a aetecti Empire State Building 062 055 28
for the wordmaple of the Toronto Maple Leafs logo will count Sagrada Familia 0.54 0.40 35
as a true positive if the caption of the test image is “Maplafse
vs Lightning”, but count as a false positive if the captiorthe TABLE IV
semantically equivalent “Toronto vs Tampa Bay". INDIVIDUAL PRECISION AND RECALL VALUES FOR THE26 OF 27
4) Annotation Performance on the NDMARK Data Set: The LANDMARKS DETECTED WITH HIGH CONFIDENCE IN THE LANDMARK
LANDMARK data set includes images aff famous buildings TESTSETIL' =10 AND Tq = 0.95.

and locations with some associated tags downloaded from tlr"" TETE T "
Flickr website, and randomly divided infd 72 training and1086 ’ ‘
test image—caption pairs. Like the NHL logos, each landmarl
appears in a variety of perspectives, scales and (to a les
extent) orientations. Whereas a hockey logo is deformahté a
may appear in several different versions, the appearandtbeof
landmarks can be strongly affected by varying lighting ¢tods,
and different faces of the structure can present drambtical
different appearances. Another difference is that HeCcKEY
captions usually mention two teams, but easinDMARK image
is only associated with a single landmark.

Table IV presents precision and recall information for 2Geof
27 landmarks for which high-confidence detections were made i
the test set. Compared to th@CKEY results (Table II), recall is

(a) St. Basil’'s Cathedral (b) Cristo Redentor

TN

as ground truth are somewhat more reliable in th&/DMARK >
set; there are fewer instances where a test caption mergions
landmark that is not present in the image. The only landmar
of the set that was not learned to some degree was the Sydn
Opera House, perhaps due to the smooth, relatively terssel
exterior of the building. Our system recognized only onetaf t
CN Tower images in the test set, probably because the mo
distinctive pattern of the observation level makes up susmall
fraction of the overall tower.

Figure 11 showss examples of the detected landmarks. In
general, the learned models tend to cover highly texturedsaof
a landmark. In some cases, however, the profile of a strustigie
as the towers of the Golden Gate Bridge or the Statue of Ljibert
is distinctive enough to form a strong model. Since many ef th
building details display different shadowing at differéimes of
the day, multiple models are often learned to cover theserdiit
appearances. Due to the repetitive surface structure of ofethe
landmarks, an image often contains multiple detectionssifigle | e MR
appearance modeg.g, Figure 11(c-e)). The system also learned (9) Statue of Liberty (h) Eiffel Tower
associations between landmark names and some nearbysobject

such as an adjacent office tower that the system associated \}ﬂg' 11.  Sample annotations of our system in the landmarkisesges.
. oo ultiple detections of a single model within an image can &ersin (c-e).
the Empire State building.
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C. Summary of Results Section II-B that in an appearance model, each vertex i<&ged

The results presented in this section show that our syst&$fh @ vector of neighboring cluster centees, We sef|c;| = 20
is able to find many meaningful correspondences between wdfgminimize the chance of missing a matching feature due to
labels and visual structures in three very different data. sfhile duantization noise, at the expense of slowing down the model
the system can work equally well over a range of spatial patem detection function.
settings, the addition of spatial relationships to the apmece Ve set the parameters of the word-appearance correspendenc
model can dramatically improve the strength and number ef tf'easure Corr(w, &), according to the following assumptions:
learned correspondences. Our framework can deal with sicelu Reflecting high confidence in the captions of training images
and the highly variable appearance of some objects by assagi W€ SELP(rwi = 1[si = 1) = 0.95, since we expect to observe an
multiple visual models with a single word, but this dependgree Object's name in a caption whenever the object is presertian t

presence of a sufficient number and a variety of training glesa corresponding image. Similarly, we expect that few imagiise
labelledw when the object is not present. However, even setting a

low background generation rat®(r,,; = 1|s; = 0) = 0.5) could
lead to a relatively large number of falselabels if few image—
We have proposed an unsupervised method that uses languggjtion pairs contain the objecP(s; = 1) is low). We expect
both to discover salient objects and to build distinctivepear- the false labels to be a sméihction of the true labels. Since the
ance models for them, from cluttered images paired withynoigxpected rate of true word labels i&r,,; = 1|s; = 1)P(s; = 1)

captions. The algorithm simultaneously learns appropiietmes and the expected rate of false word labelsPig,,; = 1|s; =
for these object models from the captions. Note that we do ngtp (s, = 0), we therefore set:

incorporate any prior knowledge into our system about which Plru; = 181 = 1)P(si = 1)
objects or words are of interest. The system has to learrethesP(r,,; = 1|s; = 0) = 0.05 - —— ¥ — "t — C-
from the pairings of the images and captions in the training P(si =0)

data. We have devised a novel appearance model that captureSimilarly, during model learning, we wish to assert thatghhi

the common structure among instances of an object by usiggnfidence model should have a low ratio of false-positives t
pairs of points together with their spatial relationshipgte basic true-positives. Therefore we set:

distinctive portions of an object. We have also introducetbeel g — _

detection rgethod that can Jbe reliably used to find and areotat?’(¢c: = 1lsi = 0) = 0.05- Placs ;JZ :13)13(81 D) (18)

new instances of the learned object models in previouslgems . ’

(and uncaptioned) test images. Given the abundance ofrexist 10E€Ver, when evaluating correspondences between woms an
images paired with text descriptions, such methods can be v&€ighborhoods to find good seed models, we set this target
useful for the automatic annotation of new or uncaptioneatjes, number of false-positives as a fraction of the true positineich

and hence can help in the organization of image databasegllas Nigher atl. We do so because the starting seed models are
as in content-based image search. expected to be less distinctive, hence even promising seegs

At this juncture, there are two complimentary directions fo'2V€ @ large number of false positives. Performing experiene

future work. First, we would like to use insights from comgut " @ held-out validation set GO0 HOCKEY training images, we
tional linguistics to move beyond individual words to greupf ound the precise value @f(Ho)/P(Hc) to have little effect on

words €.g, word combinations such as compound nouns arfe overall performance; we thus setHo)/P(Hc) = 100, 000.

collocations, or semantically-related words) that cqoesl to At the initialization stage, up t@0 neighb_orhood cluste_rsf .
distinct visual patterns. Second, though local featuresvige are selected to generate seed models, which are furtheffietbdi

a strong basis for detecting unique objects, they are lemal idi" UP 10200 stages of iterative improvement. _
for detecting object categories or general settings. Hewehe llf t,h; detection thrtlasholdrd '; setf Itoo lov‘t’)' g,'l‘? detection
grouping problem persists for most types of visual featameg 2!90rithm can report a large number of low-probability @éitens,

most forms of annotation. We expect that many of the mechamisWNich can Impose a computation burden on later Stages of
for addressing the grouping problem for local features waitio Processing. Howeyer, the threshold ShOUId not be set SOt_hﬁgh
apply to other feature classes, such as contours. detections that r_mght lead _to model improvements are ighore
We err on the side of caution and sEf = 0.001. The param-
eters of the background likelihood (used in measuring detec
confidence) are set according to sample statistics of actiafeof

This section elaborates on how we set the values of varioug,000 commercial stock photographs. Based on this wid@lsam
parameters required by our model and methods, including: ps visual content, the distance varianeéy is set t0200, and
rameters of our image and object representation, and tHfas& o the scale variance? is set to5. Each of the model spatial
detection confidence score from Section Il, and paramefefso relationship variances is set to a fractiof® of the corresponding
model-word correspondence confidence score (used in hgdrnibackground variance,e.:
from Sectl_on M. _ _ _ s 0lp o o3 s 2

For our image representation presented in Section Il-A, & u %z = — 9= T andoy = 3r
a cluster set of size000 to generate the quantized descriptorsvhereI" is the spatial tolerance parameter that determines the
cm associated with each image point. We set the neighborhoexbected degree of spatial variability among observed cobje
size, |nm|, t0 50 as experiments on thevPr data set indicated models. In most experiments, we $et 10, a value we found to
this was an appropriate tradeoff between having distiantégs result in reasonably good performance on #@CKEY validation
and locality in a neighborhood. (Neighborhoods in the raafje set. After estimating the mixture of Gaussian distributtmased
40 — 70 points produced roughly equivalent results.) Recall froman the stock photo collection, we observed that averagavegi

V. CONCLUSIONS

. (17)

APPENDIX
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among the background feature clusters wad, so we set the
model feature variance to be slightly highebét: 1.5. Based on
empirical findings on the held-out subset of heCKEY training
data, we seP(Hpg)/P(Hg) = 100,000, though we found a broad
range of values to yield similar results.
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