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Abstract

Given an unstructured collection of captioned images of
cluttered scenes featuring a variety of objects, our goal is to
learn both the names and appearances of the objects. Only
a small number of local features within any given image
are associated with a particular caption word. We describe
a connected graph appearance model where vertices repre-
sent local features and edges encode spatial relationships.
We use the repetition of feature neighborhoods across train-
ing images and a measure of correspondence with caption
words to guide the search for meaningful feature configu-
rations. We demonstrate improved results on a dataset to
which an unstructured object model was previously applied.
We also apply the new method to a more challenging collec-
tion of captioned images from the web, detecting and anno-
tating objects within highly cluttered realistic scenes.

1. Introduction
Manual annotation of new images in large image collec-

tions is prohibitively expensive for commercial databases,
and overly time-consuming for the home photographer.
However, low-cost imaging, storage and communication
technologies have already made accessible millions of im-
ages that are meaningfully associated with text in the form
of captions or keywords. It is tempting to see these pair-
ings of visual and linguistic representations as a kind of dis-
tributed Rosetta Stone fromwhich wemay learn to automat-
ically translate between the names of things and their ap-
pearances. Even limited success in this challenging project
would support at least partial automatic annotation of new
images, enabling search of image databases by both image
features and keywords that describe their contents.
Any such endeavor faces the daunting challenge of the

perceptual grouping problem. Regardless of the type of
image feature used, a word typically refers not to a single
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feature, but to a configuration of features that form the ob-
ject of interest. The problem is particularly acute since any
given image may contain multiple objects or configurations;
moreover, the meaningful configurations may be easily lost
among a huge number of irrelevant or accidental groupings
of features. Without substantial bottom-up grouping hints,
it is a nearly hopeless task to glean the meaningful feature
configurations from a single image–caption pair. Given a
collection of images, however, one can look for patterns
of features that appear much more often than expected by
chance. Usually, though, only a fraction of these recurring
configurations correspond to salient objects that are referred
to by words in the captions.
Some of our previous work has shown that correspon-

dences between image features and caption words can be
used to guide the search for meaningful feature configura-
tions [10, 14]. Building on this idea, we introduce a new
word–appearance correspondence measure that uses lan-
guage cues in addition to recurring visual patterns to in-
crementally construct strong object appearance models. In
contrast to [14], our appearance models are composed of
easily-extractable local features and can therefore detect ex-
emplar objects in highly cluttered real-world images. Our
new models capture more of the structured appearance of
an object than the simple ‘bag of features’ models used in
[10] while remaining robust to changes in scale and orien-
tation, as well as to minor deformations. We demonstrate
improved results on the set of images used in [10] and also
discover meaningful word–appearance pairs in a larger and
more challenging set of captioned hockey images.

2. Related Work
Work on learning relationships between text captions and

image features to support automatic image annotation in-
cludes a variety of proposals [1, 4, 5, 7, 8]. Many of these
approaches associate a caption word with a probability dis-
tribution over a feature space dominated by color and tex-
ture, though the set of features may include position [4, 8]
or simple shape information [7]. This type of representation
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is less reliant on perceptual grouping than a shape or struc-
tured appearance model because color and texture are rela-
tively robust to segmentation errors and the configuration of
features is not critical. However, they tend to be less effec-
tive for objects that lack a consistent color or texture yet do
have a characteristic shape or structured appearance. Other
work avoids the perceptual grouping problem by focusing
on a domain where there exists detailed prior knowledge of
the appearance of the objects of interest, as in the task of
matching names with faces [2].
In contrast, Wachsmuth et al. [14] specifically target ob-

ject classes defined by an unknown shape, so the percep-
tual grouping problem becomes central. Language infor-
mation from a translation model, as in [7], is used to guide
the combination of small image segments into identifiable
shape categories. However, this shape model extraction has
not yet been demonstrated on real images.
Methods for grouping individual features of various

types into meaningful configurations are reasonably com-
mon in the broader object recognition literature. For in-
stance, Fergus et al. [9] learn object appearance models
consisting of a distinctive subset of local interest features
and their relative positions. Crandall and Huttenlocher [6]
use graph models in which vertices are oriented edge tem-
plates rather than local feature detections. These methods
can learn an appearance model from very noisy training im-
ages; however, unlike most automatic annotationwork, they
are not designed for images containing multiple objects and
multiple annotation words. In the domain of image annota-
tion, our previous work [10] can handle such unstructured
training sets, but uses a ‘bag of features’ appearance model
with only a weak spatial proximity constraint.
In this paper, we encode the appearance of an exemplar

object through a set of local features connected by robust
pairwise spatial relationships. This model is less prone than
[10] to false-positive detections and is invariant to scale and
rotation. Moreover, whereas the method described in [10]
requires a relatively distinctive singleton seed feature for
initialization of the object models, our new approach be-
gins with a group of features, none of which has to be in-
dividually distinctive. Finally, while both [10] and [14] use
a translation model between words and image features to
guide grouping of the features into object models, our cur-
rent method uses a more efficient word–feature correspon-
dence metric that enables us to more effectively explore the
space of configurations.

3. Learning to Annotate Exemplar Objects
The goal of this work is to annotate exemplar objects ap-

pearing in images of cluttered scenes. A typical such image,
with more than a thousand local features, contains a huge
number of possible feature configurations, most of which
are noise or accidental groupings. A complex configuration

New York Islanders’ defenseman Alexei Zhitnik mashes
Vancouver Canucks’ right wing Todd Bertuzzi into the glass.

Figure 1. From a set of image–caption pairs, each containing hun-
dreds of local features (gray crosses), our algorithm has discov-
ered an association between a team name (shown in red) and its
logo (red features and green relationships in a yellow box).

of features that occurs in many images is unlikely to be an
accident, but may still correspond to common elements of
the background or other unnamed structures. The only ev-
idence on which to establish a connection between words
and configurations of visual features is their co-occurrence
across the set of captioned images. The key insight of [10]
and [14] is that this evidence can guide not only the annota-
tion of complex feature configurations, but also the search
for meaningful configurations themselves.
Accordingly, we look for recurring configurations of fea-

tures that also strongly co-occur with certain words, hence
simultaneously finding objects and annotating them. To il-
lustrate, Figure 1 shows a sample image containing hun-
dreds of local features, paired with a caption containing
many irrelevant words. Our algorithm has learned both
an appearance model (here representing the team’s logo),
as well as its association with a caption word (here the
team name Islanders). To begin, the learning algorithm
finds a set of simple recurring object models, evaluates how
strongly they correspond to each caption word, and accord-
ingly chooses a set of good ‘seed’ appearance models for
each word. Each seed model is then iteratively expanded
(if possible) into a more reliable object detector, guided at
each step by the change in its strength of association with
the corresponding caption word.
We use a learning framework that allows a one-to-many



relationship between words and appearance models. It is
thus not necessary that a single model capture object ap-
pearance from all possible viewpoints. Moreover, since we
deal with exemplar objects, our method need not handle
the changes in texture and structural detail that are possible
within a class of objects. In order to serve as a robust object
detector, however, it is important that the appearance model
representation be invariant to reasonable changes in light-
ing, scale, orientation, articulation and deformation. The
representation must also be reliably detectable, in order to
avoid false annotations. We use local interest features to
represent small patches of appearance and use the pairwise
spatial relationships between the patches to construct a con-
nected graph model for the object. The model that is built
this way is a reliable descriptor of the object appearance
and at the same time flexible enough to handle common de-
formations. Details of our choices for the representation of
images and objects are described in Section 4.
The initial stage of our learning algorithm provides a set

of seed appearance models to use as starting points for the
detection of objects mentioned in the captions. The most
straightforward starting points are singleton features, but
their relationship to an object may be too tenuous to pro-
vide effective guidance for building strong object models.
At the same time, trying all possible configurations of even
a small number of features as seeds is impractical. Instead,
our initialization method generates structured seed models
by looking at recurring neighborhoods of features that also
co-occur with particular caption words.
The initial seed models are fed into an iterative improve-

ment stage, which expands them into appearance mod-
els that cover a larger portion of the object. In previous
work, the guidance for the iterative improvement of an ini-
tial model is provided through a probabilistic translation
method [10, 14]. However, it is expensive to relearn all
of the translation probabilities every time a new configu-
ration of features is formed. Here, we use a simpler and
more efficient measure of correspondence between a cap-
tion word and an appearance model. The measure reflects
the amount of evidence, available in a set of training images,
that the word and the model are generated from a common
underlying source object. Section 5 elaborates on the cor-
respondence measure, as well as the initial and the iterative
improvement stages that draw on this measure.

4. Image and Object Representations
4.1. Image Representation
We represent an image as a set I of interest points pm,

i.e., I = {pm|m = 1 . . . |I|}. These points are detected
using Lowe’s SIFT method [12], which defines a point in
terms of its Cartesian position xm, scale σm and orientation
θm. In addition to these, for each interest point we also ex-

tract a feature vector fm that encodes a portion of the image
surrounding the point. Since fm is extracted relative to the
spatial coordinates of pm, it is invariant to changes in posi-
tion, scale and orientation. For this, we use the PCA-SIFT
feature encoding developed in [11] because it allows for fast
feature comparison and low memory requirements. This
feature encoding is reasonably robust to lighting changes,
minor deformations and changes in perspective. Since indi-
vidual features capture small, independent patches of object
appearance, the overall representation is robust to occlusion
and articulation.
In addition to the continuous feature vector fm, we also

use a quantized descriptor cm for each image point, in order
to quickly scan for potentially matching features. Following
[13], we use K-means to generate a set of cluster centers
from a set of features randomly selected from our training
images. The index of the cluster center closest to fm is the
descriptor cm associated with pm.
Each point pm is also associated with a neighborhood

nm that is the set of spatial neighbors of the point. The
distance measure used to construct a neighborhood is:

∆xij =
‖xi − xj‖
√

σ2
i + σ2

j

(1)

This normalized distance measure makes neighborhoods
more robust to changes in scale, as newly-introduced fine-
scale points are less likely to push coarse-scale points out of
the neighborhood when the scale of the object increases.
To summarize, each point pm in an image representation

I is a 6-tuple of the form (fm,xm, σm, θm, cm,nm).

4.2. Appearance Model Representation

We represent an appearance model using a graph
G = (V, E). Each vertex vi = (fi, ci) is composed of
a continuous feature vector fi, and a cluster index vector
ci containing indexes for the |ci| nearest cluster centers to
fi. Associating each model vertex with a set of clusters al-
lows for fast comparison of features during model detection
while minimizing the effects of quantization noise. Note
that model vertices, unlike image points, do not include
spatial information because the appearance model must be
invariant to scale, translation and rotation. Instead, each
edge inG encodes a spatial relationship between vertices in
four parts: eij = (∆xij , ∆σij , ∆φij , ∆φji), where∆xij is
the relative distance between vi and vj , ∆σij is the relative
scale difference between them,∆φij is the relative heading
from vi to vj , and∆φji is the heading in the opposite direc-
tion. These relationships are taken from Carniero and Jep-
son [3], and are calculated as in (1) above, and (2) and (3)
below:



∆σij =
σi − σj

√

σ2
i + σ2

j

(2)

∆φij = ∆θ(tan−1(xi − xj) − θi) (3)

where∆θ(.) ∈ [−π, +π] denotes the principle angle.
An observed instance of a model is a set of vertex–point

associations, O = {(vi, pm)|vi ∈ V, pm ∈ I}, where O de-
fines a one-to-one mapping between a subset of the model
vertices and some local interest points in an image. Though
each model is intended to robustly describe an object’s ap-
pearance, no observed instance of an object is expected to
fit its model exactly. Deformations, noise and changes in
perspective can distort the features encoded at local inter-
est points and the spatial relationships between them. Also,
a model may be only partially observed, with vertices oc-
cluded or lost due to inconsistent detection of points.
We introduce an energy function,H(G, I, O), that mea-

sures how well the observed instance O in image represen-
tation I matches the object appearance modelG. The func-
tion is defined so that observed configurations of points that
closely fit the model have low energy, whereas configura-
tions that are very different from the model have high en-
ergy. Details are given in Appendix A.
To detect an instance of an object model, we need to find

a low-energy association of its vertices to points in an im-
age. Given that a typical image can contain thousands of
interest points, determining the optimal associations is po-
tentially quite expensive. We thus propose a greedy heuris-
tic that efficiently searches the space of possible associa-
tions for a nearly-optimal solution. Since individual ver-
tices of a model may be unobserved, our detection heuris-
tic allows for a connected model to be instantiated as dis-
connected components. To reduce the probability of false
detections, the search for disconnected parts is confined to
the neighborhood of observed vertices, and isolated single-
ton points are ignored. That is, in a valid model instance,
each observed vertex shares a model edge with at least one
other observed vertex. Also, only those observationsO with
H(G, I, O) below a learned model-specific threshold,∆H ,
are considered valid instances for annotation. The detection
algorithm is given in Appendix B.

5. Using Words to Learn Appearance Models
Here, we propose an unsupervised learning algorithm

that constructs structured appearance models for the salient
objects appearing in a set of training image–caption pairs.
Salient objects are those that appear in many images, and
are often referred to in the captions. Because each image
contains many features of non-salient objects, and the cap-
tion contains words irrelevant to the displayed objects, the
algorithm has to discover which image features and words

are salient. The algorithm learns object models through dis-
covering strong correspondences between configurations of
visual features and caption words. The output is a set of
appearance models, each associated with a caption word.

5.1. A Measure of Word–Model Correspondence
We seek pairs of words and appearance models that are

representations of the same object in different modalities
(linguistic and visual). We assume that both the word and
the appearance model are present in an image because the
object is present. We thus define and use a measure of con-
fidence that a given appearance model is a reliable detector
for the object referred to by a word.
Consider a set of k captioned images. The occurrence

pattern of a word w in the captions of these images may be
represented as a binary vector rw = {rwi|i = 1, . . . , k}.
Similarly, we can represent the occurrence of a model G
with another binary vector, qG = {qGi|i = 1, . . . , k}. It is
always possible that the two patterns of occurrence are in-
dependent (the null hypothesis or H0). Alternatively, they
may have been derived from a hidden common source ob-
ject (the common-source hypothesis or HC ). According to
HC , some fraction of image–caption pairs contain a hidden
source s, which may emit the word w and/or the appear-
ance model G. We define the correspondence between w
andG as the log-likelihood ratio of generating the observed
patterns, rw and qG, underHC andH0:

Corr(w, G) = log
P (rw ,qG|HC)

P (rw ,qG|H0)
(4)

P (rw,qG|HC) =
∏

i

∑

si

P (si)P (rwi|si)P (qGi|si) (5)

P (rw,qG|H0) =
∏

i

P (rwi)P (qGi) (6)

where si ∈ {0, 1} represents the presence of the common
source in image–caption pair i.

Corr(w, G) reflects the degree to which the common-
source hypothesis explains the observed patterns of occur-
rence for a word w and a model G. To get the likelihood
of observed data under HC , we need to estimate the pa-
rameters P (si), P (rwi|si), and P (qGi|si). P (rwi|si) and
P (qGi|si = 0) are given fixed values according to assump-
tions we make about the training images, which we elab-
orate in Section 6.1. P (si) and P (qGi|si = 1) are given
maximum likelihood estimates (MLEs) determined using
expectation maximization over the training data. The MLEs
for parameters under H0 are simply the observed probabil-
ities for word and model occurrence.

5.2. Model Initialization
The goal of the model initialization stage is to quickly

find a set of seed appearance models that are fruitful start-



ing points for building strong object detectors. Later, the
seed object models are iteratively expanded and refined into
larger and more distinctive appearance models using image
captions as a guide. The existence of good starting points
strongly affects the final outcome of the iterative improve-
ment process. Nonetheless, a balance must be reached be-
tween time spent searching for good seeds and time spent
in the improvement stage refining the seeds.
Even searching the space of small models for good start-

ing points is not a trivial task. We thus look for good seed
models using the more tractable neighborhood patterns in-
troduced by Sivic and Zisserman [13]. A neighborhood pat-
tern pm is a vector containing the quantized descriptors c of
a point pm and all of its neighbors nm. We use the cluster-
ing method described in [13] to find commonly recurring
neighborhoods across the training images.
To find distinctive starting points that also correspond to

named objects, the initialization module finds associations
between a caption word w and a cluster of similar neigh-
borhoods N = {pm}, using Corr(w,N ) in Equation 4
above.1 Neighborhoods within a cluster N that strongly
corresponds to a word w are likely to spatially overlap the
object referred to by w. We thus construct seed appear-
ancemodels potentially corresponding tow, using recurring
points and their spatial relationships within N . Since the
simplest detectable appearancemodel is a single pair of ver-
tices, we identify neighboring pairs of points with consis-
tent spatial relationships that have appeared in the elements
of N in more than one distinct image. The pair with the
lowest summed energy (Equation 7 in Appendix A) across
all detections is adopted as a seed appearance model.

5.3. Iterative Improvement
The improvement stage iteratively makes changes to a

seed object model, guided by the correspondence between
caption words and models. More specifically, the improve-
ment algorithm starts with a seed model for a given word,
makes a simple modification to this model (e.g., adds a new
vertex), and detects instances of the new model in the train-
ing images. The new model is accepted as a better object
detector under either of two conditions: it has a stronger
correspondencewith the word (according to Equation 4), or
it has the same correspondence, but a lower total detected
energy (according to Equation 7).
On alternating iterations, the algorithm randomly tries

to either adjust the energy threshold, or expand the model
by adding a vertex or an edge. For the former, the thresh-
old is increased (decreased) by a small percentage (±25%),
in order to leave out false detections or bring in true in-
stances. When expanding the model, candidates for addi-
tion include: (i) points that consistently appear in the neigh-

1For this, we replace qG in (4) with qN indicating the occurrences of
N in the training images.

borhoods of the currently-detected vertices—to be added as
new vertices; and (ii) consistently appearing pairwise spa-
tial relationships between the currently-detected vertices—
to be added as new edges.
The algorithm first tries the addition that would result in

the greatest decrease in total energy over the currently de-
tected instances. This gives priority to neighboring points
that are more common and have the most consistent spatial
relationships with detected model vertices. Since adding a
vertex to the model also adds an edge, it is often associ-
ated with a greater decrease in energy than adding a new
internal edge. Consequently, the algorithm tends to favor
expanding the scope of the model over adding spatial con-
straints. Nonetheless, if a relationship between vertices con-
sistently appears in many detected instances, it will have
priority over a point that appears in few instances.
The initial two-vertex model often is not large enough

to encode the visual structure of the initial neighborhood
cluster N and so may occur in many other distracting con-
texts. In order to give the model a chance to grow to better-
characterize its seed context, the first few iterations of the
improvement stage are confined to search for the model in
the starting cluster of neighborhoods, N , rather than the
complete training set.

6. Using Models to Annotate New Instances
For evaluation, we use the models our algorithm has

learned from training image–caption pairs to detect and an-
notate new instances of objects in previously unseen (and
uncaptioned) test images. For detection of new instances,
we use the same algorithmwe use in learning (Appendix B).
To annotate a detected instance of an object, we use the
word associated with the learned object model.
In Section 6.1 we explain our choices for the parameters

of our algorithms. We then compare results with our previ-
ous work [10] by looking into the performance of our learn-
ing and annotation methods on a data set of 228 real images
of toys in Section 6.2. Finally, we present the results of ap-
plying our methods to a larger and more challenging set of
1240 real-world images from the web in Section 6.3.

6.1. Parameter Settings
For our image representation described in Section 4.1,

we use a cluster set of size 4000 to generate the quantized
descriptors cm associated with each image point. We set
the neighborhood size |nm| to 50 since this was empiri-
cally found to be an appropriate tradeoff between having
distinctiveness and locality in a neighborhood. Recall from
Section 4.2 that in an appearance model, each vertex is as-
sociated with a vector of neighboring cluster centers, ci; we
set |ci| = 10 to minimize the chance of missing a matching
feature due to quantization noise.



We set the parameters of the word–model corre-
spondence measure, Corr(w, G), according to the fol-
lowing assumptions: Reflecting high confidence in the
captions of training images, P (rwi = 1|si = 1) = 0.95
and P (rwi = 1|si = 0) = 0.05. During model learning,
P (qGi = 1|si = 0) = 0.01 in order to decrease the likeli-
hood of false detections. When evaluating correspondences
between words and neighborhoods to find good seed mod-
els, we set this target false-positive rate higher at 0.05, as
we do not want to overlook potentially-strong seed models.
At the initialization stage, all word–model pairs with

Corr(w, G) > 0 are selected as seed models, further mod-
ified in up to 100 stages of iterative improvement. For
annotation of new instances, we only use learned models
G that are considered reliable according to our correspon-
dence measure (Corr(w, G) ≥ 10 for some word w). Since
we consider precision more important than recall for an-
notation, we set the energy threshold during annotation to
twice the threshold learned during training. The value of
this threshold could be determined by a user, depending on
whether they desire more detections (higher recall) or fewer
detections with higher confidence (higher precision).

6.2. Experiments on Toy Images
We use the 128 training and 100 test images described in

[10]. Each image in this data set contains 3 or 4 toy objects
(out of a pool of 10), arranged in different poses, and par-
tially occluded in many cases. Each training image is paired
with a manually-generated caption that contains names of
all objects in the image plus a few distractor names.
Figure 2 shows the precision–recall curves of both the

new detection method and that of [10] on the test images.
Our new method consistently demonstrates substantially
higher annotation precision for equivalent recall; in addi-
tion, we learn strong models for 3 of the objects for which
the original method of [10] was unsuccessful. These re-
sults confirm our hypothesis that we can build more distinc-
tive object models by finding recurring spatial relationships
among the recurring image points. Improved performance
is also due to the choice of better starting points for model
construction. Moreover, our simpler correspondence mea-
sure speeds up the training phase by a factor of 10 (∼ 1–2
hours for the new method vs. ∼22 hours for that of [10]).

6.3. Experiments on Web Data
The web data set includes images of National Hockey

League (NHL) players and games, with associated captions,
downloaded from various web sites, and randomly divided
into 850 training and 390 test image–caption pairs. About
a third of the captions are full sentence descriptions (as in
Figure 1, page 2), whereas the remainder simply name the
two teams involved in the game (e.g., ‘Maple Leafs vs Sen-
ators’). Most images are on-ice shots and display multiple
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Figure 2. Precision–recall curves for our new detection method
and our earlier bag-of-features approach [10].

players in a variety of poses and scales.
We automatically process captions of the training im-

ages, removing capitalization, punctuation, and plural in-
dicators, and dropping words that occur in less than 1%
of the captions. Since NHL teams are referred to by both
their team name (e.g., ‘Bruins’) and their city name (e.g.,
‘Boston’), we treat an occurrence of either as an instance
of the team name. This link between team names and city
names is the only prior knowledge available to our learning
algorithm. The final vocabulary extracted from the train-
ing captions contains 105 words, of which only 30 are team
designations. Note that the algorithm has only these caption
words and the contents of the images to guide its search for
meaningful word–appearance pairs.
From the training image–caption pairs, our algorithm

learns one or more strong appearance models (i.e., those
with Corr ≥ 10) for 9 team names (out of 30). The strength
of learned models is highly influenced by the number of
times the object appears in the training set. The 9 teams for
which strong models are learned are on average mentioned
in 108 captions, whereas the other 21 teams are on average
mentioned in 34 captions. In addition, a team does not have
to be visible in an image in order to be mentioned in the
caption. Thus, in most cases, fewer instances of an object
are accessible to the learning algorithm. For instance, the
team name Vancouver Canucks is mentioned in 52 training
captions but players only appear in 20 images and the logo
is only visible in 14 of these.
Of the 9 teams with strong learned models, 8 were de-

tected in the test images. Figure 3 shows a test image with
a detection of a learned appearance model associated with
the Toronto Maple Leafs. Figure 4 shows several other de-
tections of learned appearance models (and their associated
team names) on test images. Table 1 gives the precision
and recall of detections of each of the 8 teams, calculated
based on whether the model predicted the presence of the
correct word in the corresponding test caption. (Note that
we use the test captions only for evaluation.) Test image
annotation generally has high precision but low recall. This
reflects the fact that teams mentioned in the captions are not
always visible and that a hockey player has a highly variable



Figure 3. Detection of a model associated with the Toronto Maple
Leafs. Observed vertices are in red; edges in green.

(a) Toronto Maple Leafs (b) New York Islanders

(c) Minnesota Wild (d) Buffalo Sabres

(e) Chicago Blackhawks (f) Tampa Bay Lightning

Figure 4. Sample detections of team logos in test images.

Name Precision Recall Frequency
Tampa Bay Lightning 0.92 0.73 48

Maple Leafs 1.00 0.15 80
Minnesota Wild 1.00 0.22 51

New York Islanders 1.00 0.20 20
Buffalo Sabres 1.00 0.14 22

Chicago Blackhawks 0.67 0.16 37
Dallas Stars 1.00 0.08 50

Ottawa Senators 1.00 0.05 20

Table 1. Precision and recall of detection for 8 team names in test
images, and the number of test captions each name appears in.

appearance depending on viewing angle and pose. A model
that captures the appearance of the front logo will not help
annotate a view of a player from the side.

(a) Variations in Scale (b) Alternate Sabres Appearance

(c) Minnesota Wild Arena (left) (d) Detections of ‘vs’

Figure 5. Some interesting detections in test images.

Figure 5 illustrates several interesting types of model de-
tections. Part (a) demonstrates that the learned appearance
models can be detected across a wide range of scales. In
(b), the detected Buffalo Sabres shoulder-patch model is an
example of multiple distinct models being associated with
a single word (cf. Figure 4(d)). The model detection on the
left of (c) shows the appearance of an advertisement along
the boards of the Minnesota Wild arena, learned as a sec-
ond model for this team name. (d) shows a detection of the
Minnesota Wild logo and several background detections as-
sociated with the word ‘vs’. Due to the probabilistic na-
ture of our algorithm, it learns strong associations between
background features in images, such as parts the net, and
function words, such as vs and the. These types of detec-
tions can be easily avoided by ignoring words that occur
frequently across many captions, which are less distinctive.

7. Conclusions
We have proposed an unsupervisedmethod that uses lan-

guage both to discover salient objects and to construct dis-
tinctive appearance models for them, from cluttered images
paired with noisy captions. The algorithm simultaneously
learns appropriate names for these object models from the
captions. We have devised a novel appearance model that
captures the common structure among instances of an object
by using pairs of points together with their spatial relation-
ships as the basic distinctive portions of an object. We have
also introduced a novel detection method that can be reli-
ably used to find and annotate new instances of the learned
object models in previously unseen (and uncaptioned) test
images. Given the abundance of existing images paired with



text descriptions, such methods can be very useful for the
automatic annotation of new or uncaptioned images, and
hence can help in the organization of image databases, as
well as in content-based image search.
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A. Energy Function
The energy function has two components, looking at ver-

tices and edges, respectively:

H(G, I, O) =
∑

(vi,pm)∈O

hV (vi, pm)+
∑

eij in O

hE(eij , pm, pn)

(7)
where eij is in O if both (vi, pm) ∈ O and (vj , pn) ∈ O.

hV (vi, pm) measures the fit between a model vertex vi

and the observed image point pm, and is calculated as:

hV (vi, pm) = δV + αf‖fi − fm‖2 (8)

where δV is the maximum energy reward for observing a
vertex, and αf is the rate the reward decays with feature
dissimilarity.
The component hE measures how well spatial relation-

ships between observed points fit expectations set by the
model. It is calculated as:

hE(eij , pm, pn) = δE + ασ(∆σij − ∆σmn)2

+ αx(∆xij − ∆xmn)2

+ αφ(∆φij − ∆φmn)2
(9)

where δE is the maximum energy reward for matching the
expected spatial relationship between vertices, and ασ , αx

and αφ control the rates of reward decay. In our exper-
iments, these parameters are set as follows: δV = −8,
δE = −5, αf = 0.16, ασ = 25, αx = 0.25 and αφ = 2.5.
By experimenting with several pairs of training images, we
determine thresholds for spatial and feature variation that
capture most corresponding interest point pairs while ex-
cluding most false positives. The δV and δE parameters
roughly reflect the log probability of two random point pairs
falling within their respective thresholds while the α values
are adjusted so that hV < 0 and hE < 0 within the allowed
variational range.

B. Model Instance Detection Algorithm
Algorithm 1 uses a greedy heuristic to detect instances

of an appearance model G within the image representation
I . The actual implementation can detect more than one in-
stance ofG within I by suppressing observed image points.

Algorithm 1 Detects instances of G in I

FindModelInstance(G,I)
1. Find the set of potential vertex–point associatiations A = {(vi, pm)},

where cm ∈ ci and hV (vi, pm) < 0.
2. Find the set L of potential links ((vi, pm), (vj , pn)) between elements of

A, where pn ∈ nm and hE(eij , pm, pn) < 0.
3. Set the initial instanceO to the pair {(vi, pm), (vj , pn)}, such that the link

((vi, pm), (vj , pn)) ∈ L andH(G, I, O) is minimum.
4. Remove (vi, pm) fromA if either vi or pm are part of another vertex–point

association ∈ O.
5. Remove ((vi, pm), (vj , pn)) from L if neither end is inA.
6. LetAadj be the subset ofA that shares an edge in L withO.
7. If Aadj contains associations that could decreaseH(G, I, O), add to O the

association with greatest decrease inH, and go to step 4.
8. Let Lneigh be the subset of L within the union of the neighborhoods of ob-

served points inO.
9. If Lneigh contains observed links that could decreaseH(G, I, O), add toO

the pair of associations with the link that produces the greatest decrease inH,
and go to step 4.

10. ReturnO.


