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Abstract

We address the problem of learning both the semantics
(names) and the visual features (SIFT collections) of ob-
jects appearing in a training set of unstructured, captioned
images of cluttered scenes. Prior work in applying ma-
chine translation models to learn the associations between
image features and caption nouns has assumed a one-to-
one correspondence between features and nouns. However,
each training image may contain thousands of SIFT features
belonging to multiple objects. Our challenge is two-fold:
1) grouping the SIFT features into meaningful collections,
and 2) learning the object names associated with those col-
lections. Since better collections tend to have stronger as-
sociations with object names, we offer an integrated solution
that uses the caption words to drive the feature grouping pro-
cess. The result is a more general model acquisition frame-
work that does not assume words correspond to individual
features and does not require training images with isolated
objects or unambiguous labels. The model that is learned
performs well at labeling cluttered scenes in a set of test im-
ages.

1. Introduction

Image annotation is recognized as an important means for
associating meaning (in the form of caption words or key-
words) with an image; it can also be seen as a means for
assigning meaning (in the form of visual features) to the
caption words (e.g., [2, 9, 14, 16]). The patterns of co-
occurrence of words and visual features in annotated im-
ages can provide the evidence needed to establish meaning-
ful links between the visual and linguistic representations.
However, this approach can only succeed to the extent that
the words and visual features correspond to meaningful as-
pects of what is portrayed in the image.

On the language side, we face three problems. Words
in the caption may be noisy (e.g., misspelled), they may be
irrelevant (i.e., they don’t refer to objects in the image), or
they may, in isolation, not capture the best meaning of the
object (e.g., if, for a particular object in an image, “rocket

ship” is more appropriate than “rocket” or “ship”). In this
work, we will focus on only one of these problems, namely
the problem of irrelevant words in the caption. On the vision
side, we will use the associations between caption words and
image features to overcome all three analogous problems in
vision, eliminating unstable (noisy) features from a model,
excluding background (irrelevant) features from the model,
and grouping individual features belonging to an object into
collections that better capture the scope (granularity) of the
object.

A cluttered scene may yield hundreds or even thousands
of local features, only a small subset of which corresponds
to any given object. This perceptual grouping or segmen-
tation problem exists no matter what type of image repre-
sentation is used: pixels, line segments, local features or
regions. Given a set of features extracted from an image,
the challenge is to find the meaningful subsets, to ‘carve na-
ture at its joints.’ However, these ‘important’ subsets rep-
resent a vanishingly small portion of all possible subsets for
any non-trivial representation. Although effective bottom-up
grouping heuristics exist for certain classes of features (e.g.,
Gestalt grouping of lines), today’s popular interest point-
based features do not lend themselves to bottom-up group-
ing. Simply evaluating all possible groupings is not usually
feasible.

How might we find meaningful groupings in the context
of the annotation problem? Simple frequency of occurrence
in the training data can provide a clue. If certain collec-
tions of image features exist more often than can easily be
explained by chance, they may have a common, meaningful
source. However, the number of such groupings may still be
prohibitively large. Even if they do arise from some com-
mon, recurring source in the image, such groupings might
have no corresponding word on the language side. This
suggests a dual approach: find co-occurring visual features
which also have a significant level of co-occurrence with
specific words. Considering the modalities of language and
vision together can make the perceptual grouping problem
more tractable at the same time as it offers a solution to the
semantic association problem.

In this paper, we begin with a set of captioned training im-
ages of cluttered scenes containing multiple objects. On the



vision side, each image is processed to yield a set of local
SIFT features [13], yielding hundreds or thousands of fea-
tures per image. On the language side, each image is anno-
tated with a set of nouns which may or may not name objects
in the image. Drawing on the probabilistic translation model
of [4] (as in [9, 16]), we introduce a novel iterative algo-
rithm for growing candidate associations between individual
SIFT features and nouns into more definitive models of ob-
ject appearance in the form of collections of SIFT features,
or compounds. This simultaneous language-driven percep-
tual grouping and association yields a set of models which is
subsequently used to annotate new images.

2. Related Work

A number of researchers have explored the problem of
learning associations between image features and text, in-
cluding Barnard and Forsyth [2], Duygulu et al. [9], Blei
and Jordan [3], and Cascia et al. [8]. As impressive as the
results are, these approaches make limiting assumptions that
prevent them from associating words with configurations of
features (though see Fergus et al. [11] and Wachsmuth et al.
[16]).

Cascia et al. compute visual features over the whole im-
age and therefore do not support the notion of an image ob-
ject distinct from its background. Other approaches, like
Barnard and Forsyth [2], Feng et al. [10], or Carneiro and
Vasconcelos [7], divide the image into a pre-segmented set
of regions or rectangular image tiles and assume probabilis-
tic generation processes in which words and image features
are independently produced given the image or image topic.
Thus, words are never directly linked to groups of image fea-
tures.

Though the approaches by Feng et al. or Carneiro and
Vasconcelos implicitly capture some compound knowledge
by coding positional information in the different image tiles,
the representation is not explicit. Models proposed by
Duygulu et al. [9] as well as Blei and Jordan [3] include an
explicit alignment of caption words and image regions which
is a prerequisite for compound modeling. However, words
are only aligned with individual regions and not configura-
tions. In Carbonetto et al. [5], relations between regions are
included in a Markov random field model that could, in prin-
ciple, capture the interrelations between parts.

Acknowledging that coarse granularity features, such as
regions, may be oversegmented during feature extraction,
Barnard et al. [1] proposed a ranking scheme for potential
merges of regions based on a model of similar word-region
association. This approach is problematic, however, as dis-
parate components of a compound may have very different
word associations.

Wachsmuth et al. [16] proposed a framework employ-
ing a translation model to help extract shape categories of
common object classes from collections of annotated, over-

segmented images. While performing perceptual grouping
through region merges, the framework would also attempt to
detect object classes composed of multiple parts. The tech-
nique, however, was only demonstrated on synthetic images,
and training focused on finding the correct (possibly hierar-
chical) image segmentations, rather than distinctive configu-
rations of features.

In a different context, Hoogs et al. [12] used co-occurring
visual features to help suggest a semantic interpretation of
the image content. Detected image regions activate elemen-
tal terms in WordNet which, together with topics extracted
from accompanying text, help guide the semantic search
through the knowledge base.

In contrast to the automatic image annotation literature,
object recognition techniques often employ models describ-
ing multiple components and their relationships. As a rel-
atively recent example, Fergus et al. [11] model objects as
constellations of salient features. Their approach, however,
does not explicitly deal with the ambiguity of training sets
containing multiple objects and multiple noisy annotation
words for each image.

3. Features and Compound Features

In an image annotation system, the choice of feature
largely determines the types of object classes that can be reli-
ably detected. Some object types, such as grass, pavement or
sky, have no consistent shape, and might be well-described
by a region descriptor (e.g., a blob) encoding color or texture.
Other objects, such as tables, lamps and clothed people, are
defined more by their shape and less by their color and tex-
ture, suggesting a structured or parameterized shape model.
Still other object classes, such as trees or mountains, exhibit
patterns of limited variation in both shape and appearance.

In this work, we adopt the local interest point detector and
SIFT feature representation developed by Lowe [13]. Briefly
reviewing, a set of interest points are detected at the scale-
space maxima of an image; let ��� represent the � th detected
local interest point with a particular position, orientation and
scale. A SIFT feature, ��� , encodes the local pattern of inten-
sity changes as a 128-element vector. The feature is invariant
to scaling, translation and rotations in the image plane, and
is designed to be robust to changes in intensity and contrast,
small translation errors, and small rotations in depth.

In adopting SIFT features, we restrict ourselves to object
classes which generate interest points in reasonably stable
configurations and where the surface appearance is stable for
objects within the class. For most purposes, this means ex-
emplar objects or objects manufactured to the same design.
In cluttered scenes, SIFT features are plentiful, with thou-
sands detectable in a typical image. This is both a blessing
and a curse. It allows us to potentially detect objects that
occupy only a small portion of the image, yet the number of
visual features far outweighs the number of relevant words



in a typical image annotation.
The SIFT feature vectors � are continuous, while our cur-

rent translation model operates on discrete tokens. We there-
fore perform vector quantization to replace each feature � �
with a discrete ‘visual word’ feature, � � . Other recently-
developed image annotation techniques avoid this quantiza-
tion step and estimate continuous probability densities over a
feature space [7, 10]. Since we are employing SIFT features,
which already have high dimensionality, and wish to find
collections or configurations of these features, the continu-
ous description would probably become too unwieldy. Of
course, transforming the feature vectors into discrete classes
introduces an unavoidable level of quantization noise. It may
be possible to reduce the effect of this noise by associating a
small weighted set of features with each interest point.

Vector quantization is trained on a set of
�������������

local in-
terest features selected at random from a pool of 2500 stock
photo images. We use the K-means algorithm to generate a
set of �
	�� ����� cluster centers, ��� , ������� ��������� ��� , similar
to the approach of Sivic and Zisserman [15]. The feature data
is whitened before clustering so that the Euclidean distance
on the transformed data equals the Mahalanobis distance in
the original space:

��� � � � ��� �!	#" � � �%$ ��� �'&)(+*-, � � �+$ ���.� (1)

where ( is the covariance matrix of the interest features.
Each detected SIFT feature is replaced with the index of the
nearest cluster center:

� �/	10 2�3547698� ��� � � � � � � � (2)

At training time, we also calculate the proportion : � of SIFT
features in our stock photo collection assigned to each cluster
center ��� . There is a great deal of variation in these cluster
weights. Again following Sivic and Zisserman [15], we sup-
press the most common 0.5 percent and the least-common
10 percent of features. This is based on an analogy with text
retrieval, where the least common and most common terms
are less informative.

Individual SIFT features may not be strong indicators of
a particular object or object class. Specific arrangements or
structures of local features are more discriminative. In this
paper, we consider features that exist within a local neigh-
borhood. A compound feature ;�< is essentially a ‘bag’
of such local features. Each compound feature is a triple,;=<>	?�A@�< �'B < ��C <D� , consisting of a set of visual features@ < , a presence threshold

B < , and a neighborhood size
C < .

A compound is considered present if at least
B < distinct fea-

tures within @ < exist within a ‘local neighborhood’ of sizeC < . Specifically, consider an interest point � � with the cor-
responding SIFT feature � � �1@ < . The feature � � and the
features of the

C < spatially closest interest points form the
neighborhood feature set E1FHG� . We detect the compound

;=< at � � if at least
B < distinct elements of @�< are present

in EIF G� . We ignore compound features whose neighbor-
hood would overlap with a previously detected instance of
the same compound. Note that each individual feature can
also be considered a compound of size one, so J is the en-
tire set of local features and detected compounds within an
image. The combinatorics of the problem yields a very large
number of possible compound features in an image. How-
ever, only a vanishingly small fraction of these correspond to
meaningful configurations, and fewer still may correspond to
nouns appearing in the captions. This further increases the
asymmetry between annotation word counts and visual fea-
ture counts.

4. The Caption-to-Image Translation Model

In this work, the translation model serves two purposes.
Given a set of images, each of which is associated with a set
of visual features and a collection of annotation words, the
translation model discovers correspondences between the vi-
sual features and the annotations. However, the initial set
of visual features, extracted based on image characteristics
alone, may not be distinctive enough to pick out the objects
that are named in the annotations. Therefore we also use the
translation model to help guide a search for better features.
An iterative process proposes larger, more distinctive com-
pound features, and uses the correspondence strength in the
current translation model to evaluate the goodness of each
potential compound. In the following subsections, we dis-
cuss each of these aspects of the translation model in turn.

4.1. The Basic Translation Model

As in earlier image annotation work (e.g., [9, 16]), we
begin with the following translation model: the conditional
probability KML �ONQP R � , given two sets of symbols

N
and

R
. (In

the formulation by Brown et al. [4] for machine translation,
N

and
R

referred to sequences of words in French and English,
respectively.) To reduce the number of parameters to be es-
timated, it is generally assumed that the symbols (words or
image features) can be generated independently. Each sym-
bol S.T has an alignment variable UVT from � �����������XW � , whereW

is the number of symbols in
R

, that associates S�T with a
single symbol, Y Z�[ , which may be the “null” symbol, Y.\ .

There is a strong asymmetry in this model, as each sym-
bol in

N
is associated with a single symbol in

R
(or with none

of those—the null symbol), while each symbol in
R

can be
associated with an arbitrary number of symbols in

N
. In our

annotated images, we also have an asymmetry, in that there
are typically a very large number of visual features and a
relatively small number of caption words. It is much more
likely that multiple visual features correspond to a single
word than vice versa. We thus treat the set of annotation
words ] as

R
and the set of visual features J as

N
in the for-

mula above, yielding the following, based on Brown et al.’s



Model 1:

KML � J P ] � 	 �� W�� �A��� ��
��� ,

	

Z����-\� � ; � P � Z�� � (3)

Here � is the number of compound features,
W

is the num-
ber of caption words, � is a constant, and 

� ; � P � Z�� � is an el-
ement of the translation table � defining the distribution over
compound visual features for each word. As in Brown et al.,
we use EM to find the � that maximizes the probability of the
training data.

4.2. Dealing with “Noisy” Features

The goal is to learn stable associations between words
and image features. One of the drawbacks of the above
model is that it is devised for a situation—translation be-
tween two languages—in which most elements in one repre-
sentation (the source language) are aligned with an element
in the other representation (the target language). The possi-
bility of alignment with the null word exists, but most words
are expected to align with an actual word. However, this is
generally not the case in aligning visual features and cap-
tion words, and is especially not the case with SIFT features.
There are thousands of SIFT features in any given image, and
only those that are a stable part of the appearance of a named
object have any counterpart in the caption text. This moti-
vates a larger role for the null symbol, to serve as a “default”
alignment for the many SIFT features which correspond to
objects or surfaces that are not named among the annotation
words, or that are transient, unstable aspects of a named ob-
ject. We want to ensure that such “chance” features are not
linked to actual caption words, by increasing the likelihood
that they align to the null word.

One issue is that our small pool of labeled training images
is not broad enough for us to determine the distribution of the
types of background features in images more generally. To
address this, we use the counts of singleton features over our
pool of 2500 stock images (see Section 3) to estimate the
prior probability distribution over individual features. The
prior likelihood of any compound feature is calculated as-
suming singleton features are placed independently. We then
add a dummy entry to the translation training data which in-
cludes a set of visual feature counts (both singleton and com-
pound) in proportion to their prior likelihoods (effectively
estimating their occurrence by chance). The dummy entry
has no associated caption words, entailing that a strong asso-
ciation is established between the “chance” features and the
null word. Then, features with high prior likelihood or which
appear rarely in the training images are more likely to align
with the null symbol (i.e., to be considered background).

Since the background or noisy features typically comprise
more of the image than features from the objects of interest,
the translation table is normalized to give the null word a
higher alignment probability than the actual caption words.

In our experiments, visual features are ten times more likely
a priori to align with the null word than with a caption word.

4.3. The Search for Compound Features

A cornerstone of our framework is the use of the associa-
tions between annotation words and visual features to guide
the process of grouping visual features into meaningful col-
lections that serve as better indicators of the objects named
by the words. This is achieved by initially learning the trans-
lation probabilities on singleton visual features, then itera-
tively trying out potential collections of the existing features.
These potential compound features are evaluated with re-
spect to their improvement to the translation probability for
predicting the annotation word under consideration. A po-
tential feature that leads to an improvement is adopted, and
the translation model is iteratively re-learned.

We use a simple greedy algorithm. We start by initializ-
ing the set of features that will be considered. For each of
the � annotation words

� T (excluding the null word), we
choose the ���������1	�� � singleton visual features � which
have the highest KML ��� T P �V� and occur more than � < T�� 	��
times in the training data. These features form  	 � ; T � P ! 	� ����� � � �7	 � ����� � ������� � , the basis for the parallel, indepen-
dent growth of compound features. Initially, all ;AT � are sin-
gleton features, while on successive iterations, they may be
singleton or compound features.

Each iteration of the search algorithm considers all ele-
ments of  . If ;�T � is the current feature, we try one previ-
ously untested modification to produce a new compound fea-
ture " T � for the associated word

� T . The compound " T � re-
places its constituent features wherever they appear together
in the training images. If " T � occurs at least � < T#� times,
we update the translation model for the altered data to getKML ��� T P " T � � . If this is greater than KML ��� T P ; T � � , then " T � re-
places ; T � in  . Either way, we “undo” the changes to the
training data and continue the iterative process with the next
feature in  .

The possible modifications for producing potential com-
pounds include removing any one element from the cur-
rent compound, and adding any element that co-occurs (in
the same neighborhood) with the compound in the training
data. For each removal/addition operation, we test both a
‘changed’ and a ‘stable’ version where the target number

B T �
of constituent features is decreased/increased by one, respec-
tively, in the former, and unchanged in the latter.

In theory, we could run the search until there are no
more potential changes in  . In practice, this is too time-
consuming, and we limit the outer loop of the search to 200
iterations.



5. Experiments

5.1. Data Set

We tested the algorithm on a set of real object images,
in this case � � � images of arrangements of children’s toys.
The original color photographs were converted to intensity
images with a resolution of 800x600. Most images contain
3 or 4 toy objects out of a pool of 10, though there are a
handful of examples of up to 8 objects. The objects are
not arranged in any consistent pose and many are partially
occluded. Illumination was either direct sunlight, indirect
natural light or from the camera’s integrated flash. The im-
ages were collected against approximately 15 different back-
grounds of varying complexity.

The pool of � � � images was randomly divided into a
training set of � � � and a test set of � ��� . Each training image
was annotated with the unique keyword for each object of in-
terest shown and between 2 and 5 other keywords uniformly
drawn from a pool of distractor labels. Figure 1 displays
some example images from the training set and their asso-
ciated annotations. Note that the objects of interest never
appear individually and the training data contains no infor-
mation as to the position or pose of the labeled objects.

5.2. Results

We ran the compound feature search technique on the
training set with all compounds set to a fixed neighborhood
size of

C < 	 � ��� . Figure 2 illustrates some example in-
stances in the training set of the single best compound fea-
ture for the each of the ‘rocket’, ‘ernie’, ‘horse’ and ‘bug’
objects. Locations of SIFT features that form the detected
compound are marked with yellow circles while a blue rect-
angular region indicates the approximate extent of the local
neighborhood.

Note that the spatial configuration of component features
sometimes varies across detections of the same compound.
In some cases, a compound may even match more than one
location on the same object. This degree of flexibility al-
lows the compound to compensate for noise in the feature
extraction process and to match the object across orientation
changes and occlusions. However, such a pliable configura-
tion definition is also more likely to generate false detections.

Once we have generated a set of learned compound fea-
tures  from the training set, we employ a simple technique
to annotate test images. Given a confidence threshold,

�
,

we remove from  all learned compound features ;AT � whereKML � � T P ; T � ��� � . On loading a new test image, the algo-
rithm extracts a set of SIFT features and their associated
local neighborhood structure. If the image contains one or
more instances of a compound ; T � in  , we label the image
with the corresponding word,

� T . Labels are binary, as mul-
tiple compound detections do not necessarily indicate multi-
ple instances of the object.

rocket, bug, cash, drum, cash, bus,
floor, toys wall, tile, floor

ernie, bug, dino, bongos, drum, rocket,
tile, door, stair dino, bus, wall, deck

ernie, cash, bus, bongos, drum, ernie,
wall, bricks, chair kitchen, stair

Figure 1. Example training images and their associated labels. Ap-
proximately half the labels (e.g. ‘wall’, ‘tile’, ‘floor’) serve as dis-
tractors for the relevant labels such as ‘rocket’, ‘bug’ and ‘cash’.

Precision is the portion of detected annotations that are
correct, while recall is the proportion of correct annotations
that are properly detected. The precision-recall curves in
Figures 3 and 4 represent the output with the confidence
threshold

�
ranging from 1 to 0. Figure 3 demonstrates that

the feature compounds learned on the training set are more
distinctive and a stronger basis for annotation than the indi-
vidual features. On the whole, single SIFT features do not
perform substantially better than chance using this simple
annotation scheme.

The fact that the curves are not monotonic indicates that
confidence on the training set is not always a good predictor
of performance on the test set. In fact, a few compounds with
a moderately high confidence score in training appear to en-
code patterns that do not fall on the object of interest. How-
ever, most compounds that result from such coincidental cor-
relations in the training data have low confidence scores.

Figure 4 shows the precision recall curves broken down
by individual object. Results are fairly good for several ob-
jects, notably the ‘rocket’ and ‘cash’ exemplars. Given the
variety of object poses and prevalence of partial occlusions,



(a) (b) (c) (d)

Figure 2. Example detections of compound features associated with the labels (a) ‘rocket’, (b) ‘ernie’, (c) ‘horse’ and (d) ‘bug’, respectively.
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Figure 3. Precision vs. recall for single features versus compound
features on the test set. Single features are not as distinctive.

even the stronger compounds learned in training do not de-
tect every instance of the object.

For some objects, most notably ‘dino’, the system fails to
find any useful identifying compounds. This is because none
of the 20 original most highly-correlated seed features for
the word ‘dino’ actually fall on the object of interest. Each is
a relatively rare noise feature that happens to correlate with
‘dino’ more than any other label. This illustrates an impor-
tant drawback of the current implementation: the object must
have a feature that is somewhat distinctive in itself. It is
likely that ‘dino’ displays reasonably stable common con-
figurations of interest points, but if there is no single interest
point that is relatively exclusive to the object of interest then
noise features may dominate the seed set. To combat this
effect, the algorithm could consider more potential starting
points. In some cases, it might be necessary to start the lan-
guage iteration above the single-feature level.



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

All
rocket
franklin
cash
horse
ernie

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

All
bug
bus
bongos
dino
drum

(b)

Figure 4. Precision-recall curves arranged into objects with bet-
ter responses (a) versus weaker responses (b). The search process
found fewer high-confidence compounds for the objects listed in
(b).

Table 1 contains precision and recall results for two values
of the confidence threshold,

�
. A high confidence thresh-

old generally leads to relatively high precision in the annota-
tion, though two compounds associated with the ‘bongos’
and ‘franklin’ labels have anomalously high probabilities,
leading to relatively low precision on the test set for these
two labels.

Finally, Figure 5 displays the annotation results using� 	 � � � � for a few randomly-selected test images. The
results indicate that the proposed method is capable of cor-
rectly assigning highly distinctive features to names of real
objects even though the training set contains no instances of
the object or object name in isolation.

� 	 ��� � � 	 � � �
Label Prec. Rec. Prec. Rec.
bongos 0.42 0.14 0.50 0.25
franklin 0.77 0.70 0.71 0.76
drum 1.00 0.00 1.00 0.00
ernie 1.00 0.31 0.71 0.51
rocket 0.97 0.70 0.78 0.73
bug 1.00 0.16 0.61 0.61
cash 1.00 0.41 0.95 0.46
dino 1.00 0.00 1.00 0.00
bus 1.00 0.00 1.00 0.00
horse 0.92 0.39 0.71 0.54
Overall 0.87 0.27 0.71 0.38

Table 1. Precision-Recall results for two confidence thresholds.

cash franklin, rocket, bug

franklin, rocket rocket, bug

rocket, bug bug, horse

franklin, ernie cash
Figure 5. Randomly-selected test images with detected labels for������� �
	

.



6. Discussion and Future Work

The method we have described can find groupings of
SIFT features that are distinctive to individual objects and at
the same time associate these objects with appropriate words
from the image annotations. The system can detect these
compounds and word correlations even though the features
of interest themselves provide no grouping hint and always
appear intermixed with features from other objects and com-
plex backgrounds.

The system was implemented as a relatively simple ve-
hicle to explore language-assisted grouping. As a practical
image annotation system there are many directions for im-
provement. For instance, we would like to employ insights
from computational linguistics to both construct a richer
translation model and to allow us to move beyond individ-
ual words to groupings of words (compound nouns, colloca-
tions, or modifier-noun relations) that correspond to distinct
visual patterns.

On the vision side, our current compound features, though
simple and flexible, work over a limited range of scales and
have very weak spatial constraints. An approach based on
pairwise connections, such as that proposed by Carneiro and
Jepson [6], could better model entire flexible or articulated
objects while achieving much tighter spatial configuration
constraints.

In both the visual and language domains, these more con-
strained compounds are more difficult to discover by brute
force. We must induce them by exploiting patterns of co-
occurrence both within and between the language and vision
domains. For instance, a strong correlation in the training
data between two or three SIFT features might provide a
promising starting point to grow models of objects with no
individually distinctive features.

Though SIFT features provide a strong basis for detecting
unique objects, they are less ideal for detecting object cate-
gories or general settings. However, the grouping problem
persists for most types of visual features and most forms of
annotation, and many of the mechanisms for addressing the
grouping problem for SIFT features are in fact quite general.

Any system for finding meaningful correlations between
images and words also faces the problem of finding the level
of description at which meaningful correlations exist. We
expect that, in general, many correlations will exist not be-
tween individual words and individual features or regions,
but between groups of words and collections of features. Pat-
terns of correlation between the vision and language aspects
of a data set provide important cues to meaningful grouping
in both domains.
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