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Abstract—Given an unstructured collection of captioned im-
ages of cluttered scenes featuring a variety of objects, our goal
is to simultaneously learn the names and appearances of the
objects. Only a small fraction of local features within any given
image are associated with a particular caption word, and captions
may contain irrelevant words not associated with any image
object. We propose a novel algorithm that uses the repetition of
feature neighborhoods across training images and a measure of
correspondence with caption words to learn meaningful feature
configurations (representing named objects). We also introduce
a graph-based appearance model that captures some of the
structure of an object by encoding the spatial relationships
among the local visual features. In an iterative procedure we
use language (the words) to drive a perceptual grouping process
that assembles an appearance model for a named object. Results
of applying our method to three data sets in a variety of
conditions demonstrate that from complex, cluttered, real-world
scenes with noisy captions, we can learn both the names and
appearances of objects, resulting in a set of models invariant
to translation, scale, orientation, occlusion, and minor changes
in viewpoint or articulation. These named models, in turn, are
used to automatically annotate new, uncaptioned images, thereby
facilitating keyword-based image retrieval.

Index Terms—Language–Vision integration, Image annotation,
Perceptual grouping, Appearance models, Object recognition

I. MOTIVATION

Manual annotation of new images in large image collections
is prohibitively expensive for commercial databases, and overly
time-consuming for the home photographer. However, low-cost
imaging, storage and communication technologies have already
made accessible millions of images that are meaningfully associ-
ated with text in the form of captions or keywords. It is tempting
to see these pairings of visual and linguistic representations as
a kind of distributed Rosetta Stone from which we may learn
to automatically translate between the names of things and their
appearances. Even limited success in this challenging project
would support at least partial automatic annotation of new images,
enabling search of image databases by both image features and
keywords that describe their contents.
Any such endeavor faces the daunting challenge of the percep-

tual grouping problem. Regardless of the type of image feature
used, a word typically refers not to a single feature, but to a
configuration of features that form the object of interest. The
problem is particularly acute since any given image may contain
multiple objects or configurations; moreover, the meaningful
configurations may be easily lost among a huge number of
irrelevant or accidental groupings of features. Without substantial
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bottom-up grouping hints, it is a nearly hopeless task to glean the
meaningful feature configurations from a single image–caption
pair. Given a collection of images, however, one can look for
patterns of features that appear much more often than expected
by chance. Usually, though, only a fraction of these recurring
configurations correspond to salient objects that are referred to by
words in the captions. Our system searches for meaningful feature
configurations that appear to correspond to a caption word. From
these starting points it iteratively constructs flexible appearance
models that maximize word–model correspondence.
Our approach is best-suited to learning the appearance of

objects distinguished by their structure (e.g., logos or landmarks)
rather than their color and texture (e.g., tigers or blue sky). By
detecting the portions of an object with distinctive structure,
we can find whether the object is present in an image and
where (part of) the object appears, but we do not determine its
full extent. Therefore our system is appropriate for annotation
but only limited localization. Our specific focus is on learning
correspondences between the names and appearances of exemplar
objects from relatively noisy and complex training data rather
than attempting to learn the more highly-variable appearance of
object classes from less ambiguous training sets. However, our
framework and the structure of our appearance model are designed
to learn to recognize any objects that appear as multiple parts in
a reasonably consistent configuration. We therefore believe that
with the right choice of features, our framework could be adapted
to learn the appearance of object classes such as cars, jets, or
motorcycles.

A. Background

The literature on automatic image annotation describes a large
number of proposals [1], [3]–[8], [10], [12], [13], [17], [19],
[21], [23]. Like our previous efforts ([15], [16]) and the work
presented here, these systems are designed to learn meaningful
correspondences between words and appearance models from
cluttered images of multiple objects paired with noisy captions,
i.e., captions that contain irrelevant words.
Many of these approaches associate a caption word with a

probability distribution over a feature space dominated by color
and texture (though the set of features may include position
[1], [6], or simple shape information [2], [12]). This type of
representation is less reliant on perceptual grouping than a shape
model or a structured appearance model because color and texture
are relatively robust to segmentation errors and the configuration
of features is not critical. This type of representation is a good
fit for relatively structureless materials such as grass, sand or
water. In addition, they can often be more effective than more
rigid models for object classes such as animals (e.g., Berg and
Forsyth [4]) that have a consistent structure but are so variable
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in articulation and pose that the structure is difficult to discern in
2D images. However, highly structured objects, such as buildings
and bicycles, that may lack distinctive color or texture may still
be recognized if individually ambiguous parts of appearance can
be grouped together into a meaningful configuration.
A number of researchers have addressed the problems of

perceptual grouping and learning of configurations in automatic
annotation. For instance, Barnard et al. [2] acknowledge that
coarse granularity features, such as regions, may be overseg-
mented during feature extraction and propose a ranking scheme
for potential merges of regions based on a similarity of word–
region associations. It is possible, however, for different parts
of an object to be associated with very different words, and
hence such an approach is problematic for grouping the object’s
parts in such cases. In a similar vein, Quattoni et al. [23] use
the co-occurrence of caption words and visual features to merge
together “synonymous” features. This lowers the dimensionality
of their bag-of-features image representation and therefore allows
image classifiers to be trained with fewer labeled examples.
Such a system, which models visual structure as a mixture of
features, can represent complex objects as the co-occurrence of
distinctive parts within an image [6], [8], [13], [17], [21], [23].
However, these models contain no spatial relationships (even
proximity) between parts that would allow them to represent true
part configurations. Carbonetta et al. [7] use a Markov random
field model that can successfully recognize a set of adjacent
regions with widely varying appearance as being associated with
a given word. Their method is not capable of learning structured
configurations of features, however, since the spatial relationships
between the object parts are not part of the learned region–word
pairings. The multi-resolution statistical model proposed by Li
and Wang [19] can represent configurations of visual features
across multiple scales. However, the system does not perform
grouping, as each semantic class is associated with a layout for
the entire image, where the division into parts is predefined.
Other work avoids the perceptual grouping problem by focusing
on domains where there exists detailed prior knowledge of the
appearance of the objects of interest, as in the task of matching
names with faces [4]. Our work focuses on using correspondences
between image features and caption words to guide the grouping
of image features into explicit, meaningful configurations.
Methods for grouping individual features of various types into

meaningful configurations are reasonably common in the broader
object recognition literature. For instance, Fergus et al. [14] learn
object appearance models consisting of a distinctive subset of
local interest features and their relative positions, by looking
for a subset of features and relationships that repeat across a
collection of object images. Crandall and Huttenlocher [11] use
graph models in which vertices are oriented edge templates rather
than local feature detections, and edges represent spatial rela-
tionships. Sharing elements with both of the above approaches,
our appearance models (carried over from [16]) are collections
of distinctive local interest features tied together in a graph in
which edges represent constrained spatial relationships. This type
of representation is sufficiently flexible to handle occlusion, minor
changes in scale and viewpoint, and common deformations. While
both [14] and [11] can learn an appearance model from very
noisy training images, the methods (like most object recognition
systems) require training images in which a single object of
the desired category occupies a large portion of the image. Our

method makes these structured appearance models more applica-
ble to automatic image annotation by relaxing that constraint.
While many structured appearance models use features de-

signed for object classes, our system uses features that are best
suited to learning the appearance of exemplar objects (such as
St. Paul’s Cathedral) rather than a broad class of objects (such
as cathedrals in general). The world is full of exemplars, and
there has been a great deal of work in sorting and annotating
exemplar images, such as the method proposed by Simon et
al. [24] for organizing collections of related photographs into
labeled canonical views. While our current detection method is
not as scalable as high-performance exemplar image retrieval
systems such as that proposed by Philbin et al. [22], our use
of language can improve text-based querying and link together
widely different appearances or views of a single exemplar.
The proposed learning algorithm here is an extension and a

refinement of the algorithms presented in our previous work,
[15], [16]. In [15] we represented appearance as an unstructured
local collection of features and used a translation model to find
correspondences between words and appearance. In [16] we added
spatial relationships to the appearance model and introduced a
more direct word–model correspondence measure. Here, we intro-
duce a novel unified framework for evaluating both the goodness
of a detection and the appropriateness of associating the detection
with a caption word. We have also modified the improvement
mechanism to learn more spatial relationships between features
and present extensive new evaluation and analysis.

B. An Overview of Our Approach
The goal of this work is to annotate exemplar objects appearing

in images of cluttered scenes, such as the images shown in Fig-
ure 1(a). A typical such image, with hundreds (or even thousands)
of local features, contains a huge number of possible feature
configurations, most of which are noise or accidental groupings.
A complex configuration of features that occurs in many images
is unlikely to be an accident, but may still correspond to com-
mon elements of the background or other unnamed structures.
The only evidence on which to establish a connection between
words and configurations of visual features is their co-occurrence
across the set of captioned images. The key insight is that this
evidence can guide not only the annotation of complex feature
configurations, but also the search for meaningful configurations
themselves. Accordingly, we have developed a novel algorithm
that uses language cues in addition to recurring visual patterns
to incrementally learn strong object appearance models from a
collection of noisy image–caption pairs (as in Figure 1(a-c)).
The result of learning is a set of exemplar object appearance
models paired with their names, which can be used for annotating
similar objects in new (unseen and uncaptioned) images; a sample
annotation is shown in Figure 1(b).
The overall structure of our proposed system is depicted in

Figure 2. The system is composed of two main parts: a learning
component, and an annotation component. Both components work
with a particular representation of the images and objects, and
use the same algorithm to detect instances of an object model
in an image. Details of our image and object representation,
as well as the detection algorithm, are presented in Section II.
The two stages of the learning component, including methods for
expanding and evaluating appearance models, are elaborated on
in Section III. Finally, in Section IV, we present the annotation
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Mats Sundin of the Toronto Maple Leafs
misses a scoring chance against Ryan Miller
of the Buffalo Sabres.

Toronto Maple Leafs vs.
Montreal Canadiens.

(a) (b)

Florida’s Olli Jokinen gets bumped
by Alexei Ponikarovsky of the Maple
Leafs.

“Maple Leafs”

(c) (c)

Fig. 1. (a-c) A sample input image–caption collection, where each image
contains hundreds of local (SIFT) features (yellow crosses). From the input
training collection, associations between structured subsets of local features
and particular nouns are learned. (d) A sample output of our system, where
the object (the Maple Leafs logo) is detected (shown with red features and
green relationships in a yellow box), and annotated with its name (“Maple
Leafs”). The annotation is performed using a word–appearance association
discovered from the training image–caption collection.

component, demonstrating the promising performance of our
system in discovering meaningful word–appearance pairs.

II. REPRESENTING AND MATCHING OBJECTS
Our learning framework allows a one-to-many relationship

between words and appearance models. It is thus not necessary
that a single model capture object appearance from all possible
viewpoints. Moreover, since we deal with exemplar objects, our
method need not handle the changes in texture and structural
detail that are possible within a class of objects. In order to serve
as a robust object detector, however, it is important that the ap-
pearance model representation be invariant to reasonable changes
in lighting, scale, orientation, articulation and deformation. The
representation must also be reliably detectable, in order to avoid
false annotations.
We represent our images using easily-extractable local interest

features that can be used reliably to detect exemplar objects in
highly cluttered scenes. We represent small patches of an instance
of an object using such local features, and capture its structure
using the pairwise spatial relationships between the patches. From
the object instances, we then construct an abstract object appear-
ance model in the form of a graph, by modeling the recurrent
local features as vertices and the recurrent spatial relationships
between pairs of local features as edges. The model that is built

this way is a reliable descriptor of the object appearance and at
the same time flexible enough to handle common deformations.
Details of our choices for the representation of images and objects
are given in Sections II-A and II-B, respectively. Given an object
model (in the form of a graph), we need a method for detecting
instances of the object in an image—that is, to find a matching
between model vertices and local image features. Our detection
algorithm is presented in detail in Section II-C.

A. Image Representation

We represent an image as a set I of local interest points pm,
i.e., I = {pm|m = 1 . . . |I |}, referred to hereafter as points
or image points. These points are detected using Lowe’s SIFT
method [20], which defines a point pm in terms of its Cartesian
position xm, scale λm and orientation θm. In addition to spatial
parameters, for each point we also extract a feature vector fm
that encodes a portion of the image surrounding the point. Since
fm is extracted relative to the spatial coordinates of pm, it is
invariant to changes in position, scale and orientation. While our
approach is not dependent on a particular point detection method
or feature encoding, we use the PCA-SIFT feature encoding
developed by Ke and Sukthankar [18] because it allows for
fast feature comparison and low memory requirements. This
feature encoding is reasonably robust to lighting changes, minor
deformations and changes in perspective. Since individual features
capture small, independent patches of object appearance, the
overall representation is robust to occlusion and articulation.
The continuous feature vector fm is supplemented by a quan-

tized descriptor cm for each image point, in order to support the
ability to quickly scan for potentially matching features. Follow-
ing Sivic and Zisserman [25], we use the K-means algorithm to
generate a set of cluster centers, C = {fc|c = 1 . . . |C|}, from a set
of features randomly selected from a stock image collection. The
index of the cluster center closest to fm is used as the descriptor
cm associated with pm.
In addition to describing each point individually, we also

attempt to capture the local spatial configuration of points using
neighborhoods that describe the local context of a point. Each
point pm is associated with a neighborhood nm that is the set of
its spatially closest neighbors pn, according to the ∆xmn distance
measure taken from Carneiro and Jepson [9]:

∆xmn =
‖xm − xn‖
min(λm, λn)

(1)

This normalized distance measure makes neighborhoods more
robust to changes in scale, as newly-introduced fine-scale points
are less likely to push coarse-scale points out of the neighborhood
when the scale of an object increases.
To summarize, each image is represented as a set of points,

I = {pm|m = 1 . . . |I |}, in which pm is a 6-tuple of
the form (fm,xm, λm, θm, cm,nm). In addition, a vector of
transformation-invariant spatial relationships rmn is defined be-
tween each pair of neighboring points, pm and pn, including the
relative distance between the two points (∆xmn), the relative
scale difference between them (∆λmn), the relative heading from
pm to pn (∆φmn), and the relative heading in the opposite di-
rection (∆φnm). That is, rmn = (∆xmn, ∆λmn, ∆φmn, ∆φnm),
where the spatial relationships are taken from Carneiro and Jepson
[9], and are calculated as in Equations (1) above, and (2) and (3)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. V, NO. N, MONTH YYYY 4

cluttered scenes of
multiple objects,
with noisy captions

Image-Caption
Collection

Stage 2: Improvement

Learned
Model--Word Pairs

Seed
Model--Word Pairs

repeat

Detect

Stage 1: Initialization

Expand

Add a spatial constraint

Detect instances of new
model G’ in all images 

Expand a model G to G’ 

Evaluate new model G’ 

Find high-confidence
instances of a given 
model in a given image

Add a point
or

Find good seed models
for each caption word

Evaluate

Accept change if new
model has higher
model--word confidence

Detect

Annotate

Uncaptioned
Images

Annotated
Images

Detect Model instances
Label with associated Word

Learning Component: Discovers Object Models & their Associated Names Annotation Component:
Annotates New Images

Fig. 2. A pictorial representation of our system for learning and annotating objects.

below:

∆λmn =
λm − λn

min(λm,λn)
(2)

∆φmn = ∆θ(tan
−1(xm − xn) − θm) (3)

where ∆θ(.) ∈ [−π, +π] denotes the principle angle. The spatial
relationships are not part of the stored image representation, but
are calculated on demand when object appearance models are
being built (see Section II-B) or detected (see Section II-C).

B. Object Appearance Model
An object model describes the distinctive appearance of an

object as a particular set of local features that have a more-or-less
structured arrangement. We represent this structured configuration
of features as a graph G = (V, E). Each vertex vi ∈ V is
composed of a continuous feature vector fi, and a cluster index
vector ci containing indices for the |ci| nearest cluster centers to
fi, i.e., vi = (fi, ci). Associating each model vertex with a set
of clusters allows for fast comparison of features during model
detection while minimizing the effects of quantization noise. Note
that model vertices, unlike image points, do not include spatial
information (i.e., position, orientation, and scale), because the
model must be invariant to translation, rotation, and scale. Each
edge eij ∈ E encodes the expected spatial relationship between
two vertices vi and vj , in four parts: eij = (∆xij , ∆λij , ∆φij ,
∆φij) (as defined in Equations (1)–(3) above).
We assume objects are spatially coherent, and hence two nearby

points on an object are expected to be related non-accidentally,
i.e., through a geometric relation. Thus in our framework only
a connected graph is considered to be a valid object appearance
model; edges are allowed between any pair of vertices (and thus
models are not restricted to trees). Models that can encode all the
non-accidental relationships between pairs of nearby image points
are generally more distinctive, and more robust to occlusion and
inconsistent point detection, than models that are restricted to
trees.
The parameters of a model’s vertices (fi and ci) as well as

those of the edges (∆xij , ∆λij , ∆φij , and ∆φij) are calculated

from the corresponding parameters of the images (points and the
spatial relationships between them) through an iterative process
of model construction and detection (see Sections II-C and III).

C. Detecting Instances of an Object
We use a heuristic algorithm that searches for high-confidence

instances of an appearance model in an image. Though each
model is intended to robustly describe an object’s appearance, no
observed instance of an object is expected to fit its model exactly.
Deformation, noise, and changes in perspective can distort the
features encoded at points and/or the spatial relationships between
them. Our detection algorithm should thus be capable of finding
partial matches of a model (representing some visible part of
an object). At the same time, the algorithm should distinguish a
partial match which has only a few observed vertices from an
accidental collection of background elements. Our algorithm thus
assigns, to each observed instance of a model, a confidence score
that meets the above requirements, thereby determining how well
the instance fits the model. Below we first explain our proposed
detection confidence score, and then present the details of our
detection algorithm.

1) Detection Confidence: An observed instance O of an ob-
ject appearance model G is a set of vertex–point associations,
O = {(vi, pm)|vi ∈ V, pm ∈ I}, where O defines a one-to-one
mapping between a subset of the model vertices and some subset
of points in an image. Our detection confidence score defines
the goodness of fit between a model G and an observation O as
the likelihood of O being a true instance of G and not a chance
configuration of background features. Let HG be the hypothesis
that O is a true instance of the appearance model G, while HB

is the competing hypothesis that O is a chance assortment of
background features. The detection confidence is:

Confdetect(O, G) = P (HG|O) (4)

=
p(O|HG)P (HG)

p(O|HG)P (HG) + p(O|HB)P (HB)

where p(O|HB) is the background likelihood of O, and p(O|HG)
is the model likelihood of O. We use P (.) to indicate probability
functions and p(.) to indicate probability density functions.
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The above equation can be rewritten as:

Confdetect(O, G) =

p(O|HG) P (HG)
p(O|HB) P (HB)

p(O|HG) P (HG)
p(O|HB) P (HB) + 1

(5)

Thus the detection confidence can be calculated from the prior
likelihood ratio, P (HG)/P (HB), and the observation likelihood
ratio, p(O|HG)/p(O|HB). The prior likelihood ratio is set to a
fixed value, empirically determined from experiments on a held-
out subset of the training data (see the Appendix). Next, we
explain how we estimate the observation likelihood ratio from
a set of training image–caption pairs.
The background likelihood of an observation O (i.e., p(O|HB))

is independent of the model G and depends only on the features
fm of the observed points and their spatial relationships rmn.
In other words, p(O|HB) can be estimated from the background
feature probability, p(fm|HB), and the background distribution
of spatial relationships, p(rmn|HB). p(fm|HB) reflects how com-
mon a feature is across a set of stock images with a wide variety of
objects, while p(rmn|HB) reflects the distribution of relationships
observed between neighboring points across the stock image set.
According to the background hypothesis, all point feature

vectors fm are i.i.d. (independent and identically distributed).
While some local features represent one of a few very common
visual patterns, other local feature values are quite rare, and
therefore more distinctive. A Gaussian mixture model (GMM)
allows us to approximate such a structured background feature
distribution:

p(fm|HB) =

|C|
X

c=1

ωc · n(fm|fc,σc) (6)

where ωc is a weight term (
P

ωc = 1) and n(fm|fc,σc) is
a multivariate normal distribution with mean fc and diagonal
covariance values σ2

c . Each mean fc is a member of the cluster
centroid set C, found using K-means as explained in Section II-
A above. Given these fixed means, the weights ωc and standard
deviations σc are determined using the EM algorithm on the same
(large) set of stock images that we use to find clusters in C. This
approach provides a smoother background feature distribution
than using the statistics of the K-means clusters directly and is
less computationally expensive than full GMM clustering.
According to the background hypothesis, all spatial relationship

vectors rmn between neighboring points are also i.i.d. Since
histograms of relative distance (∆xmn) and relative scale (∆λmn)
are unimodal in the stock set, we model them with a normal
distribution:

p(∆xmn|HB) = n(∆xmn|µxB ,σxB) (7)
p(∆λmn|HB) = n(∆λmn|µλB ,σλB) (8)

where the means (µxB and µλB) and standard deviations (σxB

and σλB) are the sample statistics for pairs of neighboring points
in the stock image set. For the two relative heading terms (∆φmn,
∆φnm) we did not observe any tendency to a particular value
in the stock image set, hence we model them as uniformly
distributed.
Calculation of the model likelihood of an observation,

p(O|HG), is more complex, since the components of the appear-
ance model are not identically distributed. In order to account
for model vertices that are occluded or lost due to inconsistent
interest point detection, we assume each vertex vi ∈ V is observed

with probability αv .1 In matching an image point pm to a model
vertex vi, we do not require the feature vector fm of pm to
be precisely equal to fi, but we assume that fm is normally
distributed with mean fi and standard deviation σf . This vertex
feature deviation σf is approximately equal to the background’s
mean cluster variance σc. While a graph vertex vi ∈ V defines
the expected feature vector of a model observation, a graph
edge eij ∈ E defines the expected spatial relationships between
certain pairs of observed points. If O contains observations
(vi, pm) and (vj , pn) and eij ∈ E, then the elements of the
spatial relationship rmn are independent and normally distributed
with means (∆xij , ∆λij , ∆φij , ∆φji) and standard deviations
(σx,σλ,σφ,σφ). If the model does not specify a relationship
between the vertices (eij /∈ E), then the elements of rmn are
distributed according to the background hypothesis.
From the above formulations for the background and model

likelihoods of an observation, we can calculate the observation
likelihood ratio as:

p(O|HG)
p(O|HB)

=
Y

vi /∈O

(1−αv)
Y

(vi,pm)∈O

αv
p(fm|fi)

p(fm|HB)

Y

eij in O

p(rmn|eij)

p(rmn|HB)

(9)
where p(fm|fi) and p(rmn|eij) reflect how well the observed
points and their spatial relationships match the values expected by
the appearance model G (as explained in the paragraph above).
We consider eij to be in O if both (vi, pm) ∈ O and (vj , pn) ∈ O.
Note that the observation likelihood ratio takes into account the
size of the observed and unobserved portions of the model,
the background likelihood of the observed features and spatial
relationships, as well as how well the observed points and spatial
relationships fit G.

2) Detection Algorithm: To detect an instance of an object
model in an image, we need to find a high-confidence association
between the model vertices and image points. Given that a typical
image contains thousands of points, determining the optimal
association is potentially quite expensive. We thus propose a
greedy heuristic that efficiently searches the space of possible
associations for a nearly-optimal solution. Individual vertices of
a model may be unobserved (e.g., due to occlusion), and therefore
some edges in the model may also not be instantiated. Our detec-
tion heuristic thus allows for a connected model to be instantiated
as disconnected components. To reduce the probability of false
detections, the search for disconnected parts is confined to the
neighborhood of observed vertices, and isolated singleton points
are ignored. That is, in a valid model instance, each observed
vertex shares a link with at least one other observed vertex.
Also, our detection algorithm only reports those observations
O with a detection confidence greater than a threshold, i.e.,
Confdetect(O, G) ≥ Td. We set Td to be quite low so that
potentially meaningful detections are not overlooked.
Algorithm 1 presents the greedy heuristic that detects instances

of an appearance model G within the image representation I . The
actual implementation can detect more than one instance of G
within I by suppressing points in previously detected instances.

1More accurately, we treat αv not as the empirically observed probability
of model vertex survival, but rather as what we would like it to be (i.e., as a
user-defined parameter to guide detection). We chose αv = 0.5 because it is
a reasonable compromise between a high αv which requires that almost all
elements of a model be reproduced, and a low αv where a great majority of
the model vertices can be absent with little impact on detection confidence.
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The first step is to find the set A of potential associations between
image points and model vertices, that is, all vertex–point pairs
whose match (p(fm|fi)) is higher than expected by chance. The
algorithm then calculates the set of potential model edges L link-
ing these vertex–point pairs. The set of observed correspondences,
O, is assembled across several iterations by greedily adding the
vertex–point pairs from A that maximize the detection confidence,
Confdetect(O, G). Each time O is expanded, elements of A and
L that are incompatible with the current observed set are pruned
away. The greedy expansion of O continues until there are no
available correspondences that could increase Confdetect(O, G).

Algorithm 1 Detects instances of G in I

FindModelInstance(G,I)
1) Find the set A of all potential vertex–point associations:

A = {(vi, pm) | cm ∈ ci, p(fm | fi) > p(fm|HB)}
2) Find the set L of all potential links between elements of A:

L = {((vi, pm), (vj , pn)) | pn ∈ nm, p(rmn|eij) >
p(rmn|HB)}

3) Set the initial instance O to the pair {(vi, pm), (vj , pn)}, such
that the link ((vi, pm), (vj , pn)) ∈ L and Confdetect (O, G) is
maximum.

4) Remove (vi, pm) from A if either vi or pm are part of another
vertex–point association ∈ O.

5) Remove ((vi, pm), (vj , pn)) from L if neither end is in A.
6) Let Aadj be the subset of A that is linked through L with an

element of O.
7) If Aadj contains associations that could increase

Confdetect (O, G), add to O the association that leads to
the greatest increase, and go to step 4.

8) Let Lneigh be the subset of L within the union of the neigh-
borhoods of observed points in O.

9) If Lneigh contains observed links that could increase
Confdetect (O, G), add to O the pair of associations with the
link that produces the greatest increase, and go to step 4.

10) Return (O, Confdetect (O, G)).

III. DISCOVERING WORD–APPEARANCE ASSOCIATIONS
We propose an unsupervised learning algorithm that builds

structured appearance models for the salient objects appearing in
a set of training image–caption pairs. Salient objects are those that
appear in many images, and are often referred to in the captions.
Because each image contains many features of non-salient objects,
and each caption may contain words irrelevant to the displayed
objects, the algorithm has to discover which image features and
words are salient. The algorithm learns object models through
discovering strong correspondences between configurations of vi-
sual features and caption words. The output is a set of appearance
models, each associated with a caption word, which can be used
for the annotation of new images.
The learning algorithm has two stages. First, an initialization

stage determines a structured seed model for each caption word,
by finding recurring neighborhoods of features that also co-occur
with the word. Second, an improvement stage iteratively expands
each initial seed model into an appearance model that covers a
larger portion of the object of interest, and at the same time is
more strongly associated with the corresponding caption word.
The two stages of learning use a novel measure of correspondence
between a caption word and an appearance model, which is
explained in Section III-A. We then explain the initialization and
improvement stages of the learning algorithm in Sections III-B
and III-C, respectively.

A. Word–Appearance Correspondence Confidence
Here, we explain the word–appearance correspondence score

used by our learning algorithm. The learning algorithm seeks pairs
of words and appearance models that are representations of the
same object in different modalities (linguistic and visual). We
assume that both the word and the model instance are present
in an image because the object is present. We thus define the
correspondence score as a measure of confidence that a given
appearance model is a reliable detector for the object referred
to by a word. In other words, the correspondence score reflects
the amount of evidence, available in a set of training images,
that a word and an object model are generated from a common
underlying source object.
Consider a set of k (training) captioned images. We represent

the occurrence pattern of a word w in the captions of these images
as a binary vector rw = {rwi|i = 1, . . . , k}. Similarly, we use a
binary vector, qG = {qGi|i = 1, . . . , k} to indicate, for each
training image, whether it contains at least one true observation of
model G. However, even if we detect model G in the ith training
image, we cannot be certain that this is a true observation of G
(qGi = 1) instead of a random assortment of background features
(qGi = 0). Therefore, we treat qGi as a hidden variable and
associate it with an observed value, oGi ∈ [0, 1], that reflects the
likelihood of model G being present in image i. We set oGi to the
maximum of the detection confidence scores, Confdetect(O, G),
over all the detected instances of a given object model G in a
given image i.
It is always possible that the word occurrence pattern, rw , and

the observed confidence pattern, oG = {oGi|i = 1, . . . , k}, are
independent (the null hypothesis or H0). Alternatively, instances
of the word w and model G may both derive from a hidden
common source object (the common-source hypothesis or HC).
According to HC , some fraction of image–caption pairs contain
a hidden source s, which may emit the word w and/or the
appearance model G. The existence of the appearance model
in turn influences our observed confidence values, oGi. We
define the correspondence between w and G as the likelihood
P (HC |rw,oG), and rewrite it as in Equation (11) below:

Confcorr(G, w) = P (HC |rw ,oG) (10)

=
p(rw,oG|HC)P (HC)

p(rw,oG|HC)P (HC) + p(rw,oG|H0)P (H0)

where:

p(rw,oG|HC) =
Y

i

X

si

P (si)P (rwi|si) p(oGi|si) (11)

p(rw,oG|H0) =
Y

i

P (rwi) p(oGi) (12)

where si ∈ {0, 1} represents the presence of the common source
in image–caption pair i. To calculate the likelihoods of the
observed confidence values under the two competing hypotheses
(p(oGi|si) and p(oGi)) we marginalize over the unobserved
variable qGi:

p(oGi|si) = p(oGi|qGi = 1)P (qGi = 1|si)

+p(oGi|qGi = 0)P (qGi = 0|si) (13)
p(oGi) = p(oGi|qGi = 1)P (qGi = 1)

+p(oGi|qGi = 0)P (qGi = 0) (14)

where we choose p(oGi|qGi = 1) to be proportional to the detec-
tion confidence oGi (hence p(oGi|qGi = 0) will be proportional
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to 1 − oGi). The intuition is that oGi is usually high when the
model G is present in image i, and is low when the model is not
present.
To get the likelihood of observed data under HC , defined in

Equations (11) and (13), we also need to estimate the parameters
P (si), P (rwi|si), and P (qGi|si). P (rwi|si) and P (qGi|si = 0)
are given fixed values according to assumptions we make about
the training images, which we elaborate on in the Appendix.
P (si) and P (qGi|si = 1) are given maximum likelihood estimates
(MLEs) determined using expectation maximization over the
training data. The MLEs for parameters under H0 are more
straightforward. P (rwi) in Equation (12) is the observed prob-
ability for word occurrence in the training data while P (qGi) is
the inferred probability of model occurrence:

P

i oGi/k.

B. Model Initialization
The goal of the model initialization stage is to quickly find

for each word a set of seed appearance models that are fruitful
starting points for building strong object detectors. Later, the seed
object models are iteratively expanded and refined into larger and
more distinctive appearance models using image captions as a
guide. The existence of good starting points strongly affects the
final outcome of the iterative improvement process. Nonetheless,
a balance must be reached between time spent searching for good
seeds and time spent in the improvement stage refining the seeds.
The most straightforward starting points are singleton features,

but their relationship to an object may be too tenuous to provide
effective guidance for building strong object models [15]. At the
same time, trying all possible configurations of even a small
number of features as seeds is impractical. The neighborhood
pattern introduced by Sivic and Zisserman [25] roughly describes
the appearance of a point’s local context as a bag of features.
The neighborhood pattern is more distinctive than a singleton but
less complex than our configurational models. Our initialization
module uses neighborhood patterns with potentially meaningful
word correspondences to help construct seed appearance models.
Recall that each point pm in an image has associated with it a

vector of neighboring points nm. The neighborhood pattern ηm

is a sparse binary vector that denotes which quantized feature
descriptors c are present in pm’s neighborhood (including cm).
Thus ηm roughly captures the types of feature vectors present
within the small portion of the image centered at pm. Two neigh-
borhood patterns ηm and ηl are considered similar (ηm ≈ ηl) if
they have at least tη quantized feature descriptors in common.
We use a modified version of the two-stage clustering method
described in [25] to identify clusters of similar neighborhood
patterns in the training images. The first stage identifies potential
cluster centers with relatively low similarity threshold (tη = 6)
but requires that the quantized descriptor of the central feature
of the neighborhoods match. The second pass that greedily forms
the clusters has a higher similarity threshold (tη = 8) but does
not require a matching central descriptor.
Each resulting neighborhood cluster Nm is a set of neigh-

borhoods with patterns similar to ηm (Nm = {nl|ηl ≈ ηm}).
Each neighborhood cluster represents a weak, unstructured ap-
pearance context that occurs multiple times across the training
image collection. We represent the occurrence pattern of a given
neighborhood cluster N in the training images as a binary vector
qN = {qN i|i = 1, · · · , k}, where qN i = 1 if image i contains a
member of N , and zero otherwise.

The initialization module measures the association between
each caption word w and neighborhood cluster N , using the
correspondence confidence score of Equation (11) above, i.e.,
Confcorr(N , w).2 We assume that occurrences of a neighborhood
cluster N that has a better-than-chance correspondence to a word
w may spatially overlap the object referred to by w. We therefore
select for each word w the 20 neighborhood clusters N with the
strongest correspondence score and attempt to extract from each
cluster a seed appearance model with the best possible corre-
spondence with w. Since the simplest detectable and structured
appearance model is a single pair of linked vertices, we search
for two-vertex seed appearance models G that could explain the
presence of frequently-occurring point pairs in N and that also
have strong correspondence with w.
Two neighboring points are considered to be a pair in a

neighborhood cluster N if at least one end of the pair belongs to
one of the neighborhoods in N . We extract groups of “similar”
pairs in N , i.e., those that share the same appearance cluster pairs
(cm, cn). Each such group P is viewed as a set of observations
for a potential two-vertex appearance model G. For each P
with members appearing in more than one image, we propose
up to 20 distinct appearance models whose features and spatial
relationships are randomly drawn (without replacement) from the
pairs in P . For each model G, we calculate a score that reflects
how well P supports model G, by treating the K pairs in the
group as observations Ok:

Supp(P , G) =
X

k=1,...,K

p(Ok|HG) (15)

We keep the model with the highest Supp(P , G) for each group
of pairs. Then, for as many as 50 models from different pair
groups with the highest support, we calculate Confcorr (G, w).
The model with the highest correspondence confidence is selected
as word w’s seed model for the current neighborhood cluster
N . Each starting seed model is therefore initialized from a
different neighborhood cluster. While it is possible that different
seed models may converge on the same appearance during the
following iterative improvement stage, ideally the set of learned
appearance models will cover different distinctive parts of the
object and also provide coverage from a variety of viewpoints.

C. Iterative Improvement
The improvement stage iteratively makes simple changes to

the seed object models found at the initialization stage, guided
by the correspondence between caption words and models. More
specifically, the improvement algorithm starts with a seed model
G for a given word w, makes a simple modification to this model
(e.g., adds a new vertex), and detects instances of the new model
G′ in the training images (using the detection algorithm presented
in Section II-C). The new model is accepted as a better object
detector and replaces its predecessor if it has a higher correspon-
dence score with w, i.e., if Confcorr (G′, w) > Confcorr (G, w).
In other words, the improvement algorithm performs a greedy
search through the space of appearance models to find a reliable
object detector for any given word.
At each iteration, the algorithm tries to expand the current

model by adding a new vertex and linking it with one of the

2In our calculation of Confcorr (N , w), we replace qG with qN indicating
the occurrences of N in the training images.
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existing vertices. Vertex candidates are drawn from points that
fall within the neighborhood of the detected instances of the
current model. To ensure a strong correspondence between the
growing model and its associated word, only model detections
that occur within images with the desired caption word w are
considered for this purpose. Consider a detected point pm that
corresponds to a model vertex vi. Each point pn that is in the
neighborhood of pm but not part of the detection is a candidate
to form a new vertex vj . The corresponding edge candidate, eij ,
inherits the spatial relationship vector rmn between the two points
pm and pn. As in the initialization stage, from the observations
and their neighboring points, we form groups P each containing
observations of a potential one-vertex extension to the current
model. The observations are pairs (pm, pn) with their first points
being observations of the same existing vertex vi, and their
second points sharing the same cluster index cn. For each pair
group P , we propose up to 20 two-vertex incremental models
∆G = ({vi, vj}, eij) that bridge the gap between the existing
model and the new vertex. We keep the incremental model with
the highest Supp(P , ∆G). The incremental models from different
pair groups form a queue of potential (vertex, edge) additions,
prioritized by their degree of support.
An augmented model, G′, is constructed by removing the

top incremental model ∆G from the queue and incorporating
it into the existing model (G′ = G ∪ ∆G). If the augmented
model does not improve the correspondence score with w, then
the change is rejected and the next iteration begins with the
next candidate ∆G to be tested. If the augmented model does
improve the correspondence score, the change is accepted, and
the algorithm attempts to establish additional edges between the
existing vertices and the new vertex. The edge candidates are
prioritized based on their support among detections of the new
model G′, as this reflects the number of times the two end point
vertices have been observed together, as well as the consistency
of their spatial relationship over those observations. New edges
are tested sequentially and those that improve the correspondence
score are added. Generally, if the model vertices have very
consistent spatial relationships across the current detections, the
model will tend to accept many edges. If the underlying object is
more deformable or viewed from a variety of perspectives, fewer
edges are likely to be accepted.
Once a new vertex is added and connected to the model, and

additional edges are either accepted or rejected, a new iteration
begins with the new model as the starting point. If none of the
proposed model extensions are accepted, the model G paired with
the caption word w is added to the set of discovered word–
appearance associations to be used for future annotation of new
images.

IV. EVALUATION: ANNOTATING OBJECTS IN UNCAPTIONED
IMAGES

In previous sections, we have presented the components of
our learning framework for discovering object models and their
associated names from a set of training image–caption pairs.
Ultimately, we want to use the discovered model–word pairs to
detect and annotate new instances of the objects in unseen and
uncaptioned images. For detection of new instances of a given ob-
ject model, we use the detection algorithm presented in Section II-
C.2. Our confidence that a word w is appropriate to annotate a
detected object O in an image depends on two factors: (i) our

confidence that the observed instance O is a true instance of the
given model G and not a chance configuration of background
features—i.e., the detection confidence Confdetect(O, G); and (ii)
our confidence that the appearance model G and the word w
represent the same object—i.e., the correspondence confidence
Confcorr(G, w). We can thus associate an annotation confidence
to every object instance that is to be labeled in a new image. The
annotation confidence is defined as the product of the detection
confidence and the correspondence confidence, as in:

Confannotate (O, w, G) = Confdetect(O, G) × Confcorr (G, w)
(16)

We annotate a new instance of an object only if the
annotation confidence is greater than a threshold, i.e., if
Confannotate (O, w, G) > Ta. The value of Ta could be deter-
mined by a user, depending on whether they desire more detec-
tions (higher recall) or fewer detections with higher confidence
(higher precision). In all experiments reported here, we set the
threshold very high, i.e., Ta = 0.95.
The following sections present the results of applying our

learning, detection, and annotation algorithms to two types of
data sets: a small set of real images of toys that we captured
and annotated ourselves (Section IV-A) and two larger and
more challenging sets of real-world images of sports scenes and
landmarks, respectively, downloaded from the web (Section IV-
B). Our choices for the parameters involved in the confidence
scores and the algorithms are given in the Appendix.

A. Experiments on a Controlled Data Set
Here, we report the performance of our method applied to a

set of 228 images of arrangements of children’s toys, generated
under controlled conditions. The data set was first used in our
experiments presented in an earlier paper [15]. Throughout this
article, we refer to this data set as the TOYS data set. The
original color photographs are converted to intensity images with
a resolution of 800x600. Most images contain 3 or 4 toy objects
out of a pool of 10, though there are a handful of examples of up
to 8 objects. The objects are not arranged in any consistent pose
and many are partially occluded. The images are collected against
approximately 15 different backgrounds of varying complexity.
The pool of 228 images is randomly divided into a training set
of 128 and a test set of 100. Each training image is annotated
with the unique keyword for each object of interest shown and
between 2 and 5 other keywords uniformly drawn from a pool
of distractor labels. Note that the objects of interest never appear
individually and the training data contains no information as to
the position or pose of the labeled objects.
Figure 3 displays some example images from the test set

and the associated annotations produced by our system. False
annotations are written in italics and missed annotations in
parentheses. While there is no direct limit on the size of learned
appearance models, they tend to cover small, distinctive patches
of the objects. In many cases, the size of learned models is limited
by the availability of sufficient repeatable visual structure. Some
objects with large areas of sufficient detail, such as the ‘Cash’
object and the two books ‘Franklin’ and ‘Rocket’, can support
larger models (as in Figure 3(d)). Our method learns multiple
appearance models for many of the objects, such as the two
models shown in Figure 3(b) for ‘Bongos’. It is thus possible to
detect an object even when a distinctive part of it is occluded. The
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(a) Bus, Ernie, Dino, Drum (b) Horse, Drum, Bus, Bongos,
Cash, Bug

(c) Ernie, Horse, Rocket, (d) Franklin, Rocket, Cash
Cash, (Bongos)

Fig. 3. Sample detections of objects in the TOYS test set. False detections
are shown in italics while missed detections are placed in parentheses.

system can sometimes detect planar objects such as the ‘Rocket’
book under significant perspective distortion (as in Figure 3(c)).
Our earlier work ([15], [16]) has shown promising results

on the TOYS data set, while using simpler appearance models
and/or less efficient learning or detection algorithms. To evaluate
the improvement in annotation performance, we performed a
single training run for our method on the same 128 training
images used in previous work and compared results on the
100-image test set. Figure 4 shows the precision–recall curves
for four systems: the current system (with and without spatial
relationships), the ICCV system presented in [16], and the CVPR
system described in [15]. To implement a system without spatial
relations, we remove all spatial contributions to the detection
confidence measure, Confdetect(O, G). Therefore, edge position
and connectivity play no role in the detection mechanism. The
only remaining spatial constraint in the resulting bag-of-features
model is that each vertex added to a detection must fall within the
neighborhood of a vertex that is already part of the detection (a
constraint of the underlying detection algorithm). Our new system
achieves the high annotation precision of ICCV with about 15%
higher overall recall due to our new detection confidence measure.
Training without spatial relationships generates approximately a
12% penalty in recall, indicating that more distinctive object mod-
els can be constructed by finding recurring spatial relationships
among image points. While the CVPR system and the ‘No Spatial’
variant of our current system both represent appearance as an
unstructured collection of local features, a variety of changes
in the initialization mechanism, the representation of individual
features and the detection and correspondence measures greatly
improve overall performance.3
Table I shows the per-object precision and recall values of

our current system. In this and subsequent tables, the Frequency
column shows the number of captions within the test set that

3The improved precision of the ICCV system over the CVPR system is
due in part to the addition of spatial relationships to the appearance models,
as well as to improvements in the correspondence confidence measure and
initialization method.
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Fig. 4. A comparison of precision–recall curves over the TOYS test set, for
four systems: current, current without spatial relationships, ICCV [16], and
CVPR [15]. CVPR used a local bag-of-features models that were initialized
with singleton features. ICCV added spatial relationships and neighborhood
initialization. The current system adds detection and annotation confidence
scores and builds models with more spatial relationships.

Name Precision Recall Frequency
Horse 1.00 0.82 28
Rocket 1.00 0.82 44
Drum 1.00 0.81 32
Franklin 1.00 0.73 33
Bus 1.00 0.60 57

Bongos 1.00 0.53 36
Bug 1.00 0.53 51
Dino 1.00 0.12 42
Cash 0.97 0.76 46
Ernie 0.94 0.41 39

TABLE I
PERFORMANCE RESULTS ON THE TOYS TEST SET; Ta = 0.95.

contain at least one instance of the corresponding word. All of
the precision and recall values we report are based on word
occurrence in the captions of the test set; if the system does
not detect a word that appears in the caption, that instance is
counted as a false positive, even if the named object does not
actually appear in the image. The method performs best on objects
that have large, roughly planar surfaces and distinctive structural
details, such as ‘Rocket’, ‘Franklin’, ‘Drum’ and ‘Horse’. The
only instances of these objects that cannot be detected with very
high precision either are highly occluded or are viewed from an
atypical angle (such as edge-on for a book). Our system has the
greatest difficulty with the ‘Ernie’ and ‘Dino’ objects, perhaps be-
cause they lack fine-scale surface details and distinctive textures.
For instance, the striped pattern of the shirt of the ‘Ernie’ doll
is somewhat distinctive within the image set, but the face lacks
sufficient keypoints to build a reliable model. The ‘Dino’ object
is particularly difficult, as specular reflections significantly alter
the local-feature description of its surface appearance depending
on perspective and lighting.
Precision and recall indicate whether the system is detecting

objects in the correct images, but not how often the models are
detected on the objects themselves. To evaluate the locational
accuracy of the detections we manually defined bounding boxes
for all named objects in the test image set (this data was not
available to the system). A detection was considered accurate if
all of the detected model vertices were located within the correct
bounding box. Overall, 98.8% of above-threshold detections on
the TOYS data set are completely within the boundaries defined
for the object. The lowest accuracy was for the ‘Franklin’ object,
on which 5.2% of detections were partially outside the object
bounds.
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B. Experiments on Web Data Sets

This section reports the performance of our system on two
larger and more challenging sets of images downloaded from the
web. The first set, which we refer to as the HOCKEY data set,
includes 2526 images of National Hockey League (NHL) players
and games, with associated captions, downloaded from a variety
of sports websites. The second set, which we refer to as the
LANDMARK data set, contains 3258 images of 27 well-known
buildings and locations, with associated tags, downloaded from
the Flickr website4. Due to space considerations, our analysis
focuses mainly on the results on the HOCKEY data set (IV-B.1
through IV-B.3), though most of the same phenomena also appear
in the LANDMARK results (IV-B.4).

1) Annotation Performance on the HOCKEY Data Set: The
HOCKEY set contains examples of all 30 NHL teams and is
divided into 2026 training and 500 test image–caption pairs.
About two-thirds of the captions are full sentence descriptions,
whereas the remainder simply name the two teams involved in
the game (see Figure 1, page 3 for examples of each type). We
automatically process captions of the training images, removing
capitalization, punctuation, and plural indicators, and dropping
words that occur in less than 1% of the captions. Captions of the
test images are only used for evaluation purposes.
Most images are on-ice shots and display multiple players in

a variety of poses and scales. We thus expect our system to
learn distinctive appearance models for the players of each team,
and to discover meaningful associations between the models and
the corresponding team names. A team’s logo is perhaps the
most distinctive appearance model that our system could learn
for the team. In addition, there may be other visual appearances
that unambiguously identify a particular team, such as shoulder
patches or sock patterns. Note that we do not incorporate any prior
knowledge into our system about which objects or words are of
interest. The system is expected to learn these from the pairings of
the images and captions in the training data. The only information
we provide to our system is a link between a team’s name (e.g.,
Bruins) and its city name (e.g., Boston) because most NHL teams
are referred to by both names. Our system thus treats the two
words (team name and city name) as the same word when learning
model–word associations. The final vocabulary extracted from the
training captions contains 237 words, of which only 30 are team
designations. As we will see later, our system learns appearance
models for many of these words, including team names as well
as other words.
We experiment with different degrees of spatial constraints

imposed by our detection algorithm, in order to see how that
affects the learning and annotation performance of our system.
Our detection confidence score, presented in Section II-C, has a
set of parameters corresponding to the model spatial relationship
variances. We set each of these to a fraction 1/Γ of the corre-
sponding background variance, where Γ is the spatial tolerance
parameter that determines the amount of spatial constraints re-
quired by the detection algorithm to consider an observation as a
true instance of a given model.
High values of Γ thus imply a narrow acceptability range

for spatial relationships between any two connected vertices of
a model, resulting in tighter spatial constraints when detecting
instances of the model. In contrast, a low value of Γ translates

4www.flickr.com
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Fig. 5. Precision–recall curves of our current system on test HOCKEY images,
over a wide range of spatial settings. Although the system can detect objects
even without spatial constraints (the ‘No Spatial’ case), the use of moderate
spatial constraints (when Γ = 10) offers the best performance.

into looser spatial constraints in detection. Figure 5 shows the
overall precision–recall curves for various settings of the spatial
tolerance parameter Γ, including a version in which the spatial
relationships between points do not contribute to the detection
confidence function (No Spatial). We use the notation Γi to refer
to an implementation of the system where Γ is given the value i.
The curves indicate that the implementation that ignores spatial

factors (No Spatial) and Γ1 (where model spatial variances are
identical to background spatial variances) are roughly equivalent.
Remaining differences are due to the fact that Γ1 can learn some
edge connection structure while the ‘No Spatial’ model cannot.
Very strong spatial constraints, as in Γ100, may result in brittle
model detections, but still the system is capable of producing
reasonably good results (e.g., substantially better than a bag-of-
features model; see Figure 5). Nonetheless, results confirm that
moderate spatial constraints are generally more effective, as with
Γ10. One might expect that stronger spatial constraints (higher
values of Γ) would always lead to higher precision. This is not
necessarily the case, because even a configuration of relatively
few observed vertices may have high detection confidence if
their spatial relationships conform to the model’s tight constraints.
Moreover, many of the false annotations on test images are not
the result of incorrect model detection at annotation time, but
are due to learning a spurious word–appearance correspondence.
Finally, a model that requires a rigid spatial configuration among
its components may not grow to the size of a model that is
more accommodating. The resulting smaller models may be less
distinctive, even though each edge is more precise in capturing a
particular spatial configuration.
To analyze the sensitivity of our method to the precise value of

the spatial tolerance parameter Γ, we perform experiments with
a smaller range of values for this parameter. Figure 6 shows the
precision–recall curves for Γ set to 5, 10, and 20. The results
confirm that our method is not sensitive to small changes in the
value of Γ. This might indicate that the iterative improvement
process can optimize appearance models to compensate for dif-
ferent spatial tolerance values within a reasonable range. It is also
possible that the models themselves are effective across a range
of Γ values, such that, for example, system performance would
not be adversely affected if different values of Γ were used for
training and annotation.
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Fig. 6. Precision–recall curves for our current system are relatively unaffected
by modest changes in the spatial tolerance parameter Γ.

Name Precision Recall Frequency
Tampa Bay Lightning 1.00 0.51 49
Los Angeles Kings 1.00 0.33 36
New York Islanders 1.00 0.32 60
Calgary Flames 1.00 0.31 26
Dallas Stars 1.00 0.31 42

Minnesota Wild 1.00 0.26 35
Chicago Blackhawks 1.00 0.24 35
New York Rangers 1.00 0.21 42
Buffalo Sabres 1.00 0.19 32

Carolina Hurricane 1.00 0.17 30
Nashville Predators 1.00 0.10 20
Colorado Avalanche 1.00 0.09 23
Toronto Maple Leafs 0.96 0.30 73
Ottawa Senators 0.90 0.16 58
Pittsburg Penguins 0.89 0.28 29
Atlanta Thrashers 0.86 0.17 35
New Jersey Devils 0.85 0.19 59
Detroit Red Wings 0.83 0.24 42
San Jose Sharks 0.83 0.22 23
Florida Panthers 0.83 0.20 25

Montreal Canadiens 0.80 0.17 23
Vancouver Canucks 0.57 0.10 40
Boston Bruins 0.44 0.24 17

TABLE II
INDIVIDUAL PRECISION AND RECALL VALUES FOR 23 OF THE TEAM

NAMES (OF 30) DETECTED WITH HIGH CONFIDENCE IN THE HOCKEY TEST

SET; Γ = 10 AND Ta = 0.95.

2) An Analysis of the Annotation Results for the HOCKEY Set:
Our results presented above show that Γ10 has the best overall
performance. We thus focus on Γ10, analyzing various aspects of
its performance. Table II shows the annotation performance of
Γ10 on the test images, focusing on the team names only. The
system has high-confidence detections for 23 of the 30 teams.
(There are 2 additional teams for which the system learns high-
confidence models, but does not detect them in the test images.)
Results show that the annotation of the test images generally has
high precision but low recall. The low recall is partly because of
our choice of a high annotation threshold, but also due to the fact
that the captions that we use as ground truth often mention teams
that are not visible in the image. In addition, a hockey player has a
highly variable appearance depending on viewing angle and pose.
A model that captures the appearance of the front logo will not
help annotate a view of a player from the side.
An important factor that determines whether the system can

learn high-confidence models for a team, and detect instances
of it in the test images, is the number of training examples that
contain both the team’s name and some appearance of it. It is hard
for the system to learn a high-confidence model for a team if the
team’s logo appears in a small number of training images. Even if
the system learns a model for such a team, the model may be too

specific to be useful for detecting new instances (which may differ
in viewpoint, for example). On average, teams detected in the test
set are mentioned in the captions of 114 training images, while
teams with no test set detections are mentioned in the captions
of 57 training images. The system detects only two teams (the
Bruins and the Canadiens) with fewer than 60 caption-mentions,
and fails to detect only one team (the Flyers) with more than 60
caption-mentions in the training set.
Note also that a team name’s mention in the caption of an image

does not necessarily mean that the corresponding object (e.g., the
team’s logo) appears in the image. After analyzing 15 of the teams
in Table II, we found that only 30–40% of the training images
that mention a team’s name also contain a visible (less than half
obscured) instance of one of the team’s logos. Therefore, a team
with fewer than 60 training examples will almost always have
fewer than 24 usable instances of the team logo. In addition, in
some cases these instances will display various versions of the
team’s logo. For example, images of the Maple Leafs regularly
show three different versions of their logo. The training set
contains four completely different Buffalo Sabres chest logos, and
many of these are placed on different backgrounds for home and
away jerseys. As we see later in Figure 7(d), the system does not
learn the new Sabres logo, but it does have a strong model for the
older version of the logo displayed by the fan in the background.
For teams detected with relatively high recall, the system

tends to learn separate models for each variation of the chest
logo and often additional models for other distinctive parts of
a player’s uniform, such as shoulder patches or sock patterns.
In some cases, the system learns several high-confidence models
for the same logo. Some of these are redundant models that have
nearly identical detection patterns, while in other cases the models
describe the logo in different modes of perspective distortion.
Teams with lower recall tend to only have one or two high-
confidence appearance models describing a single logo variation.
The training restriction of only 20 seed appearance models for
each named object is perhaps ill-advised, given that multiple
appearance models are helpful and only about 1 in 6 seed models
leads to a high-confidence object appearance model.
The visual properties of a team’s logo also affect whether

the system learns an association between its appearance and the
team’s name. For example, whereas the Philadelphia Flyers are
mentioned in the captions of 168 training images, their primary
logo lacks detailed texture and so attracts relatively few interest
points. This may explain why the system did not learn a reliable
detector for this logo.

3) Sample Annotations from the HOCKEY Set: Figure 7 shows
some example annotations in the test images for Γ10. As expected,
team logos tend to be the most useful patches of appearance for
recognizing the teams. The system is often able to detect learned
logos that are distorted or partially occluded. In some cases,
however, the system fails to detect learned logos that are relatively
clean and undistorted. These might be due to contrast-reversal
from a logo appearing against a different background, or perhaps
missed detections of the underlying interest point detector.
While the team logos tend to be the most distinctive aspect of a

player’s appearance, the system has learned alternate models for a
variety of teams. Figure 8 displays two such examples, including
a shoulder patch and sock pattern. The system might also learn
an association between a team name and an appearance patch that
is not part of a player at all.
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(a) Panthers (b) Devils

(c) Maple Leafs and Islanders (d) Sabres

(e) Penguins (f) Lightning and Red Wings

(g) Stars (h) Wild and Canadiens

Fig. 7. Sample annotations of our system in the hockey test images. The
system automatically discovers chest logos as the most reliable method for
recognizing a team.

Figure 9 displays instances of a particular type of false annota-
tion. Variants of a white net pattern against a dark background are
learned independently as reasonably high-confidence appearance
models for several teams. This appears to be a result of overfitting.
While this back-of-the-net appearance is quite common across the
NHL image collection, certain variations of this appearance have
a weak initial correspondence with particular teams. During itera-
tive improvement, the system is able to tailor each team’s version
of the net appearance model to fit only the specific instances
of the net appearance in the training data that are annotated
with the desired team name. In this way, a model can have
few false positives in the training set, even though the described
appearance is not meaningfully associated to the team name. We
are currently considering approaches for reducing the occurrence
of such overfitting while still allowing the improvement stage to
encode meaningful differences in appearance.
As mentioned previously, the system is not restricted to finding

(a) Flames shoulder patch (b) Blackhawks sock pattern
Fig. 8. Alternate models can be learned, such as shoulder patches or sock
patterns.

(a) Red Wings (b) Canucks

Fig. 9. Due to overfitting, our system learns bad models (a white net on a
dark background) for several teams.

visual correspondences solely for team names. Figure 10 shows a
few example detections of models learned for other words. Two
of the models associate the distinctive pads of the Calgary Flames
goalie Mikka Kiprusoff with the labels ‘mikka’ and ‘kiprusoff’.
Most of the other high-confidence model–word associations link
the appearance of a team logo with other words associated with
the team. For instance, Figure 10(b) shows a learned association
between the Islanders logo and words related to their home
arena of “Nassau Coliseum in Uniondale, New York”. Other
associations are with fragments of a team’s name that are not
among the words we manually linked to identify a team. For
instance, the system learned associations between the words wing
and los and the logos of the Detroit Red Wings and the Los
Angeles Kings. We associate the words angeles and kings with
the same caption token, so that either word could be used to
represent the team. The word los was not one of the words we
linked, but it still has a strong correspondence in our training set
with the Los Angeles Kings logo. The fact that the components of
a multi-word name can independently converge on similar visual
descriptions means that it may be possible to automatically learn
such compound names based on visual model similarity, instead
of manually linking the components prior to learning.

(a) ‘mikka’, ‘kiprusoff’ (b) ‘nassau’, ‘coliseum’,
‘uniondale’, ‘new’, ‘york’

Fig. 10. Words other than team names for which the system discovered
strong models include the name of the Calgary Flames’ goalie, the name and
location of the New York Islanders’ arena.
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Name Precision Recall Frequency
‘york’ 1.00 0.22 81
‘new’ 0.95 0.16 120
‘los’ 0.92 0.34 32
‘maple’ 0.86 0.16 37

‘uniondale’ 0.85 0.31 35
‘coliseum’ 0.85 0.20 35
‘nassau’ 0.83 0.29 35
‘wings’ 0.73 0.17 47

‘rutherford’ 0.70 0.33 21
‘canada’ 0.47 0.16 20
‘california’ 0.40 0.20 20

TABLE III
PRECISION AND RECALL VALUES FOR 11 WORDS WITH AT LEAST 10

DETECTIONS IN THE TEST IMAGES; Γ = 10, Ta = 0.95.

Table III gives precision and recall values for all words (other
than the team names) with at least 10 detections in the test images.
These results may be somewhat understated, as the test image
captions are not as consistent in mentioning these background
words as they are with the team names. For instance, a detection
for the word maple of the Toronto Maple Leafs logo will count
as a true positive if the caption of the test image is “Maple Leafs
vs Lightning”, but count as a false positive if the caption is the
semantically equivalent “Toronto vs Tampa Bay”.

4) Annotation Performance on the LANDMARK Data Set: The
LANDMARK data set includes images of 27 famous buildings
and locations with some associated tags downloaded from the
Flickr website, and randomly divided into 2172 training and 1086
test image–caption pairs. Like the NHL logos, each landmark
appears in a variety of perspectives, scales and (to a lesser
extent) orientations. Whereas a hockey logo is deformable and
may appear in several different versions, the appearance of the
landmarks can be strongly affected by varying lighting conditions,
and different faces of the structure can present dramatically
different appearances. Another difference is that the HOCKEY
captions usually mention two teams, but each LANDMARK image
is only associated with a single landmark.
Table IV presents precision and recall information for the 26 of

27 landmarks for which high-confidence detections were made in
the test set. Compared to the HOCKEY results (Table II), recall is
generally higher. This is probably because test image labels used
as ground truth are somewhat more reliable in the LANDMARK
set; there are fewer instances where a test caption mentions a
landmark that is not present in the image. The only landmark
of the set that was not learned to some degree was the Sydney
Opera House, perhaps due to the smooth, relatively textureless
exterior of the building. Our system recognized only one of the
CN Tower images in the test set, probably because the more
distinctive pattern of the observation level makes up such a small
fraction of the overall tower.
Figure 11 shows 8 examples of the detected landmarks. In

general, the learned models tend to cover highly textured areas of
a landmark. In some cases, however, the profile of a structure such
as the towers of the Golden Gate Bridge or the Statue of Liberty
is distinctive enough to form a strong model. Since many of the
building details display different shadowing at different times of
the day, multiple models are often learned to cover these different
appearances. Due to the repetitive surface structure of many of the
landmarks, an image often contains multiple detections of a single
appearance model (e.g., Figure 11(c-e)). The system also learned
associations between landmark names and some nearby objects,
such as an adjacent office tower that the system associated with
the Empire State building.

Name Precision Recall Frequency
Rushmore 1.00 0.71 35

St. Basil’s Cathedral 1.00 0.69 35
Statue of Liberty 1.00 0.61 36
Great Sphinx 1.00 0.45 40

Notre Dame Cathedral 1.00 0.40 40
Stonehenge 1.00 0.36 42

St. Peter’s Basilica 1.00 0.15 41
Chichen Itza 1.00 0.05 37
CN Tower 1.00 0.03 34

Golden Gate Bridge 0.97 0.73 45
Christo Redentor 0.96 0.55 44
Eiffel Tower 0.95 0.61 33
Taj Mahal 0.89 0.52 33
Big Ben 0.88 0.68 44
Colosseum 0.87 0.33 39
Tower Bridge 0.82 0.79 47
White House 0.81 0.38 45
US Capitol 0.80 0.80 45
Reichstag 0.80 0.53 45

St. Paul’s Cathedral 0.75 0.69 48
Arc De Triomphe 0.71 0.57 42

Parthenon 0.71 0.29 35
Burj Al Arab 0.71 0.23 43
Leaning Tower 0.70 0.93 43

Empire State Building 0.62 0.55 38
Sagrada Familia 0.54 0.40 35

TABLE IV
INDIVIDUAL PRECISION AND RECALL VALUES FOR THE 26 OF 27

LANDMARKS DETECTED WITH HIGH CONFIDENCE IN THE LANDMARK

TEST SET; Γ = 10 AND Ta = 0.95.

(a) St. Basil’s Cathedral (b) Cristo Redentor

(c) Golden Gate Bridge (d) Leaning Tower

(e) Sagrada Familia (f) Great Sphinx

(g) Statue of Liberty (h) Eiffel Tower

Fig. 11. Sample annotations of our system in the landmark test images.
Multiple detections of a single model within an image can be seen in (c-e).
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C. Summary of Results
The results presented in this section show that our system

is able to find many meaningful correspondences between word
labels and visual structures in three very different data sets. While
the system can work equally well over a range of spatial parameter
settings, the addition of spatial relationships to the appearance
model can dramatically improve the strength and number of the
learned correspondences. Our framework can deal with occlusion
and the highly variable appearance of some objects by associating
multiple visual models with a single word, but this depends on the
presence of a sufficient number and a variety of training examples.

V. CONCLUSIONS
We have proposed an unsupervised method that uses language

both to discover salient objects and to build distinctive appear-
ance models for them, from cluttered images paired with noisy
captions. The algorithm simultaneously learns appropriate names
for these object models from the captions. Note that we do not
incorporate any prior knowledge into our system about which
objects or words are of interest. The system has to learn these
from the pairings of the images and captions in the training
data. We have devised a novel appearance model that captures
the common structure among instances of an object by using
pairs of points together with their spatial relationships as the basic
distinctive portions of an object. We have also introduced a novel
detection method that can be reliably used to find and annotate
new instances of the learned object models in previously unseen
(and uncaptioned) test images. Given the abundance of existing
images paired with text descriptions, such methods can be very
useful for the automatic annotation of new or uncaptioned images,
and hence can help in the organization of image databases, as well
as in content-based image search.
At this juncture, there are two complimentary directions for

future work. First, we would like to use insights from computa-
tional linguistics to move beyond individual words to groups of
words (e.g., word combinations such as compound nouns and
collocations, or semantically-related words) that correspond to
distinct visual patterns. Second, though local features provide
a strong basis for detecting unique objects, they are less ideal
for detecting object categories or general settings. However, the
grouping problem persists for most types of visual features and
most forms of annotation. We expect that many of the mechanisms
for addressing the grouping problem for local features will also
apply to other feature classes, such as contours.

APPENDIX
This section elaborates on how we set the values of various

parameters required by our model and methods, including: pa-
rameters of our image and object representation, and those of our
detection confidence score from Section II, and parameters of the
model–word correspondence confidence score (used in learning)
from Section III.
For our image representation presented in Section II-A, we use

a cluster set of size 4000 to generate the quantized descriptors
cm associated with each image point. We set the neighborhood
size, |nm|, to 50 as experiments on the CVPR data set indicated
this was an appropriate tradeoff between having distinctiveness
and locality in a neighborhood. (Neighborhoods in the range of
40− 70 points produced roughly equivalent results.) Recall from

Section II-B that in an appearance model, each vertex is associated
with a vector of neighboring cluster centers, ci. We set |ci| = 20
to minimize the chance of missing a matching feature due to
quantization noise, at the expense of slowing down the model
detection function.
We set the parameters of the word–appearance correspondence

measure, Corr(w, G), according to the following assumptions:
Reflecting high confidence in the captions of training images,
we set P (rwi = 1|si = 1) = 0.95, since we expect to observe an
object’s name in a caption whenever the object is present in the
corresponding image. Similarly, we expect that few images will be
labelled w when the object is not present. However, even setting a
low background generation rate (P (rwi = 1|si = 0) = 0.5) could
lead to a relatively large number of false w labels if few image–
caption pairs contain the object (P (si = 1) is low). We expect
the false labels to be a small fraction of the true labels. Since the
expected rate of true word labels is P (rwi = 1|si = 1)P (si = 1)
and the expected rate of false word labels is P (rwi = 1|si =
0)P (si = 0), we therefore set:

P (rwi = 1|si = 0) = 0.05 ·
P (rwi = 1|si = 1)P (si = 1)

P (si = 0)
. (17)

Similarly, during model learning, we wish to assert that a high-
confidence model should have a low ratio of false-positives to
true-positives. Therefore we set:

P (qGi = 1|si = 0) = 0.05 ·
P (qGi = 1|si = 1)P (si = 1)

P (si = 0)
(18)

However, when evaluating correspondences between words and
neighborhoods to find good seed models, we set this target
number of false-positives as a fraction of the true positives much
higher at 1. We do so because the starting seed models are
expected to be less distinctive, hence even promising seeds may
have a large number of false positives. Performing experiments
on a held-out validation set of 500 HOCKEY training images, we
found the precise value of P (H0)/P (HC) to have little effect on
the overall performance; we thus set P (H0)/P (HC) = 100, 000.
At the initialization stage, up to 20 neighborhood clusters N

are selected to generate seed models, which are further modified
in up to 200 stages of iterative improvement.
If the detection threshold Td is set too low, the detection

algorithm can report a large number of low-probability detections,
which can impose a computation burden on later stages of
processing. However, the threshold should not be set so high that
detections that might lead to model improvements are ignored.
We err on the side of caution and set Td = 0.001. The param-
eters of the background likelihood (used in measuring detection
confidence) are set according to sample statistics of a collection of
10,000 commercial stock photographs. Based on this wide sample
of visual content, the distance variance σ2

xB is set to 200, and
the scale variance σ2

λB is set to 5. Each of the model spatial
relationship variances is set to a fraction 1/Γ of the corresponding
background variance, i.e.:

σ2
x =

σ2
xB

Γ
, σ2

λ =
σ2
λB

Γ
, and σ2

φ =
π2

3Γ
.

where Γ is the spatial tolerance parameter that determines the
expected degree of spatial variability among observed object
models. In most experiments, we set Γ = 10, a value we found to
result in reasonably good performance on the HOCKEY validation
set. After estimating the mixture of Gaussian distribution based
on the stock photo collection, we observed that average variance
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among the background feature clusters was 1.31, so we set the
model feature variance to be slightly higher at σ2

f = 1.5. Based on
empirical findings on the held-out subset of the HOCKEY training
data, we set P (HB)/P (HG) = 100, 000, though we found a broad
range of values to yield similar results.
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