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Abstract

We present a Bayesian model of early verb learning that
acquires a general conception of the semantic roles of
predicates based only on exposure to individual verb
usages. The model forms probabilistic associations be-
tween the semantic properties of arguments, their syn-
tactic positions, and the semantic primitives of verbs.
Because of the model’s Bayesian formulation, the roles
naturally shift from verb-specific to highly general prop-
erties. The acquired role properties are a good intuitive
match to various roles, and are useful in guiding com-
prehension in the face of ambiguity.

Learning and Use of Semantic Roles

Semantic roles, such as Agent, Theme, and Recipient
in (1) and (2) below, are a critical aspect of linguistic
knowledge because they indicate the relations of the par-
ticipants in an event to the main predicate.1

(1) MomAgent gave thisTheme to herRecipient.
(2) MomAgent gave herRecipient thisTheme.

Moreover, it is known that people use the associations
between roles and their syntactic positions to help guide
on-line interpretation (e.g., Trueswell et al., 1994). How
children acquire this kind of complex relational knowl-
edge, which links predicate-argument structure to syn-
tactic expression, is still not well understood. Funda-
mental questions remain concerning how semantic roles
are learned, and how associations are established between
roles and the grammatical positions the role-bearing ar-
guments appear in.

Early theories suggested that roles are drawn from
a pre-defined inventory of semantic symbols or rela-
tions, and that innate “linking rules” that map roles to
sentence structure enable children to infer associations
between role properties and syntactic positions (e.g.,
Pinker, 1989). However, numerous questions have been
raised concerning the plausibility of innate linking rules
for language acquisition (e.g., Fisher, 1996; Kako, 2006).

An alternative, usage-based view is that children ac-
quire roles gradually from the input they receive, by
generalizing over individually learned verb usages (e.g.,
Lieven et al., 1997; Tomasello, 2000). For instance,
Tomasello (2000) claims that, initially, there are no gen-
eral labels such as Agent and Theme, but rather verb-
specific concepts such as ‘hitter’ and ‘hittee,’ or ‘sit-
ter’ and ‘thing sat upon.’ Recent experimental evidence

1Such elements are also termed participant, thematic, or
case roles, and more or less fine-grained semantic distinctions
are attributed to them. We use the widely accepted labels
such as Agent and Theme for ease of exposition.

confirms that access to general notions like Agent and
Theme is age-dependent (Shayan, 2006). It remains un-
explained, though, precisely how verb-specific roles meta-
morphose to general semantic roles. Moreover, experi-
ments with children have revealed the use of verb-specific
biases in argument interpretation (Nation et al., 2003),
as well as of strong associations between general roles
and syntactic positions (e.g., Fisher, 1996, and related
work). However, specific computational models of such
processes have been lacking.

We have proposed a usage-based computational model
of early verb learning that uses Bayesian clustering
and prediction to model language acquisition and use.
Our previous experiments demonstrated that the model
learns basic syntactic constructions such as the transitive
and intransitive, and exhibits patterns of errors and re-
covery in their use, similar to those of children (Alishahi
and Stevenson, 2005a,b). A shortcoming of the model
was that roles were explicit labels, such as Agent, which
were assumed to be “perceptible” to the child from the
scene. In this paper, we have extended our model to
directly address the learning and use of semantic roles.

Our Bayesian model associates each argument of a
predicate with a probability distribution over a set of
semantic properties—a semantic profile. We show that
initially the semantic profiles of an argument position
yield verb-specific conceptualizations of the role associ-
ated with that position. As the model is exposed to
more input, these verb-based roles gradually transform
into more abstract representations that reflect the gen-
eral properties of arguments across the observed verbs.

The semantic profiles that we use are drawn from a
standard lexical resource (WordNet; Miller, 1990), so
that our results are not biased toward any theory of se-
mantic roles. One limitation of this approach is that the
profiles fail to reflect any event-specific properties that
an argument might have. Such properties (like “causally
affected”) are almost certainly required in an accurate
representation of roles, as in Dowty (1991). Despite their
absence, we are able to show that intuitive profiles can
be learned for each role from examples of its use. We
further establish that such representations can be useful
in guiding the argument interpretation of ambiguous in-
put, an ability experimentally demonstrated in children
in recent work (Nation et al., 2003).

Related Computational Work

A number of computational approaches for learning the
selectional preferences of a verb first initialize WordNet



concepts with their frequency of use as the particular ar-
gument of a verb, and then find the appropriate level
in the WordNet hierarchy for capturing the verb’s re-
strictions on that argument (e.g., Resnik, 1996; Clark
and Weir, 2002). However, none of these models gen-
eralize their acquired verb-based knowledge to a higher
level, yielding constraints on the arguments of general
constructions such as the transitive or intransitive.

Many computational systems model human learning of
the assignment of general roles to sentence constituents,
using a multi-feature representation of the semantic prop-
erties of arguments (e.g., McClelland and Kawamoto,
1986; Allen, 1997). Others learn only verb-specific roles
that are not generalized (e.g., Chang, 2004). As in our
earlier work, these models require explicit labelling of
the arguments that receive the same role in order to learn
the association of the roles to semantic properties and/or
syntactic positions. In the work presented here, we show
that our extended model can learn general semantic pro-
files of arguments, without the need for role-annotated
training data.

Our Bayesian Model

Our model learns the argument structure frames for each
verb, and their grouping across verbs into constructions.
An argument structure frame is the pairing of a syntac-
tic form (a particular word order of a verb and its argu-
ments) with the meaning of the expression (the semantic
primitives of the predicate and the semantic properties
of the arguments). A construction is a grouping of indi-
vidual frames which probabilistically share form-meaning
associations; these groupings typically correspond to gen-
eral constructions in the language such as transitive, in-
transitive, and ditransitive.

Most importantly for this paper, the model forms prob-
abilistic associations between syntactic positions of argu-
ments, their semantic properties, and the semantic prim-
itives of the predicate. These associations are general-
ized (through the constructions) to form more abstract
notions of role semantics, dependent on argument posi-
tion and verb primitives. The following sections review
basic properties of the model from Alishahi and Steven-
son (2005a,b), and introduce extensions that support the
learning and use of semantic profiles.

The Input and Frame Extraction

The input to the learning process is a set of scene-
utterance pairs that link a relevant aspect of an observed
scene (what the child perceives) to the utterance that de-
scribes it (what the child hears). From each input pair,
our model extracts the corresponding argument structure
frame, which is a set of form and meaning features.

Figure 1 shows that we use a simple logical form for
representing the semantics of an observed scene, while
an utterance simply specifies a sequence of words in root
form. In the extracted frame, verbs and prepositions
are represented as predicates (e.g., Make, On) that can
take a number of arguments. Each predicate has a set
of semantic primitives which describes the event charac-
teristics (e.g., [cause, become]). Each argument can be
an entity (e.g., TIM, CAKE) or a predicate structure itself

Scene-Utterance Input Pair
Scene: Make[cause,become](TIM, CAKE)

Utterance: Tim made cake

Extracted Frame
head verb make
semantic primitives of verb [cause, become]
arguments 〈Tim, cake〉
syntactic pattern arg1 verb arg2

Figure 1: An input pair and its corresponding frame.

cake
→baked goods

→food
→solid

→substance, matter
→entity

cake: {baked goods, food, solid, substance, matter, entity}

Figure 2: Semantic properties for cake from WordNet

(e.g., On(TABLE)). The syntactic pattern in the frame
indicates word order of the predicate and arguments.

In a frame, each word for an entity has a link to the
lexical entry that contains its semantic properties, which
are extracted from WordNet (version 2.0) as follows. We
hand-pick the intended sense of the word, extract all the
hypernyms (ancestors) for that sense, and add all the
words in the hypernym synsets to the list of the semantic
properties. Figure 2 shows an example of the hypernyms
for cake, and its resulting set of semantic properties.2

Learning as Bayesian Clustering

Each extracted frame is input to an incremental Bayesian
clustering process that groups the new frame together
with an existing group of frames—a construction—that
probabilistically has the most similar properties to it. If
none of the existing constructions has sufficiently high
probability for the new frame, then a new construction
is created, containing only that frame. We use a modified
version of Alishahi and Stevenson’s (2005a,b) probabilis-
tic model, which is itself an adaptation of a Bayesian
model of human categorization proposed by Anderson
(1991). It is important to note that the categories (i.e.,
constructions) are not predefined, but rather are cre-
ated according to the patterns of similarity over observed
frames.

Grouping a frame F with other frames participating
in construction k is formulated as finding the k with the
maximum probability given F :

BestConstruction(F ) = argmax
k

P (k|F ) (1)

where k ranges over the indices of all constructions, with
index 0 representing recognition of a new construction.

Using Bayes rule, and dropping P (F ) which is constant
for all k:

P (k|F ) =
P (k)P (F |k)

P (F )
∼ P (k)P (F |k) (2)

The prior probability, P (k), indicates the degree of en-
trenchment of construction k, and is given by the relative
frequency of its frames over all observed frames. The pos-
terior probability of a frame F is expressed in terms of

2We do not remove alternate spellings of a term in Word-
Net; this will be seen in the profiles in the results section.



the individual probabilities of its features, which we as-
sume are independent, thus yielding a simple product of
feature probabilities:

P (F |k) =
∏

i∈FrameFeatures

Pi(j|k) (3)

where j is the value of the ith feature of F , and Pi(j|k) is
the probability of displaying value j on feature i within
construction k. Given the focus here on semantic pro-
files, we return to the calculation of the probabilities of
semantic properties below.

Language Use as Bayesian Prediction

In our model, language use (production and comprehen-
sion) is a prediction process in which unobserved features
in a frame are set to the most probable values given the
observed features. For example, sentence production pre-
dicts the most likely syntactic pattern for expressing in-
tended meaning components, which may include seman-
tic properties of the arguments and/or semantic primi-
tives of the predicate. In comprehension, these semantic
elements may be inferred from a word sequence.

The value of an unobserved feature is predicted based
on the match between the given partial set of observed
features and the learned constructions:

BestValuei(F ) = argmax
j

Pi(j|F ) (4)

= argmax
j

∑

k

Pi(j|k)P (k|F )

= argmax
j

∑

k

Pi(j|k)P (k)P (F |k)

Here, F is a partial frame, i is an unobserved (missing)
feature, j ranges over the possible values of feature i, and
k ranges over all constructions. The conditional proba-
bilities, P (F |k) and Pi(j|k), are determined as in our
learning module. The prior probability of a construction,
P (k), takes into account two important factors: its rel-
ative entrenchment, and the (smoothed) frequency with
which the verb of F participates in it.

All predictions of the model are mediated by construc-
tion knowledge. For a well-entrenched usage of a verb,
predictions are guided by the construction that the us-
age is a member of. For a novel verb, or a novel use of
a known verb, predictions arise from constructions that
are the best match to the observed partial frame.

Probabilities of Semantic Properties

In both learning and prediction, the probability of value
j for feature i in construction k is estimated using a
smoothed version of this maximum likelihood formula:

Pi(j|k) =
countk

i (j)

nk

(5)

where nk is the number of frames participating in con-
struction k, and countk

i (j) is the number of those with
value j for feature i.

For most features, countk
i (j) is calculated by simply

counting those members of construction k whose value for
feature i exactly matches j. However, for the semantic
properties of words, counting only the number of exact
matches between the sets is too strict, since even highly

similar words very rarely have the exact same set of prop-
erties. We instead compare the set of semantic properties
of a particular argument in the observed frame, S1, and
the set of semantic properties of the same argument in a
member frame of a construction, S2, using the Jaccard
similarity score:3

sem score(S1, S2) =
|S1 ∩ S2|

|S1 ∪ S2|
(6)

For example, assume that the new frame represents
the verb usage John ate cake, and one of the members of
the construction that we are considering represents Mom
got water. We must compare the semantic properties of
the corresponding arguments cake and water :

cake: {baked goods,food,solid,substance,matter,entity}
water: {liquid,fluid,food,nutrient,substance,matter,entity}

The intersection of the two sets is {food, substance, mat-
ter, entity}, therefore the sem score for these sets is 4

9
.

In general, to calculate the conditional probability for
the set of semantic properties, we set countk

i (j) in equa-
tion (5) to the sum of the sem score’s for the new frame
and every member of construction k, and normalize the
resulting probability over all possible sets of semantic
properties in our lexicon.

Representation of Semantic Profiles

Recall that a semantic profile is a probability distribu-
tion over the semantic properties of an argument posi-
tion. This requires looking at the probability of all the
individual properties, jp, rather than the probability of
the full set, j. We use a modified version of equation (5)
in which countk

i (jp) is the number of frames in construc-
tion k that include property jp for the argument whose
set of semantic properties is the ith feature of the frame.
The resulting probabilities over all jp form the semantic
profile of that argument.

A semantic profile contains all the semantic proper-
ties ever observed in an argument position. As learning
proceeds, a profile may include a large number of prop-
erties with very low probability. In order to display the
profiles we obtain in our results section below, we create
truncated profiles which list the properties with the high-
est probabilities, in decreasing order of probability value.
To avoid an arbitrary threshold, we cut the ordered list
of properties at the widest gap between two consecutive
probabilities across the entire list.

Experimental Results

The Input Corpora

Large scale corpora of utterances paired with meaning
representations, such as required by our model, do not
currently exist. The corpora for our experimental sim-
ulations are generated from an extended version of the
input-generation lexicon used in our earlier work. The
lexicon is created to reflect distributional characteristics
of the data children are exposed to. We extracted 13 of
the most frequent verbs in mother’s speech to each of

3The selected semantic properties and the corresponding
similarity score are not fundamental to the model, and could
in the future be replaced with an approach that is deemed
more appropriate to child language acquisition.



Adam (2;3–4;10), Eve (1;6–2;3), and Sarah (2;3–5;1) in
the CHILDES database (MacWhinney, 1995). We en-
tered each verb into the lexicon along with its total fre-
quency across the three children, as well as its (manually
compiled) set of possible argument structure frames and
their associated frequencies. We also randomly selected
100 sentences containing each verb; from these, we ex-
tracted a list of head nouns and prepositions that appear
in each argument position of each frame, and added these
to the lexicon.

For each simulation in our set of experiments, an
input corpus of scene-utterance pairs is automatically
randomly generated using the frequencies in the input-
generation lexicon to determine the probability of select-
ing a particular verb and argument structure. Arguments
of verbs are also probabilistically generated based on the
word usage information for the selected frame of the verb.
Our generated corpora are further processed to simulate
both incomplete and noisy data: 20% of the input pairs
have a missing (syntactic or semantic) feature; another
20% of the pairs have a feature removed and replaced by
the value predicted for the feature at that point in learn-
ing. The latter input pairs are noisy, especially in the
initial stages of learning. Other types of noise (such as
incomplete sentences) are not currently modelled in the
input.

Formation of Semantic Profiles for Roles

Psycholinguistic experiments have shown that children
are sensitive at an early age to the association between
grammatical positions, such as subject and object, and
the properties of the roles that are typically associated
with those positions (Fisher and others; e.g., Fisher,
1996). Here we show that for each argument position
in a construction, our model learns a general semantic
profile from instances of verb usage. For some common
constructions, we study the semantic profile of the argu-
ments through prediction of the most probable semantic
properties for that position, as detailed above. Although
these semantic profiles do not include any event-specific
knowledge, they can be considered as a weak form of the
semantic roles that the corresponding arguments receive
in that construction.

We train our model on 200 randomly generated input
pairs,4 and then present it with a test input pair contain-
ing a novel verb gorp appearing in a familiar construc-
tion, with unknown nouns appearing as its arguments.
As an example, a test pair for a novel verb appearing in
a transitive construction looks as follows:
Gorp[cause,become](X, Y)
x gorp y

We then have the prediction model produce a semantic
profile for each of the unknown arguments, to reveal what
the model has learned about the likely semantic proper-
ties for that position in the corresponding construction.
We average the obtained probabilities over 5 simulations
on different random input corpora.

Our model learns semantic profiles for argument po-
sitions in a range of constructions. Here, due to lack of

4In most experiments, receiving additional input after 200
pairs ceases to make any significant difference in the output.

Transitive Subject

entity
object
physical object
being
organism
living thing
animate thing
causal agent
cause
causal agency
person
individual
someone
somebody
mortal
human
soul

Transitive Object

entity
object
physical object
artifact
artefact
whole
whole thing
unit

Intransitive Subject

entity
object
physical object
being
organism
living thing
animate thing
causal agent
cause
causal agency
person
individual
someone
somebody
mortal
human
soul

Figure 3: Semantic profiles of argument positions.

space, we focus only on a few such profiles corresponding
to roles that have received much attention in the litera-
ture. Figure 3 shows the predicted semantic profiles for
the arguments in the subject and object positions of a
transitive construction (corresponding to X and Y in the
gorp test input above), and the subject position in an
intransitive construction. Even though we use semantic
properties from WordNet, which lack any event-specific
features, the emerging semantic profile for each argument
position demonstrates the intuitive properties that the
role received by that argument should possess.

For example, the semantic profile for an argument that
appears in the subject position in a transitive construc-
tion (the left box of Figure 3) demonstrates the proper-
ties of an animate entity, most likely a human. In con-
trast, the semantic profile for an argument in the object
position (the middle box of Figure 3) most likely cor-
responds to a physical entity. These results are consis-
tent with Kako (2006), who finds that, given unknown
verbs and nouns in the transitive, adults attribute more
Agent-like semantic properties to subjects, and more
Patient-like properties to objects (specifically, a varia-
tion on Dowty’s (1991) proto-properties). Kako (2006)
also reports similar results using a known verb in an in-
compatible construction. To simulate this, we gave our
model a transitive input like the gorp pair above, but
with an intransitive-only verb dance. We found a simi-
lar profile for the noun in object position as in Figure 3.
Since dance has never been seen with an object, this pro-
file must come from the model’s learned associations over
existing verbs in the transitive construction.

The right box of Figure 3 shows the semantic profile
for the subject of an intransitive. This argument can re-
ceive an Agent role (John went) or a Theme role (the ball
fell). We think that the semantic profile represents more
Agent-like characteristics because, in our input data, the
probability of an Agent in that position is much higher
than a Theme. We explore this issue next.

Multiple Possible Roles for a Position

Our model’s failure to distinguish different roles assigned
to the intransitive subject position might simply be a
consequence of the bias of the input corpora. Alter-
natively, it might be due to an inherent deficiency of
the model when faced with input that lacks explicit role
labels—i.e., an inability of the model to distinguish the



arguments of different types of verbs when those argu-
ments occur in the same syntactic position.

To test this, we created an input corpus with an arti-
ficially increased frequency of fall, the only intransitive
verb in our lexicon that can have a Theme (rather than an
Agent) in the subject position, so that the model would
be given sufficient examples of such a usage. We then
tested the model with two kinds of novel verbs: one with
semantic primitives [act,move] (associated with agentive
intransitives like come and go), and one with seman-
tic primitives [move,direction,vertical] (like the Theme-
assigning verb fall). In response to the former (go-type)
input, the model still predicts a semantic profile very
similar to the one shown in the right box of Figure 3.
In contrast, for the latter (fall -type) input, the pre-
dicted semantic profile contains {artifact, artefact, whole,
whole thing, unit} in addition to the Agent-like proper-
ties, yielding a profile that overlaps that of the transitive
object, shown in the middle box of Figure 3.

This experiment is crucial in showing that the model
does not simply associate a single semantic profile with
a particular argument position. If this were the case,
the model would never be able to distinguish, e.g., tran-
sitive verbs that assign Agent and Theme, from those
that assign Experiencer and Stimulus. This experiment
demonstrates that the model forms a complex associa-
tion among a syntactic pattern, an argument position,
and the semantic primitives of the verb, allowing it to
make a distinction between different roles assigned to the
same position in the same syntactic pattern.

Verb-Based vs. General Semantic Profiles

Tomasello (2000) (among others) has proposed that chil-
dren initially learn verb-specific roles such as ‘hitter’
and ‘hittee,’ and only later move to more general roles.
Moreover, Shayan (2006) shows that general notions like
Agent and Patient develop over time. Our model illus-
trates how such role generalization might come about.
Although the semantic profiles of our model reflect the
general properties that a particular role-bearing argu-
ment must have, they are formed from input that con-
tains only argument properties for specific verb usages.
The generalization occurs as more and more semantic
properties are associated with an argument position, and
only the most general ones are seen sufficiently frequently
to have high probability.

We tracked the generalization process for each seman-
tic profile, to see how it moves from a verb-based profile
to a more general one. Figure 4 (left box) shows the
semantic profile for the argument in the object position
right after the first transitive usage. In this particular
simulation, the first transitive verb in the corpus is eat,
and its second argument in that input pair is pie. The
semantic profile thus reflects the properties of a pie, and
not the general properties of that argument position. The
profile becomes more general after processing 50 and 100
input pairs, shown in the middle and right boxes of Fig-
ure 4, respectively. (Recall that Figure 3 shows a profile
for transitive object after 200 inputs.)

To observe the trend of moving from a more specific to
a more general semantic profile for each argument posi-

After 5 pairs

entity
substance
matter
food
solid
baked goods
pastry

After 50 pairs

entity
object
physical object
artifact
artefact
whole
whole thing
unit
instrumentality
instrumentation
quality
equipment
electronic equipment
receiver
receiving system
.
. (additional
. properties)

After 100 pairs

entity
object
physical object
being
organism
living thing
animate thing
quality
artifact
artefact
whole
whole thing
unit
animal
animate being
.
. (additional
. properties)

Figure 4: The evolution of the transitive object role.
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Figure 5: Learning curves for semantic profiles. The x-
axis is time (#inputs), and the y-axis is divergence from
the profile that the model eventually converges to.

tion, we used relative entropy to measure the divergence
between the semantic profile for an argument position at
a given point in learning, and the profile for that posi-
tion that the model eventually converges to at the end of
each simulation.5 We measured the profile divergence for
subject and object positions of a transitive construction
after every 5 input pairs over a total of 200 pairs, aver-
aged over 5 simulations. Figure 5 shows that the profile
for the subject position (i.e., the Agent) is learned faster
than the profile for the object position (i.e., the Theme),
which is a much less constrained role. The curves show
that the model stabilizes on the final profiles at around
150 input pairs, when receiving more inputs ceases to
make any significant difference in the profiles.

Using Semantic Profiles in Comprehension

Semantic roles are helpful in on-line ambiguity resolution,
by guiding adults to the interpretation that best matches
the role expectations of a verb for a given position (e.g.,
Trueswell et al., 1994). Nation et al. (2003) have shown
that young children also draw on verb-specific biases in
on-line argument interpretation.6 Here we demonstrate
the ability of our model to use its acquired semantic pro-
files to predict the best interpretation of an ambiguous
partial input.

We consider cases using the verb give, in which an
utterance beginning you give 〈noun〉 can continue with

5RelativeEntropy(P ||Q) =
P

i P (i) log P (i)
Q(i)

, where P and

Q are probability distributions.
6This work complements that of Fisher (1996) and oth-

ers, who demonstrate that children use associations between
argument properties and syntactic positions to choose the in-
terpretation of an unknown verb in a full sentence.



either a second object (you give 〈noun〉 something) or a
prepositional phrase (you give 〈noun〉 to someone). In
the first case, 〈noun〉 is the Recipient of the action, and
in the second case, it is the Theme (the thing given). We
vary 〈noun〉 to be either her, which is a likely Recipient,
or this, which is a likely Theme. We then observe in each
case which interpretation our model prefers.

We set up the experiment as one where we compare
the probability of the following two input pairs:

her as Give[cause,possess](YOU, X, HER)
Recipient you give her x
her as Give[cause,possess](YOU, HER, X)
Theme you give her x

We give each of these inputs to the model, have it extract
the corresponding frame F , and then have it calculate
match score(F ) = maxk P (k)P (F |k), from the predic-
tion model. The match score corresponds to how well
the model thinks the given input pair matches an exist-
ing construction. Having a higher match score for the
first pair means that the model has recognized her as
the Recipient, while a higher score for the second pair
means that the model has recognized her as the Theme.

We also compared analogous inputs pairs, using this
instead of her. Since the only difference in these two sets
of inputs is the use of her vs. this, differences in interpre-
tation of the first object noun (as Recipient or Theme)
depend only on the match of the noun’s semantic prop-
erties to the semantic profiles of that argument position.

Table 1 shows the results after processing 20 and 200
input pairs, averaged over 5 simulations; a higher number
(lower absolute value) indicates the preferred interpreta-
tion. After processing 20 pairs, the model displays a
strong preference towards treating the first object as the
Theme, for both her and this. This occurs because give
is the only verb in our lexicon that appears in a ditran-
sitive (Recipient-first) construction, whereas many high
frequency verbs (e.g., put and get) appear in the compet-
ing (Theme-first) prepositional construction. Thus, at
the early stages of learning, the ditransitive construction
is relatively weak. However, after processing 200 input
pairs, the model shows a preference for the “correct” in-
terpretation in both cases. (The difference between the
two frames for you gave this x is small, but consistently
indicates a Theme preference across all simulations.)

The model is thus able to use its learned associa-
tions between semantic properties and argument posi-
tions to appropriately guide interpretation of an ambi-
guity. These results predict that very early on, children
(like our model) would experience some difficulty in this
type of task, when drawing on the knowledge of a less
commonly observed construction.

Conclusions

We have shown that our Bayesian model for early verb
learning, extended to include sets of semantic properties
for arguments, can acquire associations between those
properties, the syntactic positions of the arguments, and
the semantic primitives of verbs. These probabilistic as-
sociations enable the model to learn general conceptions
of roles, based only on exposure to individual verb us-

Table 1: log(match score) for Recipient-first and Theme-
first frames after processing 20 and 200 input pairs.

20 Pairs 200 Pairs
Utterance Recipient Theme Recipient Theme
You gave her x -23.08 -20.47 -15.06 -19.89
You gave this x -24.23 -20.78 -16.68 -16.55

ages, and without requiring explicit labelling of the roles
in the input. Because of the model’s Bayesian formula-
tion, the roles naturally metamorphose from verb-specific
to highly general properties. The acquired role proper-
ties are a good intuitive match to the expected properties
of various roles, and are useful in guiding comprehension
in the model to the most likely interpretation in the face
of ambiguity.
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