CSC D84 — Artificial Intelligence (c) 2025 F. Estrada
Unit 9 — Language Models

Convolutional networks provide a specialized architecture that is well suited to solving a variety of
problems on input data that can be arranged as an array, and under the assumption that the spatial
arrangement of the data is meaningful (though possibly at different scales). Image-related tasks fit this
category well, and as a result convnets are extensively used on images.

We may wonder whether we can apply the same kind of neural architecture to the problem of
understanding and processing text. For instance, this page of text can be thought of as a grid in 2D
inside of which we find an arrangement of characters that for an observer capable of recognizing them
and organizing them into words, contains meaningful information.

Why not treat a page of text such as this one as just another 2D array of data corresponding to rows
and columns of characters, and use a suitably built convolutional network to solve interesting problems
similar to those we know we can solve on regular images? Indeed, it is possible to use a convolutional
network to carry out tasks such as text classification, and sentiment analysis (Conneau et al., 2016).
The network’s architecture is fairly similar to standard image processing convnets such as VGG and
ResNet.

Even though a ConvNet performs well at very specific language tasks, common language
processing problems such as text generation, summarization, query understanding, and language
translation have the property that global context matters. This means that the information provided by
indivitual features even at multiple scales should be influenced and transformed by content present in
the entire input. ConvNets rely on spatial locality and contiguity for feature detection and analysis, and
as such, are not the best architecture to handle the kinds of problems described above.

To fully understand how current language models work, we first need to take a look at how text is
represented and manipulated within language models, and at the kinds of problems that motivate the
current architectures for dealing with language.

Text representation in LLMs

The unit of information in text is rarely a single character. A convenet working on input text would
somehow have to learn kernels to identify each individual grouping of characters that has meaning.
While this may be feasible, research in natural language understanding already provided a tool for
solving this particular problem.

Instead of working on individual characters, a first step of processing converts input text into a
sequence of tokens — these consist of groups of characters that may be identifiable as individual words
but often are not. The process of turning input text into a sequence of tokens is called tokenization, and
there are many variations on the details of how it is done, but you should think about it as breaking text
into individual, unique parts that have more meaning than individual characters and are helpful in
processing language.
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This is an example of how text is broken into tokens by a tokenizer, it identifies units of meaning that are
relevant in the context of language processing. Many different ways exist to break text into tokens.
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This is an example of how text is broken into tokens by a tokenizer, it
identifies units of meaning that are relevant in the context of language
processing. Many different ways exist to break text into tokens.

Example of how text is broken into tokens for input into a language model,
each token is represented as a unique integer defined within a vocabulary
(image generated from the Open Al online tokenizer)

From the above we have:

- Text is pre-processed to extract a sequence of tokens. The order of these tokens matters greatly
and any model we build to process language must be able to use the information provided by the
ordering of tokens in the input text.

- The tokenizer defines a vocabulary of unique tokens that can be used for language processing
for current language morels (2025) this is in the order of 100K — 200K unique tokens, and
includes tokens to handle technical terms such as what you would find in Math, Science, and
other specialized fields.

- Because words can be broken up into components, unusual or foreign words, things like names
and even grammatical errors will be parsed into some sequence of known tokens.

- These tokens will then be processed by the language model whose job it is to make sense of the
sequence in order to perform some specific task.

Context is everything

The key property of language that makes language processing challenging (with the types of
architectures we know up to this point) is that the information provided by individual tokens is to a
very large degree dependent on the context — such context is provided by other parts of the text, some
of which can be at a significant distance from the place a token occurs.

Convolutional networks are great at capturing spatial relationships in its input within contiguous,
reasonably sized neighbourhoods, but they struggle to capture the complex interactions between words
that may be far apart but clearly affect each other’s meaning.
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Similarly, text passages can have any length — a language model may be required to work on a few
words, a paragraph, a page or an entire article or book (think, for example, about automatic
summarization). Even worse, the context itself may not be present in the input text but may be
something the model has to learn from training data. Simply put, a good language model will have
learned about the usual meaning of tokens, and use the specific input it is provided to enrich, modify,
and refine what it has learned through training in order to arrive at the correct interpretation of every
token in the input sequence it has been given.

Consider the following, short sentences:

The fish could not go into the basket because it was too big

The fish could not go into the basket because it was too small

Both sentences have the same structure — if you were applying a pattern-matching kernel to them
(as you would if you built a convnet to process text) they would appear very similar. The same bolded
token ‘it’, however, refers to very different things in each case.

The context here is not obvious, and it is not provided by the input text itself. It has to be inferred
from prior knowledge about the relative sizes of fishes, baskets, and a bit of logic: if the fish is too
small, it definitely fits inside the basket — so the basket must be ‘it’ in the second sentence. A good
language model must be able to arrive at the most likely meaning for an ambiguous token, and it must
be able to use information available anywhere within the input text, as well as what it has learned
during training.

In what follows, the word meaning is used to describe the changeable, context-dependent
information that an individual token may represent. It is not fixed, or grounded, rather, it is arrived at
through careful processing of the context the token appears in. To illustrate this idea, consider the
following example:

"At three o'clock precisely I was at Baker Street, but Holmes had not yet

returned." (from The Adventures of Sherlock Holmes by Sir Arthur Conan Doyle)

Consider the word ‘street’ in the sentence above. We know from any dictionary that this particular
word has a specific ground-truth meaning:

street (noun) - A public road in a city or town that has houses and buildings on one side or both sides.
(from the Oxford learner’s dictionary)

However, placed within the context provided by the text around it, we could determine that besides
describing a public road, the word refers to a specific street (Baker Street) on which there is a
particular house (221B) wherein lives a famous detective (Sherlock Holmes) along with his friend
and sidekick (Watson). This kind of enriched meaning is what we are after in order to build language
models.
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Mapping tokens to context-dependent meaning

If we want to have tokens that are able to capture rich conext-dependent information, we first have
to carefully consider the problem of how to represent these tokens in the first place. A very simple but
(as it turns out) not very helpful solution would be to simply replace each token in the input text with
its unique ID. So, for instance, the sentences above may look like so:

785 213 1591 17 89 341 22 1921 1521 56 777 4516 99

785 213 1591 17 89 341 22 1921 1621 56 777 4516 97

The token IDs are made up, but you can see what is happening — we converted a sequence of text
into a sequence of integer IDs that correspond to the unique tokens in our vocabulary that represent the
words in the input.

The similarity between both sentences is even more striking when we think about them as a
sequence of token IDs. It shouldn’t be surprising that a convolutional network will have a hard time
figuring out that the token ‘777’ in the two sentences above refers to different things.

We can not represent tokens in our language model with simple, unique IDs because we need to be
able to distinguish between different possible meanings for the same token; and we need to be able to
update a token’s meaning to account for added context. Even within the same block of text a particular
token may mean different things, and there is nowhere within a sequence of token IDs where we can
store or encode such information. Therefore, we need a more flexible and powerful representation for
individual tokens.

Representing tokens as vectors

In order for our model to be able to refine the meaning of specific tokens in a sequence, we must
provide it with a representation that can be transformed in such a way that the transformed version is
richer in meaning than the initial one. We can achieve this if we encode tokens as vectors. We
specifically want to

- Have each token in our vocabulary be represented by a unique vector in a space of appropriate
dimensionality (more on this shortly)

- Have the direction of the vector encode meaning in such a way that proximity with regard to a
reasonable vector distance measure is related to similarity in meaning

A first attempt at encoding tokens as feature vectors would involve a simple and commonly used
one-hot encoding: The length of the vectors is the same as the size of the vocabulary, and each token is
represented by a vector that is all zeroes except for the entry corresponding to the tokenID which
would be set to 1.

This is an easy thing to do, but it doesn’t really achieve what we want. A one-hot encoding for
tokens as vectors has a few undesirable properties:
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- Vectors are too long (recall we said current language models have vocabularies with over 100K
tokens)

- The original vector’s direction has nothing to do with meaning, it is simply an accident of what
particular ID was assigned to each token. Proximity in vector space tells us nothing about
similarity of meaning

Word embeddings

The current approach for handling tokens in language models is to learn a word embedding — this
is a transformation from the space of one-hot token-ID vectors to a space with a much lower
dimensionality. The transformation encodes semantic information as vector direction in the lower
dimensionality space. It reduces the size of the vectors to something that is manageable in practice,
while allowing the language model to transform these vectors to refine and enrich the meaning of each
token as per our original intent.

If you have worked with dimensionality reduction before (for example, PCA in the context of
classification) then you already have a good idea of how this process may work. A similar process to
PCA can be used to create word embeddings for tokens. Global Vectors (GloVe, Pennington et al.,
2014) compute the embedding from a word-co-occurrence matrix using a dimensionality reduction
process similar in principle to PCA.

Current LLMs learn the embedding during the training process together with the parameters for
the rest of the model. In this way the embedding itself is optimized for whatever task the language
model is expected to solve. However the embedding was created, the form of the end result is the same:

- A word embedding matrix, with one column per token, the corresponding column represents the
vector that encodes the initial meaning of a token within the context of the language model,
training data-set, and task being solved.

- The dimensionality of the embedding is a parameter of the language model, and is much smaller
than the size of the vocabulary.

- Vector direction in the space spanned by the embedding is related to semantic content, so
angle similarity or proximity in this space imply similarity of meaning

1. Nearest neighbors

The Euclidean distance (or cosine similarity) between two word vectors provides an effective method for measuring the linguistic or semantic

similarity of the corresponding words. Sometimes, the nearest neighbors according to this metric reveal rare but relevant words that lie outside
an average human's vocabulary. For example, here are the closest words to the target word frog:

o. frog

1. frogs

2. toad

3. litoria

4. leptodactylidae

h.rana

6. lizard

7. eleutherodactylus
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Within the embedding’s subspace, proximity encodes similarity of meaning
(image from GloVe, by Pennington et al.)

- An emergent property of the above is that moving along a particular direction in the embedding
space modifies a token’s meaning in a predictable and stable way
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(image from GloVe, by Pennington et al.)
Summary - what we have so far

- We will convert input text into a sequence of tokens, the ordering is critical for determining the
meaning of individual tokens.

- Tokens will be represented by unique vectors in a word embedding that has been learned on the
specific problem the language model is designed to address.

- Meaning (in the sense of context-dependent, refined semantic information) is encoded by
direction in the space of the embedding.

- This allows a model to enrich, refine, and infer meaning by transforming the input vectors based
on learned information, and the sequence of input tokens.



CSC D84 — Artificial Intelligence (c) 2025 F. Estrada
Large Language Models

With the above, we are ready to take a close look at the building blocks of current Large
Language Models (LLMs). Existing models are incredibly large (billions of learned parameters,
hundreds of layers of processing) and perform amazing feats in terms of understanding queries, text
generation, summarization, automated translation, and so on.

Consider the following example (from Vaswani et al. 2017, “Attention is all you need”):
“The Law will never be perfect, but its application should be just.”

We know each token in the sentence above will be represented by a vector in a suitably high-
dimensional space in which direction represents meaning — so each token’s initial vector already
encodes useful information — however, a word such as ‘its’ may mean different things, so whatever its
initial direction in the word embedding, it will not be sufficient to tell a model how to interpret it in the
specific sentence we are looking at.
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The meaning of ‘its’ can only be determined by attending to relevant
tokens around it (from Vaswani et al. 2017)

What we need is a way to transform a token’s initial vector so that its meaning is enriched and
refined based on the tokens around it. We know this is possible because of the structure of the
embedding. The mechanism by which we will achieve this is called attention.

The process of attention involves:
- Given a particular token in a sequence (e.g. ‘its’ in the sentence above), figure out which other
tokens are relevant (which tokens a language model should pay attention to) in order to refine its

meaning.

- Determine how to use the embeddings of the attended tokens (e.g. ‘Law’ and ‘application’ in the
example above) to transform the embedding of the original token to enrich its meaning.
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- Produce a new feature vector that corresponds to the token’s refined semantic content that
includes information encoded by the ‘Law’, and ‘application’ embeddings. Those embeddings
themselves could have undergone their own process of context-dependent refinement.

A transformer is a specific neural-net architecture designed to carry out the attention process as
described above. There are three fundamental components to the transformer architecture whose names
come from the field of information retrieval: Queries (Q), Keys (K), and Values (V). These terms are
borrowed from the field of semantic search, so let us consider a simple example of how they are
defined in the context of a search problem, and then we shall see how they apply to the process
happening inside a transformer network.

Suppose we are building an image search engine — it will allow a user to find images of interest. As
a part of this search engine, a convolutional network will process images and generate feature vectors
that somehow encode the image content.

A user would submit a request for images that contain certain objects or have particular properties.
This request could be converted in a vector of features that describes what the user wants. This is the
query (Q). The search engine would then compare or match this query against the feature vector of
each of the images in the database — each specific image’s vector is a key (K) that can be used to
determine how well that particular image matches the user’s query (Q). The search engine can then
figure out how well individual images match the query, and return a sorted list with the relevant values
(V) (the images themselves) to the user.

In the context of LLMs, and specifically for transformers:

- The queries (Q) are linear combinations of the features in a token’s feature vector. The
transformer learns useful queries during training. They will correspond to patterns that, if found
in the input, would meaningfully change the meaning of a token.

- The keys (K) are also linear combinations of the features in a token’s feature vector. They
correspond to patterns in a token’s features that make them relevant to particular queries,
and are also learned during training.

- The values (V) are (as you may expect) linear combinations of a token’s features, where the
weights determine how much a token’s features will contribute toward updating the semantic
information of other tokens in the input as a result of how well their keys and queries match.

Here’s how everything is implemented:

First, the input tokens corresponding to the text we are providing the language model are organized
into a matrix. If the input contains N tokens and each token is represented by an embedding vector with
D features, the input matrix will be N by D - N rows and D columns.

The output of the transformer will be a new matrix of size N by D with feature vectors that
correspond to the tokens after their meaning has been transformed as a result of the operations carried
out inside the transformer. The meaning of each transformed vector depends on all the tokens in the
input but the amount by which each input token affects the transformed output depends on how
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relevant each input token is toward the meaning of the output one. The goal of the attention
mechanism is to determine which tokens are relevant to which outputs, and by how much.
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Example of self attention — the strength of the colour indicates how relevant each
word is to the meaning of every other work in the sentence (from Vaswani et al. 2017)

Specifically, we want

— N —
Un = D i1 GinTs

where the attention weights are all positive, add up to 1, and depend on the relevance of each input
vector x to output vector y. How these weights are determined is the key to how the transformer
operates. The transformer’s operation is fairly straightforward. It relies on learning three weight
matrices used to compute the keys, queries, and values:

Q= XW,
K = XW)j
V = XW,

In the above, X is the N x D matrix with one row per input token, each W matrix is of size D x D
and the resulting matrices Q, K, and V are of size N x D and consist of linear combinations of the
features in each of the input token vectors.

The self attention weight that determines how relevant input token i is to output token j is given by
the dot product of Q(j,:) and K(i,:) - the corresponding rows in the query and key matrices for tokens i
and j. The full set of self attention weights is given by

A = QKT

which is an N x N matrix. Recall that the self attention weights for output j have to be all positive
and add up to 1.0, this is achieved by processing the rows of matrix A by passing each row through a
softmax function.
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The scale factor with the square root of D ensures the output vectors have unit variance. Given the
scaled dot product self attention weights in matrix A’, the refined output vectors are obtained as

Y=A'V
A module implementing the operations described above is called an attention head.

NOTE: We talk of the matrices Q, K, and V as corresponding to queries, keys, and values in the
context of information retrieval but it’s important to remember that the learning process is not actually
trying to learn matrices that can cleanly be taken to represent either of these things — the network will
simply learn values for these matrices such that the attention mechanism is able to help the model
carry out its task. Thinking of queries, keys, and values is just a convenient abstraction.

Scaled Dot-Product Attention Multi-Head Attention
MatMul
Concat
it
L
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| | l
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\ K Q
Single head, and multi-head attention modules (from Vaswani et al. 2017)
the masking operation allows specific tokens to be ignored by the attention
mechanism and may be required for specific applications.

Multi-head attention

Similar to having a convolutional network learn a large number of different kernels, transformers
benefit from learning different sets of queries, keys, and values. This means that instead of training a
single attention head, we will train and run multiple layers of attention in parallel. Each attention head
computes output vectors that are transformations of the input tokens relevant to the specific queries the
head cares about. The different outputs have to be combined to produce the final output vectors.

This is done by first concatenating the outputs Y; of each attention head into a single, large matrix
of size N x KD where K is the number of attention heads:

H=[Y:,Ys, ..., Y]

Ymh = HWO
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where Y., contains the final output vectors from the multi-head attention block, and W, is a
matrix that linearly combines the outputs of the different heads to produce the final output vectors. The
output matrix also has to be learned during training. It is important to keep in mind that there is now a
fairly large number of parameters that have to be learned:

- We have 2 x K matrices of size D x D for the queries and keys of the K attention heads
- We have K matrices of size N x D for the values of the K attention heads
- And we have 1 matrix of size N x KD for the output matrix of the multi-head attention module

This adds up very quickly, so for example, the GPT-3 model which by now is not considered
particularly large clocks in at over 175 billion parameters. A good portion of these are in the many,
many weight matrices that have to be learned for the multiple layers of multi-head attention modules
that extract, refine, and transform the meaning of input tokens from their context.

The Transformer

The transformer is the fundamental block of processing in modern LLMs. It consists of a multi-
head attention module, a skip connection, batch normalization, and a fully-connected neural net
(usually two layer) possibly also with skip connections.

The input to the transformer block is a sequence of tokens that the LLM is processing. The output
is a transformed set of tokens that forms the input to another transformer block — LLMs consist of
stacks of transformers progressively refining and enriching the meaning of the input tokens until the
final block outputs a sequence that contains the result LLM was trained to produce.
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A transformer module consists of a multi-head attention block,
followed by a fully-connected, feed-forward net, notice
the skip connections, and the batch normalization layers

(from Vaswani et al. 2017)
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We have already seen what the multi-head attention block is doing, so let us consider the role of
the fully-connected network that forms the second part of a transformer block. Multi-head attention
ensures that the meaning of each token can be suitably refined by all the other tokens in the input — it
produces a non-linear mixture of the features in the input’s token sequence that results from learned
attention patterns useful to the model.

The feed-forward network then processes each of the vectors output by the multi-head attention
block independently. The network typically has two layers. The first layer projects the vectors to a
higher dimensional space, the second layer mixes and combines features in this high-dimensional
representation to produce the final output vectors of the same dimensionality as the input to the
transformer.

The feed-forward network takes an input embedding vector and updates each feature to account
for interesting/useful patterns that span the entire vector. This non-linear transformation of features
plays a significant role in the refinement process. There is some evidence to suggest that the feed-
forward net can store factual information from the training data, and that such information can be
encoded into the embeddings as they pass through the fully-connected block.

Transformers can be stacked together to build language models. The encoder-only model which
was used in the original GPT works in this way:

Output

t

Fully-connected

LayerNorm

GPT Block #L

L

/_)H

GPT Block #1

Dropout

Positional
Encoding

Embedding

Input

Diagram of the GPT model, each GPT block is a transformer-.
Image: Minhyeok Lee, CC-BY-4.0

Building a working LLM

Now that we understand the processing taking place inside a transformer block, we have to look
into a couple of important technical details that are required to make a language model work. In
particular, we will focus on models whose task is to produce text that responds to a user’s prompt by
generating a sequence of output tokens that correspond to the text that has the highest probability of
being the correct completion for the corresponding prompt.
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Consider the following block of text (which may be part of the training data for an LLM):

‘It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the
epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of
hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to
Heaven, we were all going direct the other way—in short, the period was so far like the present period, that some of its
noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.’

(A Tale of Two Cities, by Charles Dickens)

Can we build a language model such that, given as input some length of the text above is able to
predict what comes next? For instance:

Given as input The model predicts
‘it was the season of Darkness, it was the’ spring

‘we were all going direct to’ Heaven

‘It was the best of times, it was the worst’ of

The task of the model is to choose the highest likelihood word that extends the prompt by one
word. We can then use the newly predicted word to expand the prompt by one word and run the model
again to predict the most likely next word.

Given as input The model predicts
‘It was the best of’ times

‘It was the best of times’ s

‘It was the best of times,’ it

‘It was the best of times, it’ was

We can keep doing this as long as we want, and the model will keep generating new text. While it
is fun to have a model re-create text it has already seen, the actually useful thing is that once it has
been trained, the model can produce useful text to extend prompts it has not seen before. Which
means such a model can produce meaningful and often useful answers for all kinds of user prompts.

It is incredibly important to remember that the text produced does not have to be logically
consistent or factually correct (though it often is both). It just has to have a high probability of
plausibly extending the current sequence of tokens being presented to the language model. Keep the
examples below in mind whenever you are using an LLM to generate text!
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Can you give me a list of fruits whose name ends in 'um'?

Sure! Here's a list of fruits that end with "um"—though it's a pretty rare ending, so there aren’t many:
1. Plum

2. Crabapple (scientific name: Malus pumila, though this one is a bit of a stretch)

Unfortunately, "um" is an uncommon ending for fruit names, and | couldn't find many examples. If you have

specific fruits in mind or need help with something else, feel free to ask!
&

Can you give me a list of fruit whose name ends in

fruits that end inum um?

All

4 The most common fruit whose name ends in "um" is:

* Plum
4 Al Overview

Other possibilities are sometimes mentioned, depending on how strictly you

rui s i Other less ¢ es includ i 8
The commen fruit plum end Other less common examples include quince define *fruit*or if you consider less common terms:

and persimmon. Some joke or fabricated fruit names alse end in "-um," like "applum”

or "bananum”. @ « Applum (A hybrid of apricot and plum, often sold in the foodservice

industry).
= Plum: A very common stone fruit. « Capsicum (Botanically a fruit, though commonly used as a vegetable, e.g.,

. . Il .
agrant fruit that is often cooked. bell peppers)

S . I noticed some search results also mention humorous or non-standard
, reddish-orange fruit. o N
creations like "Bananum® or “Strawberrum,” but those are not recognized

= Umeboshi: A Japanese pickled plum that is often translated as "salted Japanese names for actual fruits.

plums”. &

Is there anything else | can help you find out about fruits or food names?

The output above should not surprise you — and it doesn’t mean these models are dumb or not useful.
The models learn to figure out meaning and we are asking for something that has little or nothing to do with a word’s meaning: how a
noun sounds, and what it means, are not closely related. Bottom line — the output of a text-generating LLM can not be taken to be
logically or factually correct. It has to be carefully checked before being put to any serious use

As noted earlier, there are two technical details we have to look at before we can understand how a
language model may be able to accurately produce a prediction for the next word that extends the
input.

Firstly — the processing that happens inside the transformer depends exclusively on the values of
the features within the embedding vectors provided as input to the transformer. All the matrices
involved, the keys, queries, and values as well as the processing that happens within the feed-forward
fully connected network can only use the content of the embedding vectors. For this reason, the
processing within a transformer does not use the information regarding the positions of the tokens in
the sequence.

The token’s position within a sequence is critical for determining its meaning. It is a problem that,
as described above, the transformer architecture does not have access to, or a way to use this
information.

Positional encoding

The fundamental problem we have to solve is that the transformer can only access the values
stored in the features of each embedding vector. So if we want to provide information regarding the
relative position of tokens in the input sequence, such information has to be encoded into the feature
vectors themselves.

At the same time, we designed the embedding so that transformations to the feature vectors change
the meaning of the tokens they represent. So we can not just go carelessly transforming the encoding
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vectors and expect the resulting directions to work. To make positional encoding work, we will take
advantage of the high dimensionality of the token embeddings. In such high dimensional spaces,
choosing a pair of random directions is likely to result in vectors that are nearly orthogonal — which
indicates the space of possible directions is huge, and we can find a set of directions to use for the
positional encoding that are un-correlated with whatever directions the embedding uses to represent
meaning.

There are several approaches currently in use for encoding position within the feature vectors, and
the details of which particular one is used by which model are not so interesting as the concept of how
position gets encoded in embedding vectors. Here we will consider the original encoding from Vaswani
et al. which modifies the token embedding vectors x by adding a positional encoding component r such
that

The entries in vector r; for a token at position i in the sequence are taken from a family of either
sine or cosine waves in which the frequency is different for each feature j in the embedding vector:

[ sin(1000071/Pi), i is even
“7 1 cos(1000010—D/Plj) i is odd
(Vaswani et al., 2017)

This is not particularly intuitive, so let’s visualize what it happening:
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Visualization of the vector r; added by the sinusoidal positional encoding described above. For a token whose position in the sequence is i,
the positional encoding vector riis given by the i* row in the matrix above. Plot by Yang et al., CC-BY-NC-ND-4.0

The positional encoding vector is not random, if you consider the positional encoding of a few
consecutive tokens, you can verify that their positional encoding provide a unique fingerprint for each
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token that predictably depends on their position within the input sequence. This additional information
allows the language model to learn queries, keys, and values that take into account the positions of
related tokens within the input sequence as part of the attention process.

Up to this point we have assumed that the word embedding used to represent tokens was created
separately from the LLM, but in practice, the best performance is achieved by learning the embedding
together with all the other parameters in the model. The embedding vectors are initialized randomly
and the same process of gradient descent used to learn queries, keys, values, and weights for the feed-
forward blocks is also used to learn the embedding vectors.

With this in mind, it should be easier to understand that the resulting embedding will work with the
positional encoding vectors — positional encoding will have been used throughout the training process
that resulted in the embedding vectors themselves.

Predicting the next word

The final piece of the problem is to consider how to actually obtain a prediction from the LLM. So
far, a transformer or a stack of transformers can take an input sequence of tokens and produce
transformed output vectors for each that have been enriched with meaning derived from the context
provided by the input tokens themselves as well as the knowledge the model has accumulated during
training. However, the output is just a set of transformed tokens corresponding one-to-one to the input.
So, how is it possible for the model to generate a prediction for the next token that best continues a
specific input?

First step — shift the output with regard to the input. Since we want to predict the next word in a
sequence we will train the model so the transformed tokens in the output are shifted by one with
regard to the input as shown below:

Y:L Yz Yn Yn+1
vt
| N

er Block

<start> X; X, Xn

The input is padded with a special start symbol, and the LLM learns during training to predict each
output token from the preceding ones in the input sequence. The last vector output by the LLM is the
embedding corresponding to the predicted next token that we want.
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It is important to understand that this last embedding vector is not itself a prediction — it just points
towards a location in the embedding space that corresponds to the meaning expected from the next
token the LLM needs to produce. We still have to translate this embedding vector into a prediction for
a specific token in the vocabulary. Therefore, we add one final fully-connected layer (see the GPT
diagram above) to the LLM whose job is to take the embedding vector y,.; and translate it into a logits
vector with the same size as the vocabulary where the value of each entry gives the probability that the
corresponding token should be next. The logits vector can then be passed through a softmax function
to turn it into a probability distribution over all tokens in the vocabulary.

Given the logits vector, predicting the next token can be done in one of two ways:

- Choose the token whose probability is highest
- Sample from the logits vector such that a token is selected with probability given by its
corresponding logit

In either case the LLM has now produced a new token, the expanded text can be fed back through
the LLM to continue text generation. The process continues until the LLM decides it has come to the
end of a plausible sequence of text that answers a user prompt. One way in which this is achieved is by
having a special token ‘<eos>’ to indicate the end of a sequence. This token is added to every
document the LLM is trained on, so the model learns where a natural ending point may occur for a
given text passage. During generation, if the next token in the sequence is the ‘<eos>’ token, the
generation process stops.

Cross Attention

The same architecture described above for generating text can be put to use for a variety of
important applications. For instance, summarization and language translation. Both of these
applications rely on an extension to the attention mechanism that allows for multiple sources of

information to be used by a transformer network in order to determine tokens to generate.

The following diagram shows cross attention at work in a typical transformer networks
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Cross-attention mechanism (Vaswani et al. 2017)

Suppose we want to do automatic text translation — for instance, we want to translate ‘Buenos dias,
quiero dos tacos con salsa por favor’ into English. The left-hand side of the network above is an
encoder — it takes the input text in Spanish and produces embedding vectors with refined meaning as
we would expect from a regular transformer network — the right side of the network is a decoder
network, it looks at the generated output in English, and produces the translated text.

It works like a standard transformer network, except for a cross-attention block that receives the
encoder’s output and incorporates it into the attention mechanism of the decoder network — this is what
allows the meaning of the tokens derived from the text in Spanish to inform and guide the generation
of the equivalent text in English. Inside the cross-attention block the keys and values are generated
from the encoder’s output (the original Spanish text), while the queries are generated from the
decoder’s output (the generated translation).

The entire model is trained on a large corpus of text with corresponding translations. Automatic
translation has improved dramatically with the development of transformer networks, as the sample
below demonstrates from a poem by Enrique Gonzalez Martinez.
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Hp Text M images B Documents BN Websites
Spanish - Detected English Spanish French v « English Alur Spanish v
Tuércele el cuello al cisne de engafioso plumaje X Wring the neck of the swan with its deceptive plumage
que da su nota blanca al azul de la fuente; that lends its white note to the blue of the fountain;
¢él pasea su gracia no mas, pero no siente it merely displays its grace, but feels neither
¢l alma de las cosas ni la voz del paisaje. the soul of things nor the voice of the landscape.
Huye de toda forma y de todo lenguaje Flee from all forms and all language
que no vayan acordes con el ritmo latente that do not resonate with the latent rhythm
de la vida profunda... y adora intensamente of profound life... and intensely adore
la vida, y que la vida comprenda tu homenaje. life, and let life understand your homage.
Mira al sapiente buho cémo tiende las alas Look at the wise owl as it spreads its wings
desde el Olimpo, deja el regazo de Palas from Olympus, leaves the lap of Pallas
y posa en aquel arbol el vuelo taciturno... and alights its taciturn flight on that tree...
El no tiene la gracia del cisne, mas su inquieta It does not possess the grace of the swan, but its restless
pupila, que se clava en la sombra, interpreta pupil, fixed on the shadow, interprets
el misterioso libro del silencio nocturno. the mysterious book of nocturnal silence.
ED) 616/ 5,000 D) D G b,_; <

This is a very good translation despite the fact that poetry is typically difficult, and illustrates what
is possible with transformer networks. The material in these notes covers the classic transformer
language models. Current LLMs are incredibly sophisticated and can handle text, mathematical
notation, formulas (for example Physics or Chemistry), allow for multi-language text, and support
multi-modal queries (e.g. images or sound recordings).

Acknowledgements: A big thank you to Allan Jepson for carefully reading through these notes and
providing me with detailed and very precise feedback on how to make them better!



