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Unit 9 – Language Models

Convolutional networks provide a specialized architecture that is well suited to solving a variety of  
problems on input data that can be arranged as an array, and under the assumption that the spatial  
arrangement of the data is meaningful (though possibly at different scales). Image-related tasks fit this 
category well, and as a result convnets are extensively used on images.

We may wonder whether we can apply the same kind of neural architecture to the problem of 
understanding and processing text. For instance, this page of text can be thought of as a grid in 2D 
inside of which we find an arrangement of characters that for an observer capable of recognizing them 
and organizing them into words, contains meaningful information.

Why not treat a page of text such as this one as just another 2D array of data corresponding to rows 
and columns of characters, and use a suitably built convolutional network to solve interesting problems 
similar to those we know we can solve on regular images? Indeed, it is possible to use a convolutional 
network to carry out tasks such as text classification, and sentiment analysis (Conneau et al., 2016). 
The network’s architecture is fairly similar to standard image processing convnets such as VGG and 
ResNet.

Even  though  a  ConvNet  performs  well  at  very  specific  language  tasks,  common  language 
processing problems such as  text generation, summarization, query understanding,  and  language 
translation have the property that global context matters. This means that the information provided by 
indivitual features even at multiple scales should be influenced and transformed by content present in 
the entire input. ConvNets rely on spatial locality and contiguity for feature detection and analysis, and  
as such, are not the best architecture to handle the kinds of problems described above. 

To fully understand how current language models work, we first need to take a look at how text is  
represented and manipulated within language models, and at the kinds of problems that motivate the 
current architectures for dealing with language. 

Text representation in LLMs

The unit of information in text is rarely a single character. A convenet working on input text would 
somehow have to learn kernels to identify each individual grouping of characters that has meaning. 
While this may be feasible, research in natural language understanding already provided a tool for  
solving this particular problem. 

Instead of working on individual characters, a first step of processing converts input text into a 
sequence of tokens – these consist of groups of characters that may be identifiable as individual words 
but often are not. The process of turning input text into a sequence of tokens is called tokenization, and 
there are many variations on the details of how it is done, but you should think about it as breaking text 
into individual,  unique parts that have more meaning than individual characters and are helpful in 
processing language.
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Example of how text is broken into tokens for input into a language model,
each token is represented as a unique integer defined within a vocabulary

(image generated from the Open AI online tokenizer)

From the above we have:

- Text is pre-processed to extract a sequence of tokens. The order of these tokens matters greatly
   and any model we build to process language must be able to use the information provided by the

  ordering of tokens in the input text.

- The tokenizer defines a vocabulary of unique tokens that can be used for language processing
          for current language morels (2025) this is in the order of 100K – 200K unique tokens, and 

   includes tokens to handle technical terms such as what you would find in Math, Science, and
   other specialized fields.

- Because words can be broken up into components, unusual or foreign words, things like names
   and even grammatical errors will be parsed into some sequence of known tokens.

- These tokens will then be processed by the language model whose job it is to make sense of the
  sequence in order to perform some specific task.

Context is everything

The key property  of  language  that  makes  language  processing  challenging (with  the  types  of 
architectures we know up to this point) is that the information provided by individual tokens is to a 
very large degree dependent on the context – such context is provided by other parts of the text, some 
of which can be at a significant distance from the place a token occurs. 

Convolutional networks are great at capturing spatial relationships in its input within contiguous, 
reasonably sized neighbourhoods, but they struggle to capture the complex interactions between words 
that may be far apart but clearly affect each other’s meaning. 
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Similarly, text passages can have any length – a language model may be required to work on a few  
words,  a  paragraph,  a  page  or  an  entire  article  or  book  (think,  for  example,  about  automatic 
summarization).  Even  worse,  the  context  itself  may  not  be  present  in  the  input  text but  may  be 
something the model has to learn from training data.  Simply put, a good language model will have 
learned about the usual meaning of tokens, and use the specific input it is provided to enrich, modify,  
and refine what it has learned through training in order to arrive at the correct interpretation of every 
token in the input sequence it has been given.

Consider the following, short sentences:

The fish could not go into the basket because it was too big

The fish could not go into the basket because it was too small

Both sentences have the same structure – if you were applying a pattern-matching kernel to them 
(as you would if you built a convnet to process text) they would appear very similar. The same bolded 
token ‘it’, however, refers to very different things in each case. 

The context here is not obvious, and it is not provided by the input text itself. It has to be inferred 
from prior knowledge about the relative sizes of fishes, baskets, and a bit of logic: if the fish is too  
small, it definitely fits inside the basket – so the basket must be  ‘it’ in the second sentence. A good 
language model must be able to arrive at the most likely meaning for an ambiguous token, and it must 
be able to use information available anywhere within the input text, as well as what it has  learned 
during training.

In  what  follows,  the  word  meaning is  used  to  describe  the  changeable,  context-dependent 
information that an individual token may represent. It is not fixed, or grounded, rather, it is arrived at 
through careful processing of the context the token appears in.  To illustrate this idea, consider the 
following example:

“At three o'clock precisely I was at Baker Street, but Holmes had not yet 
returned.”  (from The Adventures of Sherlock Holmes by Sir Arthur Conan Doyle)

Consider the word ‘street’ in the sentence above. We know from any dictionary that this particular 
word has a specific ground-truth meaning:

   street (noun) - A public road in a city or town that has houses and buildings on one side or both sides.
                                                  (from the Oxford learner’s dictionary)

However, placed within the context provided by the text around it, we could determine that besides 
describing  a  public  road,  the  word  refers  to  a specific  street (Baker  Street)  on  which  there  is  a 
particular house (221B) wherein lives a famous detective  (Sherlock Holmes) along with his friend 
and sidekick (Watson).  This kind of enriched meaning is what we are after in order to build language 
models.
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Mapping tokens to context-dependent meaning

If we want to have tokens that are able to capture rich conext-dependent information, we first have 
to carefully consider the problem of how to represent these tokens in the first place. A very simple but 
(as it turns out) not very helpful solution would be to simply replace each token in the input text with  
its unique ID. So, for instance, the sentences above may look like so:

785  213  1591 17  89   341  22  1921  1521  56  777  4516  99

785  213  1591 17  89   341  22  1921  1521  56  777  4516  97

The token IDs are made up, but you can see what is happening – we converted a sequence of text  
into a sequence of integer IDs that correspond to the unique tokens in our vocabulary that represent the 
words in the input. 

The similarity  between both  sentences  is  even more  striking when we think about  them as  a  
sequence of token IDs. It shouldn’t be surprising that a convolutional network will have a hard time 
figuring out that the token ‘777’ in the two sentences above refers to different things.

We can not represent tokens in our language model with simple, unique IDs because we need to be 
able to distinguish between different possible meanings for the same token; and we need to be able to 
update a token’s meaning to account for added context. Even within the same block of text a particular 
token may mean different things, and there is nowhere within a sequence of token IDs where we can 
store or encode such information. Therefore, we need a more flexible and powerful representation for 
individual tokens.

Representing tokens as vectors

In order for our model to be able to refine the meaning of specific tokens in a sequence, we must 
provide it with a representation that can be transformed in such a way that the transformed version is 
richer  in  meaning than the  initial  one.  We can achieve this  if  we encode  tokens as  vectors.  We 
specifically want to

- Have each token in our vocabulary be represented by a unique vector in a space of appropriate
  dimensionality (more on this shortly)

- Have the direction of the vector encode meaning in such a way that proximity with regard to a
  reasonable vector distance measure is related to similarity in meaning

A first attempt at encoding tokens as feature vectors would involve a simple and commonly used 
one-hot encoding: The length of the vectors is the same as the size of the vocabulary, and each token is 
represented by a vector that is all zeroes except for the entry corresponding to the tokenID which 
would be set to 1.

 This is an easy thing to do, but it doesn’t really achieve what we want. A one-hot encoding for 
tokens as vectors has a few undesirable properties:
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- Vectors are too long (recall we said current language models have vocabularies with over 100K
    tokens)

- The original vector’s direction has nothing to do with meaning, it is simply an accident of what
   particular ID was assigned to each token. Proximity in vector space tells us nothing about
   similarity of meaning

Word embeddings

The current approach for handling tokens in language models is to learn a word embedding – this 
is  a  transformation  from  the  space  of  one-hot token-ID  vectors to  a  space  with  a  much  lower  
dimensionality.  The transformation encodes  semantic information as  vector direction in the lower 
dimensionality space. It reduces the size of the vectors to something that is manageable in practice,  
while allowing the language model to transform these vectors to refine and enrich the meaning of each 
token as per our original intent.

If you have worked with dimensionality reduction before (for example, PCA in the context of 
classification) then you already have a good idea of how this process may work. A similar process to  
PCA can be used to create word embeddings for tokens. Global Vectors (GloVe, Pennington et al., 
2014) compute the embedding from a word-co-occurrence matrix using a dimensionality reduction 
process similar in principle to PCA. 

Current LLMs learn the embedding during the training process together with the parameters for 
the rest of the model. In this way the embedding itself is optimized for whatever task the language 
model is expected to solve. However the embedding was created, the form of the end result is the same:

- A word embedding matrix, with one column per token, the corresponding column represents the
    vector that encodes the initial meaning of a token within the context of the language model,

  training data-set, and task being solved.

- The dimensionality of the embedding is a parameter of the language model, and is much smaller
  than the size of the vocabulary.

- Vector direction in the space spanned by the embedding is related to semantic content, so
    angle similarity or proximity in this space imply similarity of meaning
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Within the embedding’s subspace, proximity encodes similarity of meaning
(image from GloVe, by Pennington et al.)

- An emergent property of the above is that moving along a particular direction in the embedding
         space modifies a token’s meaning in a predictable and stable way

(image from GloVe, by Pennington et al.)

Summary - what we have so far

- We will convert input text into a sequence of tokens, the ordering is critical for determining the
    meaning of individual tokens.

- Tokens will be represented by unique vectors in a word embedding that has been learned on the
   specific problem the language model is designed to address.

- Meaning (in the sense of context-dependent, refined semantic information) is encoded by
         direction in the space of the embedding.

- This allows a model to enrich, refine, and infer meaning by transforming the input vectors based
   on learned information, and the sequence of input tokens.
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Large Language Models

With  the  above,  we  are  ready  to  take  a  close  look  at  the  building  blocks  of  current  Large 
Language  Models  (LLMs).  Existing  models  are  incredibly  large  (billions  of  learned  parameters, 
hundreds of layers of processing) and perform amazing feats in terms of understanding queries, text  
generation, summarization, automated translation, and so on. 

Consider the following example (from Vaswani et al. 2017, “Attention is all you need”):

“The Law will never be perfect, but its application should be just.”

We know each  token in the sentence above will be represented by a vector in a suitably high-
dimensional  space  in  which direction represents  meaning –  so  each token’s  initial  vector  already 
encodes useful information – however, a word such as ‘its’ may mean different things, so whatever its 
initial direction in the word embedding, it will not be sufficient to tell a model how to interpret it in the  
specific sentence we are looking at.

The meaning of ‘its’ can only be determined by attending to relevant
tokens around it (from Vaswani et al. 2017) 

 
What we need is a way to transform a token’s initial vector so that its meaning is enriched and 

refined based  on  the  tokens  around  it.  We  know this  is  possible  because  of  the  structure  of  the 
embedding. The mechanism by which we will achieve this is called attention. 

The process of attention involves:

- Given a particular token in a sequence (e.g. ‘its’ in the sentence above), figure out which other
         tokens are relevant (which tokens a language model should pay attention to) in order to refine its
         meaning.

- Determine how to use the embeddings of the attended tokens (e.g. ‘Law’ and ‘application’ in the
   example above) to transform the embedding of the original token to enrich its meaning.
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- Produce a new feature vector that corresponds to the token’s refined semantic content that
   includes information encoded by the ‘Law’, and ‘application’ embeddings. Those embeddings

  themselves could have undergone their own process of context-dependent refinement.

A transformer is a specific neural-net architecture designed to carry out the attention process as 
described above. There are three fundamental components to the transformer architecture whose names 
come from the field of information retrieval: Queries (Q), Keys (K), and Values (V). These terms are 
borrowed from the field of  semantic search, so let us consider a simple example of how they are 
defined in the context  of  a  search problem, and then we shall  see how they apply to the process 
happening inside a transformer network.

Suppose we are building an image search engine – it will allow a user to find images of interest. As 
a part of this search engine, a convolutional network will process images and generate  feature vectors 
that somehow encode the image content. 

A user would submit a request for images that contain certain objects or have particular properties.  
This request could be converted in a vector of features that describes what the user wants. This is the 
query (Q). The search engine would then compare or match this query against the feature vector of 
each of the images in the database – each specific image’s vector is a  key (K) that can be used to 
determine how well that particular image matches the user’s query (Q). The search engine can then 
figure out how well individual images match the query, and return a sorted list with the relevant  values  
(V) (the images themselves) to the user.

In the context of LLMs, and specifically for transformers:

- The queries (Q) are linear combinations of the features in a token’s feature vector. The
   transformer learns useful queries during training. They will correspond to patterns that, if found

  in the input, would meaningfully change the meaning of a token.

- The keys (K) are also linear combinations of the features in a token’s feature vector. They
   correspond to patterns in a token’s features that make them relevant to particular queries,
   and are also learned during training.

- The values (V) are (as you may expect) linear combinations of a token’s features, where the
   weights determine how much a token’s features will contribute toward updating the semantic
   information of other tokens in the input as a result of how well their keys and queries match.

Here’s how everything is implemented:

First, the input tokens corresponding to the text we are providing the language model are organized 
into a matrix. If the input contains N tokens and each token is represented by an embedding vector with 
D features, the input matrix will be N by D - N rows and D columns. 

The  output  of the transformer will  be a new matrix of size  N by D with feature vectors that 
correspond to the tokens after their meaning has been transformed as a result of the operations carried 
out inside the transformer. The meaning of each transformed vector depends on all the tokens in the  
input but  the  amount  by  which  each input  token affects  the  transformed output  depends  on  how 
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relevant each  input  token  is  toward  the  meaning  of  the  output  one.  The  goal  of  the  attention 
mechanism is to determine which tokens are relevant to which outputs, and by how much.

Example of self attention – the strength of the colour indicates how relevant each
word is to the meaning of every other work in the sentence (from Vaswani et al. 2017)

Specifically, we want

where the attention weights are all positive, add up to 1, and depend on the relevance of each input 
vector x  to output vector y.  How these weights are determined is  the key to how the transformer 
operates.  The  transformer’s  operation  is  fairly  straightforward.  It  relies  on  learning  three  weight  
matrices used to compute the keys, queries, and values:

In the above, X is the N x D matrix with one row per input token, each W matrix is of size D x D 
and the resulting matrices  Q, K, and  V are of size  N x D and consist of linear combinations of the 
features in each of the input token vectors.

The self attention weight that determines how relevant input token i is to output token j is given by 
the dot product of Q(j,:) and K(i,:) - the corresponding rows in the query and key matrices for tokens i 
and j. The full set of self attention weights is given by

 

which is an N x N matrix. Recall that the self attention weights for output j have to be all positive 
and add up to 1.0, this is achieved by processing the rows of matrix A by passing each row through a 
softmax function. 
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The scale factor with the square root of D ensures the output vectors have unit variance. Given the 
scaled dot product self attention weights in matrix A’, the refined output vectors are obtained as

A module implementing the operations described above is called an attention head.

NOTE:  We talk of the matrices  Q, K,  and  V as corresponding to  queries,  keys,  and  values in the 
context of information retrieval but it’s important to remember that the learning process is not actually 
trying to learn matrices that can cleanly be taken to represent either of these things – the network will  
simply learn values for these matrices such that the  attention mechanism is able to help the model 
carry out its task. Thinking of queries, keys, and values is just a convenient abstraction.

Single head, and multi-head attention modules (from Vaswani et al. 2017)
the masking operation allows specific tokens to be ignored by the attention

mechanism and may be required for specific applications.

Multi-head attention

Similar to having a convolutional network learn a large number of different kernels, transformers 
benefit from learning different sets of queries, keys, and values. This means that instead of training a 
single attention head, we will train and run multiple layers of attention in parallel. Each attention head 
computes output vectors that are transformations of the input tokens relevant to the specific queries the 
head cares about. The different outputs have to be combined to produce the final output vectors.

This is done by first concatenating the outputs Yi of each attention head into a single, large matrix 
of size N x KD where K is the number of attention heads:
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where  Ymh contains the final  output vectors from the  multi-head attention block, and  Wo is  a 
matrix that linearly combines the outputs of the different heads to produce the final output vectors. The 
output matrix also has to be learned during training. It is important to keep in mind that there is now a  
fairly large number of parameters that have to be learned:

- We have 2 x K matrices of size D x D for the queries and keys of the K attention heads
- We have K matrices of size N x D for the values of the K attention heads
- And we have 1 matrix of size N x KD for the output matrix of the multi-head attention module

This adds up very quickly, so for example, the GPT-3 model which by now is not considered 
particularly large clocks in at over 175 billion parameters. A good portion of these are in the many,  
many weight matrices that have to be learned for the multiple layers of multi-head attention modules 
that extract, refine, and transform the meaning of input tokens from their context. 

The Transformer

The transformer is the fundamental block of processing in modern LLMs. It consists of a multi-
head attention  module,  a  skip connection,  batch normalization,  and  a fully-connected neural  net 
(usually two layer) possibly also with skip connections. 

The input to the transformer block is a sequence of tokens that the LLM is processing. The output 
is a transformed set of  tokens that forms the input to another transformer block – LLMs consist of 
stacks of transformers progressively refining and enriching the meaning of the input tokens until the  
final block outputs a sequence that contains the result LLM was trained to produce.

A transformer module consists of a multi-head attention block,
followed by a fully-connected, feed-forward net, notice
the skip connections, and the batch normalization layers

(from Vaswani et al. 2017)
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We have already seen what the multi-head attention block is doing, so let us consider the role of 
the  fully-connected  network that forms the second part of a transformer block. Multi-head attention 
ensures that the meaning of each token can be suitably refined by all the other tokens in the input – it 
produces a non-linear mixture of the features in the input’s token sequence that results from learned 
attention patterns useful to the model.

The feed-forward network then processes each of the vectors output by the multi-head attention 
block independently. The network typically has two layers. The first layer  projects the vectors to a  
higher dimensional space,  the second layer mixes and combines features in this high-dimensional 
representation  to  produce  the  final  output  vectors  of  the  same dimensionality  as  the  input  to  the 
transformer. 

The feed-forward network takes an input embedding vector and updates each feature to account 
for interesting/useful patterns that span the entire vector. This non-linear transformation of features 
plays a significant role in the refinement process. There is some evidence to suggest that the  feed-
forward  net can store factual information from the training data, and that such information can be 
encoded into the embeddings as they pass through the fully-connected block. 

Transformers can be stacked together to build language models. The encoder-only model which 
was used in the original GPT works in this way:

Diagram of the GPT model, each GPT block is a transformer.
Image: Minhyeok Lee, CC-BY-4.0

Building a working LLM

Now that we understand the processing taking place inside a transformer block, we have to look 
into a  couple  of  important  technical  details  that  are  required to  make a  language model  work.  In  
particular, we will focus on models whose task is to produce text that responds to a user’s prompt by 
generating a sequence of output tokens that correspond to the text that has the highest probability of 
being the correct completion for the corresponding prompt. 
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Consider the following block of text (which may be part of the training data for an LLM):

‘It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the  
epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of  
hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to 
Heaven, we were all going direct the other way—in short, the period was so far like the present period, that some of its  
noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.’

(A Tale of Two Cities, by Charles Dickens)

Can we build a language model such that, given as input some length of the text above is able to  
predict what comes next? For instance:

Given as input The model predicts

‘it was the season of Darkness, it was the’     spring
‘we were all going direct to’   Heaven
‘It was the best of times, it was the worst’        of

The task of the model is to choose  the highest likelihood word  that extends the prompt by one 
word. We can then use the newly predicted word to expand the prompt by one word and run the model 
again to predict the most likely next word. 

Given as input The model predicts

‘It was the best of’   times
‘It was the best of times’       ,
‘It was the best of times,’      it
‘It was the best of times, it’    was

We can keep doing this as long as we want, and the model will keep generating new text. While it 
is fun to have a model re-create text it has already seen, the actually useful thing is that  once it has  
been trained, the model can produce  useful text to extend prompts it has not seen before. Which 
means such a model can produce meaningful and often useful answers for all kinds of user prompts.

It  is  incredibly  important  to  remember  that  the  text  produced  does  not  have  to  be  logically  
consistent or factually correct (though it  often is  both).  It  just  has to have  a high probability of  
plausibly extending the current sequence of tokens being presented to the language model. Keep the 
examples below in mind whenever you are using an LLM to generate text!
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The output above should not surprise you – and it doesn’t mean these models are dumb or not useful.
The models learn to figure out meaning and we are asking for something that has little or nothing to do with a word’s meaning: how a 

noun sounds, and what it means, are not closely related. Bottom line – the output of a text-generating LLM can not be taken to be 
logically or factually correct. It has to be carefully checked before being put to any serious use

As noted earlier, there are two technical details we have to look at before we can understand how a  
language model may be able to accurately produce a prediction for the  next word that extends the  
input. 

Firstly – the processing that happens inside the transformer depends exclusively on the values of  
the  features  within  the  embedding vectors provided as  input  to  the  transformer.  All  the  matrices 
involved, the keys, queries, and values as well as the processing that happens within the feed-forward 
fully  connected  network  can  only  use  the  content  of  the  embedding vectors.  For  this  reason,  the 
processing within a transformer does not use the information regarding the positions of the tokens in  
the sequence. 

The token’s position within a sequence is critical for determining its meaning. It is a problem that, 
as  described  above,  the  transformer  architecture does  not  have  access  to,  or  a  way  to  use  this 
information.

Positional encoding

The fundamental problem we have to solve is that the  transformer  can only access the values 
stored in the features of each embedding vector. So if we want to provide information regarding the 
relative position of tokens in the input sequence, such information has to be encoded into the feature  
vectors themselves.

At the same time, we designed the embedding so that transformations to the feature vectors change 
the meaning of the tokens they represent. So we can not just go carelessly transforming the encoding 
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vectors and expect the resulting directions to work. To make positional encoding work, we will take 
advantage  of  the  high  dimensionality  of  the  token  embeddings.  In  such  high  dimensional  spaces, 
choosing a pair of random directions is likely to result in vectors that are nearly orthogonal – which  
indicates the space of possible directions is huge, and we can find a set of directions to use for the 
positional encoding that are  un-correlated with whatever directions the embedding uses to represent 
meaning. 

There are several approaches currently in use for encoding position within the feature vectors, and 
the details of which particular one is used by which model are not so interesting as the concept of how 
position gets encoded in embedding vectors. Here we will consider the original encoding from Vaswani  
et al. which modifies the token embedding vectors x by adding a positional encoding component r such 
that

The entries in vector ri for a token at position i in the sequence are taken from a family of either 
sine or cosine waves in which the frequency is different for each feature j in the embedding vector: 

(Vaswani et al., 2017)

This is not particularly intuitive, so let’s visualize what it happening:

Visualization of the vector ri added by the sinusoidal positional encoding described above. For a token whose position in the sequence is i, 
the positional encoding vector ri is given by the ith row in the matrix above. Plot by Yang et al., CC-BY-NC-ND-4.0

The positional encoding vector is not random, if you consider the positional encoding of a few 
consecutive tokens, you can verify that their positional encoding provide a unique fingerprint for each 
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token that predictably depends on their position within the input sequence. This additional information 
allows the language model to learn  queries, keys,  and  values that take into account the positions of 
related tokens within the input sequence as part of the attention process.

Up to this point we have assumed that the word embedding used to represent tokens was created 
separately from the LLM, but in practice, the best performance is achieved by learning the embedding 
together with all the other parameters in the model. The embedding vectors are initialized randomly 
and the same process of gradient descent used to learn queries, keys, values, and weights for the feed-
forward blocks is also used to learn the embedding vectors.  

With this in mind, it should be easier to understand that the resulting embedding will work with the  
positional encoding vectors – positional encoding will have been used throughout the training process 
that resulted in the embedding vectors themselves.

Predicting the next word

The final piece of the problem is to consider how to actually obtain a prediction from the LLM. So  
far,  a  transformer or  a  stack of  transformers can take  an input  sequence of  tokens and produce 
transformed output vectors for each that have been enriched with meaning derived from the context 
provided by the input tokens themselves as well as the knowledge the model has accumulated during 
training. However, the output is just a set of transformed tokens corresponding one-to-one to the input. 
So, how is it possible for the model to generate a  prediction for the next token that best continues a 
specific input?

First step – shift the output with regard to the input. Since we want to predict the next word in a 
sequence we will  train the model so the transformed tokens in the output are shifted by one  with 
regard to the input as shown below:

The input is padded with a special start symbol, and the LLM learns during training to predict each 
output token from the preceding ones in the input sequence. The last vector output by the LLM is the 
embedding corresponding to the predicted next token that we want.
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It is important to understand that this last embedding vector is not itself a prediction – it just points 
towards a location in the  embedding space that corresponds to the  meaning expected from the  next  
token the LLM needs to produce. We still have to translate this embedding vector into a prediction for 
a specific  token in the  vocabulary. Therefore, we add one final  fully-connected layer (see the GPT 
diagram above) to the LLM whose job is to take the embedding vector yn+1 and translate it into a logits  
vector with the same size as the vocabulary where the value of each entry gives the probability that the  
corresponding token should be next. The logits vector can then be passed through a softmax function 
to turn it into a probability distribution over all tokens in the vocabulary.

Given the logits vector, predicting the next token can be done in one of two ways:

- Choose the token whose probability is highest
- Sample from the logits vector such that a token is selected with probability given by its

          corresponding logit

In either case the LLM has now produced a new token, the expanded text can be fed back through 
the LLM to continue text generation. The process continues until the LLM decides it has come to the 
end of a plausible sequence of text that answers a user prompt. One way in which this is achieved is by  
having a  special  token ‘<eos>’ to  indicate  the  end of  a  sequence.   This  token is  added to  every 
document the LLM is trained on, so the model learns where a natural ending point may occur for a 
given text  passage.  During generation,  if  the next  token in the sequence is  the ‘<eos>’ token, the 
generation process stops.

Cross Attention

The same architecture  described above for  generating text  can be  put  to  use  for  a  variety  of 
important  applications.  For  instance,  summarization  and  language  translation.  Both  of  these 
applications  rely  on  an  extension  to  the  attention mechanism  that  allows for  multiple  sources  of 
information to be used by a transformer network in order to determine tokens to generate. 

The following diagram shows cross attention at work in a typical transformer networks
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Cross-attention mechanism (Vaswani et al. 2017)

Suppose we want to do automatic text translation – for instance, we want to translate ‘Buenos dias,  
quiero dos tacos con salsa por favor’ into English. The left-hand side of the network above is an 
encoder – it takes the input text in Spanish and produces embedding vectors with refined meaning as 
we would expect from a regular  transformer  network – the right side of the network is a  decoder 
network, it looks at the generated output in English, and produces the translated text.

It works like a standard transformer network, except for a cross-attention block that receives the 
encoder’s output and incorporates it into the attention mechanism of the decoder network – this is what 
allows the meaning of the tokens derived from the text in Spanish to inform and guide the generation 
of the equivalent text in English. Inside the  cross-attention block the  keys and  values are generated 
from  the  encoder’s  output  (the  original  Spanish  text),  while  the  queries are  generated  from  the 
decoder’s output (the generated translation). 

 The entire model is trained on a large corpus of text with corresponding translations. Automatic 
translation has improved dramatically with the development of  transformer networks, as the sample 
below demonstrates from a poem by Enrique Gonzalez Martinez.
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This is a very good translation despite the fact that poetry is typically difficult, and illustrates what 
is  possible with  transformer networks.  The material  in these notes covers the classic  transformer 
language  models.  Current LLMs are  incredibly  sophisticated  and  can  handle  text,  mathematical 
notation,  formulas (for  example Physics or  Chemistry),  allow for multi-language text,  and support 
multi-modal queries (e.g. images or sound recordings). 
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