CSC D84 — Artificial Intelligence (c) 2025 F. Estrada
Unit 10 — Diffusion Models

Diffusion models are at the heart of generative A.I., they power media generation (images, video,
and audio), 3D model generation, graphic design; and newer versions are being applied to code
generation (Gemini Diffusion) and protein folding (AlphaFold 3). The last two applications are
interesting because they have traditionally been the domain of transformer-based architectures.

The mathematical foundations that support the training and optimization of diffusion models are
fairly involved, but at the center of what makes them work lies a small set of important properties of
data in high-dimensional manifolds that can be used to gain a solid understanding of why these models
work, and how they achieve the impressive feats of content generation that they are capable of.

One simple way to understand what a diffusion model is expected to do is illustrated below in the
context of image generation:

Steps: 10 Steps: 15 Steps: 20 Steps: 30 Steps: 40
(Image: Berlinsquare, Wikimedia Commons — CC-SA-4.0)

The diffusion models starts with a prompt for what the image should contain (in the above case, a
castle), an with an initial image of Gaussian noise. The model then refines the image iteratively to
produce a result that agrees with the prompt while also exhibiting novelty — the new image should
clearly match the prompt, but should not be a trivial modification of an image from the training set
used to build the model.

This may seem like magic — how is it possible to go from an image of noise to something that has
such clear and specific structure? — studying this question is the key for understanding how diffusion
models work, or indeed, understanding that they can and should be expected to work! Let’s see how
this is possible with a simple, low-dimensional example.

Data sets and manifolds

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

A commonly held belief in deep learning is that training data tends to form a manifold within the
high-dimensional space that contains it. Here’s an example — consider the space of handwritten digit
images of size 28x28 (standard for many hand-written digit recognition applications). Each image is a
point in a space with 784 dimensions (one per pixel).

Other, non-digit things images

[, Shirts manifold
B Bl = o
Digit images L, \ Lo
._ . i‘" ._ Shoe§ manifold
oim

.....
.....
......
.....

Every possible arrangement

of pixels is a point in this space
most of them aren't images we
can recognize!

Digit manifold Bags manifold

High—dimensianar space
(can't be actually shown in 2D)

The space of all possible images is huge and contains every possible combinations of pixel values
that can occur in a 28x28 image. This includes images of every possibly thing one can show in a
28x28 image, as well as lots of images with unrecognizable content, and even completely random
arrangements of pixels.

But, the images of digits are not distributed randomly and uniformly within this high-dimensional
space. Instead, notice that the images of digit ‘1’ are fairly similar to each other, the images of digit ‘8’
are fairly similar to each other, and so on. This means that images of the digit ‘1’ will be at locations
within the 784-dimensional space that are fairly close to one another, and the spatial arrangement of
these images is not random — it has structure that provides information about how images of ‘1’ vary
within this high dimensional space. Similarly, digits ‘5’ and ‘8’ have images that occupy some region of
the high dimensional space, the regions they occupy have structure corresponding to the variations in
the images for each class.

These spatial arrangements of points corresponding to a particular class of image forms what we
call a manifold. This is a subspace typically of lower dimensionality (e.g. in the example above, a
subspace with d << 784) that is smooth at the smallest scales — Regularities in the images belonging to

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

a particular class produce a subspace that exhibits structure that is specific to the class and that changes
smoothly as we move over the space spanned by all the members of the class. To make this clear in
your mind, pick a specific image of a ‘5’, find the point in the 784-dimensional space corresponding to
this image, and then consider where you would expect to find the point for an image that is identical
except for 1 pixel, whose value has been changed by 1 gray level (out of 256 possible values).

The point is that it is possible to smoothly interpolate between nearby data points on the manifold,
and the intermediate points will correspond to images that look like members of the same class. Each
image class will have its own complicated manifold (some of these may intersect in interesting ways).
And each manifold, no matter the size of the class and how complex the objects in the class may be,
will occupy a region of the high dimensional space that is locally smooth and that occupies a much
smaller volume than is spanned by the entire high-dimensional volume in which the data resides.

Machine learning methods take advantage of the structure and smoothness of manifolds. In
particular, we have seen that deep neural networks are particularly good at approximating complex
real-valued functions. So it should not be surprising that they can learn to approximate the structure of
complicated manifolds even in high-dimensional spaces such as those occupied by images.

From manifolds to noise — the forward diffusion process

The first step for understanding diffusion models is to study the process of diffusion — so called
because it is analogous to the process of heat diffusion. The idea is as follows: Consider a set of points
x; from set K on an manifold in R", we can simulate a diffusion process by repeatedly applying the

following procedure:

=t zt—1 =t
T, =T, =+ oW

given the current set of points at time t-1, produce a new set by adding zero-mean Gaussian noise
(the noise vector w is drawn from a multi-variate Gaussian distribution with diagonal unit covariance).
The amount of noise is controlled by o, and it could be different for each time step, but for simplicity
we could also imagine it to be small and constant. Given the initial set of point at t=0 (which would be
sitting on the data’s original manifold), the above diffusion process will yield (after suitably many
steps) a cloud of points distributed as an isotropic Gaussian (with diagonal covariance). In other words
— the diffusion process progressively removes the structure present in the input’s manifold and turns it
into a blob in R".

This process is called forward diffusion and is illustrated below for data sampled from a manifold
inR>.

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

Underlying manifoid: sinc(r) input dataset sampled from the manifold Diffused points at =5

Diffused points at t=10 Diffused points at t=15 Diffused points at =20

A o B N w & o«

Original manifold, sampled points, and cloud of points after 20 steps of diffusion

You can easily see that the diffusion process muddles and eventually removes information about
the original shape and location of the manifold. The final cloud of points at t=20 could have come from
an entirely different manifold.

Getting back to the manifold — reversing diffusion

The question now is how could we get from a point in the point cloud at t=20 back to some point
in the original manifold. A more general question is how could we get from a randomly sampled
point in R*® back to the manifold. Ideally, we would like the final point to be different from our initial

samples (i.e. we want to generate a new point on the manifold, something we haven’t seen before), and
we want to be able to reach any point on the manifold.

In the example above, because we have clouds of points for each step of the diffusion process we
could try a very simple process:

Repeat until =0
Given a point x; at t=k
Find nearby points in the point cloud for t=k-I
(look for any points within a sphere of small radius centered at x;)
Compute the weighted mean p of these points (weighted by inverse distance)
Sample a new point X, , from a Gaussian distribution with mean p and small covariance

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

The above process will iteratively move in the direction of the manifold because for any value of ¢t,
the point cloud at t-1 is on average closer to the manifold, which means that averaging over a small
region as the value of t is decreased will move the estimate closer and closer to the original surface
from which the starting points were sampled. At the same time, because we are actually sampling from
a Gaussian distribution, we are generating new points at each time step that we have not seen before in
any of the point clouds.

If we apply the above process (with suitable values for the different parameters) we obtain a set of
points that clearly shows the shape of the original manifold:

Reconstruction of manifold from points al time (=20 Reconstruction of manifold from points at time 1=20

CRCT

Final points after reversing the diffusion process for every point at t=20. Notice the final points cover the original surface
fairly well. The image to the right shows a crop of the manifold and the trajectories
of several points from their initial location at t=20 to their final spot close to the original manifold

The take home message is simple: to get back onto the manifold form wherever a point may be, all
we need to know is what direction moves that point closer to the manifold. In the example above we
used the point clouds generated at each step of the diffusion process. But in practice, for any real
application of diffusion, we can’t do that.

The manifolds for realistic problems are too complex, the spaces these samples occupy are too
high-dimensional, the amount of training data required to learn their structure is huge, and there is no
way we could possibly keep around additional data for the diffused samples over possibly hundreds of
iterations of the diffusion process. This is where deep learning comes in.

Diffusion models

A diffusion model is a deep neural network that has been trained to predict, given an input point
x. and a value o for the amount of noise used to generate it; what the direction is that would move this
point toward the original manifold. The model is applied iteratively to get points that are closer and
closer to the manifold until the last iteration yields a new point not in the original training set but
nevertheless one that belongs in the same class — be that a never before seen hand-written digit, or a
picture of a cat stealing a roasted turkey from the kitchen table.

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

The formulation for diffusion discussed below is from the paper by Permenter and Yuan (ICML
2024). Note that this is not the standard or most common formulation, but it is the one most closely
related to the geometric intuition described above.

The input training data consists of points
Ty =T+ O€

The initial point x, is sampled from the training set (e.g. images of digits), and the noise vector ¢ is
sampled from a zero-mean multi-variate Gaussian with identity covariance. The standard deviation o
is sampled from within an interval [Gmin, Omax]. The network is trained with different noise levels
because the directions it needs to learn depend on the amount of noise added to produce x, as will be
seen below.

Notice that the network never gets to ‘see’ the original, clean input data points. This is important
— the network can not cheat by spitting back data from the original training set.

We can train a deep network with parameters 0 (this is a standard notation in machine learning to
represent, in this case, all the weights that need to be learned): €o(Z,0) The network is trained to

predict the amount of noise added to the input points X, in order to generate the corresponding noisy
samples. This can be done by setting the loss function for minimizing expected squared error:

L(9) = Elleo(Zo + 0€,0) — €I3

The actual details of the network architecture and training process are dependent on the type of
input the network has to work with (for example, if the network is going to be used to generate images,
an architecture such as UNET may be used, for other problems the architecture will be different). With
the appropriate training process, the network learns to predict the direction toward the manifold in a
way that is dependent on the position of a point, and the amount of noise added.

101

0.5+

004 *

—0.54

-1.0

g=0.5

154

1.0

0.5

0.0

~154

T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 100

T
-15

T
-1.0

T
-0.5

T
0.0

T
0.5

T
10

T
15

T
-2

T
-1

T T T
o 1 2

A set of training data (blue dots) on a spiral manifold, and predicted directions from random locations in 2D toward the
manifold as a function of 0. Image by Chenyang Yuan (https://www.chenyang.co/diffusion.html)

https://www.chenyang.co/diffusion.html

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

The critical insight from Permenter and Yuan’s paper is that the denoising process can be thought
of as an approximation to projection from a point outside the manifold, to points on the manifold.

First, they define distance from a point to a set as

distic (%) = min{||Z — Zol| : Ty € K}

given the distance from a point to the set, the projection of the point onto the set is defined as
proji () = {#y € K : distx (Z) = ||& — 20|}

and if the projection is unique (there is a single point x, at distance distx(x)), then the gradient of
the distance function points in the direction of x,

Vidistic(7)? = 7 — projic(%)

This works because of two key observations illustrated on the figure below

e

(0p1 — op)eg(xy) /Tt

proji(re) — o

tang (xo)*

L1

r1

(a) Low noise (b) High noise (c) Denoising process (DDIM)

Geometric interpretation of gradient descent as projection onto the manifold. Image from Permenter and Yuan, ICML 2024

The left side of the image shows the situation when ¢ added is small, in this case, most of the noise
is orthogonal to the tangent space around x,, so the vector in the direction from x, to its projection
onto set K achieves denoising. The image at the center shows the opposite situation, when the amount
of noise is large. The vector toward the projection of x, is still in the direction of denoising.

The right-most image shows the standard denoising process which starts with a large o and
proceeds along the gradient direction in small steps, reducing the noise amount at each step, until
convergence somewhere on the manifold. More on this in a moment.

Permenter and Yuan show that when the input data is uniformly sampled from a finite set K, the
ideal denoiser points toward the weighted mean of all points in K. With weights given by the distance
between the initial location and the set. Importantly, the weighted distance depends on the value of o
so that at high noise levels, a larger cloud of points have meaningful contributions toward deciding the

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

denoising direction. Their conclusion is that the ideal denoiser is simply gradient descent over a o-
smoothed distance function to the underlying manifold.

Generating new points on the manifold

Once we have trained the network ¢, (7,), we have to consider what the process is for generating

a new sample likely to be part of the manifold. The key insight here is that a single call to our
diffusion model is unlikely to produce good results:

- If we start with a point far away from the manifold (large o), the diffusion model will produce a
move toward the mean of the points on the manifold. The mean will in all likelihood not be on the
manifold itself so this is not a good solution.

- Conversely, if we start with a point very close to the manifold (small ©), then the starting point
will already be fairly similar to one (or a few) of our original training samples, and the network’s
output will only make it more similar to those. This is also not a good solution since we want to
generate novel data points.

The solution is to implement an iterative process that samples directions toward the manifold
from the diffusion model as the value of o is progressively decreased. The process begins with a large
o and takes small steps in the direction of the manifold, at each step the diffusion model produces a
denoising direction which is used to find a point closer to the manifold:

Ti1 =Tt — (Ut - Ut—l)GB(ftaat)

The particular schedule used to determine the value of ¢ at different steps of the denoising process
is important in terms of the implementation, but not needed for understanding the process. Permenter
and Yuan show that the above is equivalent to the standard DDIM (Denoising Diffusion Implicit
Model) sampling method, currently in used for high-quality image generation.

100 109
co ._.,_w--.'.;-np (L
0.75 1 ., .,

. .
0.50 . Lttt . . 05

—0.25 1
.
—0.50 1 05

—0.75 1

~1.00 | T | = et
Ld -

71100 7Gj75 70j50 70?25 0.60 0.‘25 0.‘50 0.5’5 ’1:00 *0175 *0150 *0125 0-60 0-‘25 0-50 0-‘75
Input data set (left) and points generated with the sampling process above. Note that the sampling is able to generate
novel points in the manifold. Image by Yuan (https://www.chenyang.co/diffusion.html)

Sounds simple, what’s the trick?

Making diffusion models work for realistic problems is not that simple — we are training a network
to approximate an incredibly complex manifold in a very high dimensional space given only noisy

https://www.chenyang.co/diffusion.html

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

samples of the points within. The details of the network’s architecture will be critical for success, the
optimization process is not trivial (alternate, common formulations of the diffusion optimization model
make use of fairly involved Math in order to set up the learning process and loss function), the amount
and quality of the data available for training is essential, and often, some trickery is involved — for
instance, it turns out that adding a small amount of noise to the points obtained from the diffusion
model improves the ability of the model to generate novel samples over the manifold.

All of these are important when implementing and using diffusion models, but not particularly
relevant to understanding what they are doing or why they can be expected to work. The discussion
above should have provided a general and solid overview of the diffusion process and how it can be
reversed with the aid of a suitably trained deep neural network. But there is a lot more to learn if you
want to keep exploring:

- How to combine language models with diffusion models so we can use text prompts to generate
content

- How to train models that generate sequences (e.g. video) — consider that we can’t just run a
diffusion model multiple times and expect the resulting images to form a coherent movie

- How to train and use cross-modal diffusion models (e.g. take as input an image and a text
prompt) to generate content

- How to build a model that can generate video and the corresponding audio

And much more. These are very specialized applications and each would require more time to
study than we have in one A.I. course. But now that you understand the basics of deep learning, you
can continue your study of whatever particular applications you find most interesting.

But here is a question that I would like to leave in your mind to close the course:

How is it that humans can regularly achieve all of the more advanced tasks our amazing A.l.
models are now beginning to perform — without having to learn from gazillions of data points, having
access to the computational resources of an underground, nuclear powered data center, or consuming
megawatts of power for their daily operation?

This is not an idle question — we have now seen that given enough training data and sufficient
computational resources, A.I. models can achieve impressive feats. And yet, we are not surprised when
a human is able to come up with a new, beautiful poem, a moving piece of music, an inspiring painting,
a mathematical proof no one thought of before, or just came up with the transformer architecture that
powers LLMs. And they just needed some water, air, food, and other humans to talk to (or read from)
as they were growing up.

Human intelligence is pretty amazing, and we’re probably missing something important about
how it works because it doesn’t seem to require any of the things without which our modern deep-
learning A.L.s can’t be trained or operated. Think about that, and never underestimate your own
intelligence, no matter how ‘smart’ A.I. models may appear to become in the future.

