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Unit 7 – Deep Learning

So far we have studied how classical neural networks do their work. We have looked at individual 
neurons, looked at their computational process: taking a weighted sum of inputs, applying a non-linear 
activation function, and producing an output; and we have built and trained single layer, and two layer  
networks that are able to classify images.

We spent time looking at the error back-propagation method for training the network, and have 
explored how network performance changes as we increase the number of units available in hidden 
layers. Finally, we gained insight into the processing taking place across hidden layers of the network,  
and understood it  as a form of  feature extraction.  This process allows  meaningful patterns to be 
learned progressively – from one layer to the next, providing a final output layer with a much richer,  
more informative, and easier to classify set of inputs.

This last observation motivates the idea that adding more and more hidden layers should greatly 
increase the ability of the neural network to carry out a particular task. In this section we will explore  
why this is the case in terms of the ability of the network to approximate an arbitrary function, and 
we will explore the  computational issues that arise once we start adding layers that are further and 
further away from the error signal used to train the network’s weights.

Why Deep Learning? 

The important question is why does having a network with many layers produce better results? To 
make the question more specific, consider this: If we have a fixed budget in terms of the number of 
units we can use to build our network,  why does organizing these units into multiple hidden layers  
work better than having the same number of units in a single hidden layer?

The answer lies in the power of composition of non-linear functions that occurs when the output of 
one hidden layer is used as input to another hidden layer. An excellent visualization of this from the 
book ‘Understanding Deep Learning’ by Simon Prince (https://udlbook.github.io/udlbook/) is shown 
below. The figure illustrates a simple, 2-hidden-layer network with one input x and one output y’ (so 
this is a network intended for regression in 1-D). 

The hidden units have a ReLU activation function, which is very common in deep networks. As a 
result,  each unit learns to make a fold at a particular value for x, with a particular slope  which is 
determined during training to whatever values help the network fit the input training data best. The key 
observation is that in 1D each unit produces one linear fold working on whatever input it is given. 

Focus now on the 3-unit layer immediately next to the input – because it contains 3 units, each 
producing a linear fold, the combined model for y (the intermediate value produced by the first layer) 
has 3 folds. The second hidden layer, also with 3 units, takes as input the value y produced by the first 
layer and applies 3 further folds to it. In 1D, this results in a final model for y’ that has 9 total folds. 
This is more folds than are possible by a single-hidden-layer network with 6 total units. 

This is a small example, so the compounding effect looks small – but for a larger network with  
multiple inputs, the compounding effect results in a final model that quickly grows in complexity and 
power to closely fit very complex input datasets. 

https://udlbook.github.io/udlbook/
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(Figure from ‘Understanding Deep Learning’ by Simon J.D. Prince,
The MIT Press, 2023. – CC-BY-NC-ND license)

An estimate of the number of regions that can be generated by a deep network with K layers, 
P units per layer, working on an input with D dimensions is given by:

     [Montufar et al., 2014]

The last part of the above formula, the sum, corresponds to the number of planar regions that 
can be generated by a one-hidden-layer network with P units. We can compare the maximum number 
of planar regions possible for networks with different topologies, and a quick check shows how quickly 
the number of regions the network can produce grows as we distribute the available units across more 
layers:

The maximum number of folds for a single-hidden-layer net with 40 units is 821
The max. number of folds that can be produced by a network with 4 layers and 10 
units per layer is: 875000

That’s  a  very large difference in  the expressive power of  the models  these two networks can 
produce. Let’s have a look at what this means in practice.

Consider  the problem of  analyzing satellite  imagery and using machine learning to  determine 
which parts of a satellite photo correspond to land and which parts correspond to water. This may seem 
like a simple task, but consider what happens at river deltas where large rivers meet the sea
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Mississippi River Delta – image credit: NASA, Public Domain

We want to train a neural net with a fixed number of units to distinguish between land (green areas 
above) and water (anything blue or blue-ish). The input training set will be a set of point locations [x,y]  
with a corresponding label for water or land. The network must then learn to classify any location in 
the map as either water or land. 

Results below show a reference image, and the classification boundaries produced by networks 
with one and two hidden layers using a fixed budget of 180 units (the two-hidden-layer network in this 
case will have layers with 90 units each). 

Reference (expected classification) 1-hidden-layer decision boundary 2-hidden-layer decision boundary

The problem is difficult given how irregular and non-contiguous the land regions are. The network 
with a single hidden layer does a pretty decent job, with a classification error of 9.34% - the network 
with  two hidden layers  reduces  the  classification error  to  8.32% (a  10% improvement),  but  more 
importantly, notice how much more complex the decision boundary is for the 2-hidden-layer network. 
We should expect a network with even more hidden layers, and a sufficiently large number of units, to 
work quite well even for such a complex classification problem.
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Given that deep networks can learn more complex models for a given computational budget (in 
terms of the number of units in the network), why would we not always use a deep network rather than 
an equally large but shallow one?

As it turns out, adding layers to the network comes with potential complications in terms of the  
numerical stability and time required to train the network. Common issues that arise in training large,  
deep networks include:

Challenges with Gradient Propagation

Recall that the training process – error back-propagation, is a form of gradient descent. Gradient 
information is obtained at the output of the network (where concrete error information is available), and 
then  propagated  layer-by-layer  backwards  through  the  network,  adjusting  weights  by  some  small 
amount (the learning rate) in the direction indicated by the gradient.

Even for shallow networks, this has to be done carefully – we discussed using randomized subsets 
of  training  samples  (batches,  and  in  Deep  Learning,  these  are  usually  called  minibatches),  and 
aggregating gradient information for the entire batch before performing weight updates (as opposed to 
updating the weights after each individual sample is processed). This is the standard training process  
known as stochastic gradient descent (SGD). 

For very large networks,  gradient propagation is  tricky, and specialized techniques have to be 
applied in order to successfully train such models:

Gradient momentum – the more common optimizers for deep networks incorporate the idea of 
momentum – that is, they keep track of the direction of previous weight updates, and use previous 
updates (with careful weighting) in determining the direction of the current update for each weight. 
ADAM  (Kingma, Ba,  2015),  one of  the most  common optimizers for  deep networks,  incorporates 
momentum information, and uses an adaptive learning rate in order to improve network convergence 
and reduce problems related to vanishing gradients.

It should also be noted that the use of ReLU units is at least in part motivated by the fact that they 
provide a constant gradient across their linear operating region. Other activation functions such as the  
logistic or tanh sigmoids suffer from saturation at both ends of their operating region, which results in 
gradients near zero and slow or stalled learning.

Vanishing  Gradient  – as  the  gradient  information  is  propagated  backward,  the  gradients  can 
become very small, the smaller the gradients, the slower the weight adjustments. The network learns  
very slowly or stops learning at all. The more layers a network has, the more this becomes a problem. 

Exploding Gradient:  The opposite of a vanishing gradient, this manifests itself in the form of 
weight updates with very large and unstable magnitude. While the vanishing gradient problem occurs 
because  of  successive  multiplications  with  small  numbers,  the  exploding  gradient  occurs  due  to 
successive multiplication of large numbers. If this happens, the network will not converge.

Introducing Skip Connections – both vanishing gradient and exploding gradient problems are 
related to the number of steps of back-propagation that  are required to reach a particular network 
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connection whose weight is to be updated. One way in which we can help the network learn better is by 
introducing skip connections as shown below:

Example of a skip connection in a residual network
(Image: LunarLullaby – Wikimedia Commons, CC BY-SA 4.0) 

The skip connection (most often called a  residual connection) can jump across any number of 
layers. A block in a deep network that show a structure like the one above is called a residual block and 
networks built as chains of residual blocks are called residual networks (He et al. 2015). For very deep 
networks, the residual connection is required to successfully train the model.

Residual connections are helpful in training deep learning models because they provide a shortcut  
for  the  propagation  of  gradient  information.  This  greatly  reduces  the  issues  caused  by  gradient 
magnitudes becoming too small or too large. Networks with dozens or hundreds of layers (typical of 
modern A.I. models including LLMs) can not be trained without some form of skip connection.

Additional optimizations often used in practice:

Batch normalization is often applied and helps the network learning process. Batch normalization 
works by processing the output of a particular network layer, and transforming these output activations 
so that  their  variance and mean are normalized (zero mean, unit  variance).  Batch normalization is 
implemented  as  a  layer inserted  between  two  regular  hidden-layers  –  it  performs  the  following 
computation:

Assume the output of a hidden layer within the network is , the entries in 

this vector are the activations produced by each of the units in the hidden layer.  Compute the mean and 
standard deviation across each entry in the activation vector as

Given  these  values,  normalize the  activations  in  the  minibatch  so  as  to  obtain  a  normalized 
activation vector  where
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The next layer in the network is then provided with the normalized activation vectors.

Let’s  take  a  moment  to  process  what  this  update  does.  First  –  it  normalizes  the  activations  
produced by one layer of the network so that they have zero mean and unit variance. Then it scales and 
shifts these activations using  two learned parameters γ and  β.  The scaling and shifting operation 
allows the  batch normalization layer  to  learn  the  appropriate  scale  and shift  for  each layer  from 
training data (the updates to these parameters are determined by taking the gradient of the network’s  
loss function w.r.t. these parameters and using a gradient-descent-based procedure to update them in the 
direction that reduces the network’s loss). 

Batch normalization has been found to significantly improve network convergence. 

Regularization can be used to help reduce issues caused by large gradients. Regularization works 
by adding a term to the network’s loss function that is proportional to the magnitude of the network’s  
weights and penalizes large weights. This can help the training process and can yield a more stable 
model. 

Gradient clipping – this is used to help reduce the gradient explosion problem. Gradients that are 
too large get clipped or scaled to ensure the weight updates remain stable. 

More general considerations

A general problem in the training of large neural networks, and one that is made significantly more  
relevant  for  very deep networks is  the requirement  for  very large datasets in  order  to  learn deep 
models. Quite simply, the number of weights that have to be learned for very deep models can become 
exceedingly large – in order to train such models, huge amounts of training data are required. Without 
sufficient training data, it is difficult to train very large deep networks. 

Therefore,  techniques  to  augment the  available  training  data  are  often  used  –  these  involve 
applying transformations to the available training data in order to create  synthetic training samples 
which depict  inputs  the  trained network might  conceivably  find in  regular  operation.  The type of 
transformations and the amount of synthetic data generated will depend on the purpose of the network 
and the nature of the input. But regardless of that, dataset augmentation can significantly improve the 
trained model’s ability to generalize to data not found in the original training dataset.

Network Architecture

Possibly the most  exciting aspect  of  deep learning is  that  it  allows for  a  very large range of  
variations in network architecture – fully connected layers are very often replaced with specialized 
architectures that fit particular types of problems especially well.

Studying specialized architectures and understanding how the network topology achieves specific  
goals is essential to gain a working understanding of how and when to use each of the specialized  
models,  and  provides  insight  into  relevant  properties  of  large  classes  of  problems  (e.g.  image 
understanding,  natural  language  processing,  generative  A.I.)  that  motivate  the  use  of  specific 
architectures.


