CSC D84 — Artificial Intelligence (c) 2025 F. Estrada
Unit 8 — Convolutional Networks

One of the earliest and most successful specialized architectures in Deep Learning is what we
know as a convolutional network. In order to understand how they are built, how they work, and how
their architecture is designed we first have to think of the particular problems they were designed to
solve.

We have already successfully trained neural networks to carry out fairly sophisticated pattern
recognition — we built fully connected networks capable of recognizing hand-written digits, discovered
that a fully connected network with a single hidden layer can perform this task quite well, but we also
discovered that on more complex problems (classifying images in the CIFAR-10 dataset) the network
struggles to learn a model that generalizes well to previously unseen images.

There are several limitations imposed by the fully-connected architecture that limit the usefulness
of such networks for tasks that have to be performed on images: pattern recognition (such as OCR,
object detection, tracking of objects on video), image classification, image segmentation, automatic
annotation, or image restoration tasks (noise removal, de-blurring, contrast or colour enhancements,
etc.).

Firstly — a fully-connected network requires a fixed size input image — by design, the network
requires an input of a fixed size. For the digit recognition task, all our inputs had to be scaled to the
correct size, and contain the digits we are interested in classifying at a reasonably similar size and at the
correct location and orientation in each image. This is not particularly realistic if what we want is a
network that detects digits (or other characters) on images of any type — document scans, photographs,
graphic art. Such images will have any size, the characters in them will appear at anwhere, and will
show a variety of distortions in size, orientation, shape, colour, and more.

Text and other characters on regular images can be at any location, have any size/orientation, be drawn on any font and colour, and have
an arbitrary background — how would we transform these into perfectly scaled, centered, clean (no background) images to feed to our
fully connected digit classification network? (Images: right side by George Hodan, Public Domain. Left side, samples from the MNIST
digit recognition dataset)

We could imagine training a fully connected network to carry out the digit recognition task on
much larger images — for instance, we could fix the image resolution at 1920x1080 pixels (a standard
HD image frame) and see how far we get.

Here’s how we get in trouble with a fully-connected network:

* Each neuron in the hidden layer will require just over 2 million weights to connect to pixels in

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada
the input image

* Suppose we train a network with 625 units (as we did on the MNIST dataset), that will mean
the first layer of neurons will have over 1.2 billion weights connecting units to the pixels in the
input image

This is a lot of weights, simply for the first layer of a network to have access to the input — most of
which will be irrelevant to the task most of the time (ask yourself what is the likelihood that on a
particular image, a particular pixel is part of a pattern that sets it out as a digit we need to classify). The
problem itself is way too difficult to solve as a general task — we would be requiring the network to
learn every possibly location, orientation, size, colour, font, and background that could identify a
particular digit or character we are interested in recognizing.

To handle such complexity we would expect to require a network with a very large number of units
distributed across some number of hidden layers — the number of network weights would quickly grow
to amounts that are not practical. Beyond requiring huge amounts of data to train (each digit or
character must appear multiple times at each possible location, orientation, size, colour, and
background), it is not clear that it would be even possible to train such a large network to perform well
on this task.

The point of the above is to say that a fully connected network is not the right kind of
architecture for approaching the problem.

Problems in image processing have common properties that motivate the use of a different
architecture that provides invariance to scale, orientation, contrast, and background. Fortunately, we
can draw on decades of research in image processing and computer vision to guide us in designing a
network architecture that can achieve all of these.

Two important lessons from earlier computer vision research
1) Meaningful feature extraction is essential

Images have too many pixels, and pixels are not very informative on their own — the value of a
particular pixel (i,j) tells us very little in general about anything at all. So, handling any reasonably
interesting image-related problem requires that we move away from pixel values, and instead think in
terms of meaningful features.

In this context, a feature should be thought of as a pattern of interest that is present within a
spatially contiguous region of an image. As an example, consider the image below — and imagine we
are trying to solve the following task: Identify and count the illuminated windows in all the buildings in
the scene.

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

9x9 pixels feature
representing a
single window

This is used as
a filter kernel

Input image — New York Skyline Result of applying the filter kernel to the input image by

(image by Sarah Meyer, Wikimedia Commoans, CC-SA-3.0) convolution — bright areas show strong response to
this particular filter — so they resemble the feature it
represents

Since we are looking for illuminated windows, we want to look for bright regions that are
surrounded by dark borders. Individual bright pixels or individual dark pixels aren’t very useful
because each window contains many such — however, we can design a small (in this case 9 pixel by 9
pixel) feature of interest that basically looks like a bright blob with the general shape of what we might
expect a window to look like.

The feature is simply a smaller image. We will now slide the feature image over the large input
photograph and measure how well the input photo resembles our feature of interest at each possible
location, creating a feature map that shows how strongly the input image resembles our blob at every
location we may place it.

The result of this process is shown above — the feature image has been scaled up (otherwise it
would be too tiny to see!). The resulting feature map is shown on the right hand side — bright pixels in
the feature map show locations where the input image is very similar to our feature. Notice that many
of the windows have been highlighted!

A couple of important things are taking place here:

- We are taking an input image and extracting a feature map showing where an interesting
feature may be present. Such features of interest are not individual pixels, but rather, small image
regions that capture a pattern that is somehow useful to the task at hand.

- The feature map is sparse — large regions in it are quite dark, meaning they are likely of no
interest in solving our specific problem. At the same time, we get responses to the filter anywhere over
the image. There is no expectation the pattern may appear at a particular location, and the input image
itself can have any size.

Discrete convolutions in 2-D

The process informally discussed above is carried out in practice through the mathematical process
of convolution. In the context of image processing, a discrete convolution in 2-D takes as input a pair
of 2-D arrays, one of which corresponds to input data, and the second of which represents a filter
kernel — this latter array is typically much smaller than the input image, and defines an operation we

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

want to perform over image regions of the same size as the kernel. A 2-D discrete convolution is
defined as:

gla,y) =02 S0 k(=i =) - e+ iy + 5)

here, the kernel k(i,j) has size w (it is assumed to be square, and the size is odd so it has a unique entry
that can be called the kernel’s center). The input image is f(x,y) and the result of the convolution is

a(x,y).

- To compute g(x,y), the kernel is placed over the input image f(x,y) so that the kernel’s center is
exactly at (x,y). This means the kernel will overlap a square region of size w centered at (x,y).

- The product of the flipped kernel with the input image region it overlaps is then computed by
multiplying together the corresponding pixel and kernel entries.

- The sum of these products over the entire region is the result of the convolution.

A small but important point is that the kernel is flipped in both directions before the convolution is
computed (notice the indexing on f(x,y) above, it effectively flips the order of kernel entries as they are
applied to corresponding image pixels). This is because by convention the convolution operation must
preserve the property that on an input that corresponds to a delta function (a single 1, everywhere else
0), the result of the convolution should be the filter kernel itself.

This is an expected property of linear, shift-invariant filters.

In summary — image processing tasks usually require detecting meaningful features on images,
the detection process relies on using a filter kernel and applying it to the input image by convolution.
The resulting feature map encodes the responses to the filter kernel. Because we perform feature
extraction over all possible image locations, this process achieves (discrete) translation invariance.
We no longer care where the pattern of interest appears, the feature map will record its presence.

A few notes:

- Filter kernels can be designed to perform a wide variety of tasks, not only feature detection. For
example, a Gaussian kernel can be used for smoothing the input image, a Laplacian kernel can be
used for edge detection, and so on.

- To be effective for feature detection, a kernel must be zero mean, and pattern matching (the
kernel’s spatial arrangement mirrors the feature we intend to detect).

- Kernels can have more than 2 dimensions. As we will see shortly in the context of convolutional
networks, a 3-D kernel with multiple layers can be convolved with a 3-D array using a corresponding
3-D convolution. Generalizing this to N-D inputs and kernels is straightforward.

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

- Care must be taken at the boundaries where the kernel may have regions that are outside of the
image. Typically, these regions are padded with zeroes for the purpose of computing the convolution,
but other options are possible.

2) Achieving scale invariance requires processing at multiple scales

One of the stronger sources of variation in images is scale. Consider once again the problem of
counting illuminated windows, in the context of the image below:

Consider the different in size of the illuminated window in the
two circled regions — a single kernel won’t be able to detect both
(Image: Lenny K, FLICKR, CC BY-2.0)

The filter kernel we used to highlight possible windows has a specific size and shape. As noted
above, feature detecting kernels are pattern matching filters, therefore it can only respond strongly to
windows that have a fairly similar size and shape. If we want to detect the same feature of interest at
whatever size it may appear in an image, we need to use kernels of different sizes (with different
spatial scales).

Multi-scale filter kernels can detect a pattern of interest
at different sizes. The size and number of kernels must
span the expected variations in size of the features we
want to detect.

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

We will come back to this idea in short order, as it is built into the architecture of convolutional
networks.

Let’s recap: complex image-related tasks rely on feature detection which is carried out via
convolution with carefully designed filter kernels at multiple scales. The feature detection process
extracts meaningful features and focuses further processing on image regions that appear useful for the
task at hand. Multi-scale processing provides (discrete) invariance to scale and allows feature
extraction to detect meaningful features whatever their size.

The two principles discussed above provide a powerful framework for image understanding and
image processing, and they form the foundation for the design and computation performed by
convolutional networks.

Why ConvNets?

The framework described above can be used to perform fairly complex image processing tasks —
but each new task requires designing a set of kernels that are adapted to the particular problem being
solved, building an ad-hoc processing pipeline that extracts features, and feeding those features to a
machine learning algorithm trained on the task that needs solving.

We know neural networks are very powerful at learning interesting patterns in input data, so why
not use a neural net to learn the set of features that is helpful for solving a task? At the same time,
we can leverage the ability of multi-layer networks to build more complexity and expressive power
layer by layer, enabling them to successfully solve very complex tasks.

Convolutional Networks (ConvNets) are specialized deep learning architectures whose purpose is
precisely that: The network will learn from training data the set of kernels that can extract useful
features for whatever task the network is being trained to solve. It will apply these kernels by
convolution to input data to extract feature maps, and through repeated application of this process
across multiple layers of kernels and convolutions it will build more meaningful, powerful, and
expressive features. Because of the architecture of the network (as will be seen shortly), high-level
features will be scale and translation invariant, while the use of a suitably large set of learned
kernels will provide invariance to rotation, contrast, background and other sources of variability in
the input patterns the network is designed to detect.

A final fully-connected layer can then take the final feature maps produced by the convolutional
layers in the network and carry out classification, regression, annotation or any other related task

using as input a set of features that are optimized for the task.

Let’s see how this is actually implemented in terms of the architecture of a ConvNet. And for that
we should begin by looking at a single convolutional layer.

The architecture of a convolutional layer

Unlike regular, fully-connected networks, each unit in a convolutional network’s layer is connected
to a set of weights that form a square kernel with a pre-defined size. The kernel size is set as a

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

parameter and is fixed for all the units within the layer (though note that different layers can have
different kernel sizes). The organization of the computation units in a ConvNet layer is shown below
(the kernel images show the flipped kernels, as per the convolution definition).

w by w kernel

Feature map 2

kernel 1 *" (size phy q)

ﬂ |
&

Each unit produces a feature map by computing

unit M
a convolution of its learned filter kernel with ~ \ T -
the input at every possible location [| B |----_1I2%z 2/ “ - Feature map M (size p by q)
,,,,,,,, R u/
o

A ConvNet layer with M units will produce M
feature maps, each with the same size. We can
think of the output of the ConvNet layer as a
feature map of size (p by q by M)

kernel M

Units in a convolutional network layer work as specialized feature detectors. Each of them will
learn a kernel of a pre-defined size. The kernel can be 2-D (for instance if the input is a grayscale
image), or it can be N-D: For example, if the input is an RGB image the kernel would be 3-D, and
further layers inside the network can have many layers corresponding to the number of feature maps
produced by the preceding layer. The non-linearity (often a ReLU or similar function) introduced by
the activation function in each unit is essential. The feature maps are non-linear activations resulting
from responses to the specific kernel learned by each unit in the layer. The output of a ConvNet layer is
a feature map with M layers — such a feature map provides abstraction and allows succeeding layers to
learn kernels that detect even more meaningful/useful features. To make this point clear, consider the
image below:

vhyvbyM
kernel

unit 1,layer 2

T

Feature map 1, layer 2

vhy vby M

by w et kernel

| I !

 HEEC ;
el 1 [T T —— [=

»

o s = 5
el 2 — i =

R

- Phbo

- |
vby vby M - Feature map N, layer 2
kernel :

unit N, layer 2

The second layer in the network learns kernels that
work on the feature maps produced by the first layer
because layer 1 produced M feature maps, the
second layer learns kernels of size vx vx M

Each unit then produces its own feature map — but
because the input is itself a feature map, the second
layer learns meaningful patterns of features

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

Notice that the second ConvNet layer is using as input feature maps produced by the first layer —
its input is already more meaningful/useful for the task the network is being trained to solve, and now
a second convolutional layer can extract meaningful features in the patterns of interest identified by
the first layer — the second layer is learning to find combinations of features from the first layer that
are even more interesting/useful for the task being learned.

Stacking additional layers results in progressively more abstract, and more informative feature
maps. In the same way that the ability of a fully connected network to fit extremely complicated
functions is compounded with the addition of each hidden layer, the ability of a convolutional network
to extract meaningful information from images is compounded with each additional layer of
convolution kernels and their non-linear units.

Multi-scale Feature Detection

The above explains the the computational and feature extraction functions of a convolutional
layer, but there is one more component that is often, though not always attached to convolutional
layers like the ones discussed above.

Recall that earlier on we raised the issue of using kernels at multiple scales to detect features at
multiple scales. A standard convolutional layer has fixed-size kernels (all the units in the same layer
work on kernels with the same dimension). In order to achieve (discrete) scale invariance,
convolutional networks often take advantage of the following observation:

- Kernel responses have strong spatial correlations. This is the result of applying a kernel
representing a feature bigger than individual pixels to every location in the image. Given a specific
position (x,y) that contains the feature of interest, we can expect a strong response to the kernel at (x,y),
but also at nearby locations, such as (x-1,y), (x,y-1), (x-1, y-2), and so on — within a small radius whose
width depends on the size of the kernel as well as the shape of the feature of interest that it represents.

- This means that information in the extracted feature maps is redundant within small image
regions. As a result of this, we can reduce the resolution of the feature maps output by one
convolutional layer without missing any of the locations where a particular feature has been detected.

To illustrate this, consider the image below showing a magnified region within the feature map
extracted with the original kernel we used earlier to detect windows in buildings:

Vi
00 200 “ 600 s BOO 1000 1200
[Left] Original, full-resolution feature map. [Middle] magnified patch showing the responses to the filter and their strong spatial correlations.
[Right] 3D profile of the same region. The kernel reponse peaks at the location that best matches the kernel and decays smoothly away from
that location. We only need to keep the peak value and its location — surrounding responses provide no additional information

£
{

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

As seen above, filter responses are not localized with very high resolution — the general principle is
this:

- Responses to a filter kernel with wide spatial support are spatially correlated and show a pattern
similar to what is shown above: the response has a peak at whatever location best agrees with the
kernel’s pattern, and decays smoothly around it

- As a result of the above, we do not need and in fact do not want to keep all the kernel responses.
We only need the peak response for a particular location

Convolutional networks take advantage of the above in order to achieve scale invariance and
reduce the computational expense of feature extraction. This is done with a combination of:

1) Computing convolutions not at every (x,y) location, but instead, evaluate the kernel at locations
spaced a fixed distance away from each other. This is called a stride and is a design parameter for the
convolutional layer. If, for instance, the stride for the layer is 3, the feature map will be computed by
evaluating the kernel at a grid of locations 3 pixels away from each other along both the x and y
directions. The resulting feature map will have 1/3 the resolution of the input in either direction.

2) An additional pooling layer which keeps either the maximum, or the average kernel response
within small, non-overlapping regions of the feature map. For instance, a 3x3 maxpool layer will
preserve only the maximum value within a 3x3 region of the feature map.

Therefore, a typical convolutional layer consists of:

- A layer of units that compute convolution with filter kernels followed by a non-linear activation
(typically ReLU). Convolutions are computed at locations spaced by the appropriate stride to produce
feature maps with a smaller size than the input.

- An optional (thought very often added) pooling layer that finds and reports either the max or the
average response within small, non-overlapping image regions. The pooling layer has no weights that
need to be learned. If a a pooling layer exists, then the final feature map will contain only one
response for each small neighbourhood processed by the pooling layer.

A complete convolutional network consists of:

- A series of convolutional layers, each with their own kernel size, stride, number of units, and
optional pooling layer (the typical configuration is shown above).

- A final fully-connected network that takes as input the feature maps output by the last
convolutional layer and uses those to solve the specified task. Typical tasks that convolutional
networks excel at include, among others, object detection, classification, annotation, and image
restoration.

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

- Depending on the problem being solved, the fully-connected layer may be replaced by a different
type of network architecture (e.g. for image restoration tasks, more convolutional layers are employed,
as will be discussed below).

w by w kemel

kernel 1

kernel 2

The pooling layer preserves only one
response for each small, non-overlapping

- " i ‘ image patch
The convolutional layer computes results over "”j';tlln\ If - g p
the input at a pre-defined stride / \va F’Ic':\r;l‘lar:g As a result of the combination of stride and
" Relu / pooling, the feature maps output by the
. // convolutional layer have a much smaller
kernel M -~ — resolution

For a network with the architecture described above, the training process has the goal of allowing
the different layers to layers to learn the kernels that allow the network to perform the task it was
designed for. The network learns a large filter bank that is able to detect relevant features at any
orientation and position. By applying non-linear activations and multi-scale processing the detected
features become abstracted and more representative of meaningful image content while allowing the
network to handle the large variability present in typical images.

Let us summarize what we have learned thus far:

- Convolutional networks rely on the detection of meaningful features using specialized kernels
learned from training data and optimized for the task the network is being trained to solve

- They achieve invariance to translation and other transformations of the relevant patterns
involved in solving a task by learning a large bank of filter kernels that detects relevant features at
multiple orientations, and at any location in the input

- They achieve scale invariance in a computationally efficient way by using a combination of
stride steps greater than 1, and a pooling layer that preserves only one value for each small, non-
overlapping region in the feature maps output by the non-linear, convolution units.

- They often have a final fully-connected network whose job is to use the final, small-size feature
maps produced by the last layer of convolutions to make a decision that helps solve a difficult image
processing problem. Because the final layer has small feature maps, implementing the fully-connected
network is feasible and doesn’t require huge numbers of units.

The design of the network includes the number and configuration of each convolutional layer
(the number of units, the type of activation function, the stride, the size of the kernels, and whether or

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

not to use a pooling layer), the configuration of the final layer (which often is a fully-connected
network). A lot of the work required in solving a particular problem goes toward figuring out a
configuration that works well.

It is useful to spend a bit of time learning about well known designs that have shown to perform
well for particular problems. These designs became the starting point for further refinements and
advances in specific fields of application.

Case studies in applications of convolutional networks

1) LeNet — Proposed in the early 1990’s by LeCun et al., it consisted of a convolutional network
for the purpose of hand-written digit recognition, and was demonstrated on the MNIST dataset.

. convolution pooling dense
convolution

pooling dense
|| _ dense

2 E e
O g R E

'] B

= o o 1
6@14x14 —
S2 feature map 16@5x5
28x28 image 6@28x28 16@10x10 sa featur;‘ map
C1 feature map G3 feature map

LeNet-5, 1998. (Image: Zhang et al., Wikimedia Commons, CC-SA-4.0)

The first layer of convolutions uses 6 units to create 6 feature maps, same size as the input. A
pooling layer reduces these maps to a size of 14x14 (which means the pooling layer looks at 2x2
patches). The next layer of convolutions contains 16 units and computes 16 feature maps, which are the
passed to another pooling layer. The final feature maps have a size of 5x5, and there are 16 of them.
This yields a total of 400 values that are input to a fully connected network with 3 layers. The last
layer with 10 units is used to detect each of the hand-written digits that may be present in the input (the
outputs are passed through a softmax function which turns them into probabilities for each class).

This network is interesting because we can compare it with our fully-connected, 2-layer network
trained on the MNIST digit data. LeNet achieves a higher correct classification rate on test data (the
reported accuracy is close to 99%). More importantly, it performs significantly better on the CIFAR-10
dataset (with accuracy close to 75%, compared to 40% from the largest, 2-layer fully connected
network we have trained ourselves).

This should not be too surprising — LeNet-5 is a deeper network (on top of two convolutional
layers, it also has one more hidden layer), and takes advantage of the abstraction and feature detection
power of convolutional networks. What should be remarkable is how a relatively small convolutional
network can quickly outperform fairly large fully-connected networks on image-related tasks.

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

2) AlexNet — Proposed in 2012 by Krizhevsky et al. It demonstrated what at the time was
unprecedented performance in a large-scale, image recognition task (the ImageNet Large Scale Image
Recognition Challenge, the task is to recognize objects belonging to one of 1000 different categories).
The structure of AlexNet is shown below — the convolutional layers use ReL.U activations:

384-unit conv. 4096 fully
layer. 3x3x384 connected,
kernels, stride=1 2-layers
Max-poaling Max-pooling Max-pooling
—
13x13x256 13x13x384 13x13x384 13x13x256 BXEX256
27x27x256
= 27TX27x96 = = .
55x55x96 1000 unit
L feature maps L] L L L Lt (:UEPU[
96-unit conv. 256-Unit conv. 384-unit conv. 256-unit conv. ayer
layer. 11X11x3 layer. 5x5x36 layer. 3x3x256 layer. 3x3x384
kernels, stride=4 kemnels, stride=2 kemnels, stride=1 kernels, stride=1

Input image
227X 227x3

AlexNet architecture, convolution layers are light orange, pooling layers are green,
fully-connected layers are blue

AlexNet is important in that it resulted in a major shift toward research in convolutional networks
and deep learning. Further work has yielded even stronger models for image classification, object
recognition, and image processing.

3) VGG-16 — Proposed by Simonyan and Zisserman in 2014, it consists of a significantly deeper
network of convolutional layers, and achieved a significant improvement in classification accuracy on
the same recognition challenge. The structure of VGG-16 is shown below, and consists of 16
computation layers (that is, not counting the max-pooling layers or the final softmax classification
layer).

It is important to note that the architectures of VGG and AlexNet are pretty much identical. What
changes are the specific parameters of the network: The number of layers, the number of units, kernel
sizes, strides, and organization of the pooling layers. But the processing pipeline is clear to see:

Use a sequence of convolutional layers to extract progressively more meaningful features while
reducing the size of the feature maps to a point where it is practical to use a fully-connected network
to perform the classification task.

The input to the fully-connected network is a highly abstracted, expressive, informative feature
map that provides it with the power required to accurately identify an image as containing an object
from 1 of the 1000 possible classes.

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

224 x 224 x3 224x 224 x 64

112x 112 x 128

56|x 56 x 256

28 x 28 x 512
14x14x512 4, 944096 1x1x 1000

7x7x512

=) convolution+ReLU
| max pooling
fully nected +RelLU
softmax

Architecture of the VGG-16 network
(Image: Paras Varshney, Apache 2.0 license)

It should be noted that without a major difference in architecture, significant improvements in
classification accuracy were achieved by increasing the number of layers in the network. Variations of
VGG with additional layers exist, and specialized versions trained to perform other image classification
tasks have been developed.

4) ResNet — Proposed in 2015 by He et al. As we have discussed in the context of deep, fully
connected networks, adding layers to the network makes the training challenging due to problems with
gradient propagation (vanishing gradient, exploding gradient).

As we saw above, improvements in performance on tasks such as image categorization were
achieved by increasing the number of layers in the model — the gradient propagation issues become
much more challenging as we add layers, limiting the depth of networks we can effectively train.

We have mentioned before that adding skip (also called residual) connections to a deep network
can help reduce the problems caused by vanishing or exploding gradients, so it makes sense we should
take advantage of such connections in ConvNets.

ResNet demonstrated that it is possible to build very deep ConvNets (with over 150 layers!) by
organizing them into residual blocks — these blocks consist of a sequence of convolutional layers with
a skip connection going across them. The basic architecture is shown below (keep in mind that many
variations are possible, the residual blocks often contain pooling layers and batch normalization
layers as well as convolutions). In the example below, solid skip connections are just an element-wise
sum, while dotted-line skip connections include a pooling layer (notice the factor of 1/2 in the size of
the input at these points in the network).

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

= — N | A 1 A
3
7 B S| IEIRE =Nls| |=
z i o G 1EIREL B NG I = s
@ g 2 =1z 1z z UZL 2L B8
[[= ! NGNS B VN N
5 E Hig £ Hellubglgh e
< 2l a g 2| |2 [2] |2 |2 2l la| 2 @
= g ANEINE 7| |8 o (2| |2| (2] 2| 12| 2| 2] |2] |2| (8] |2 7| |2
© =] &l |&| & & |8 |2 Al |al |&| &) (&S] |8 (A& & & (2] |4 EIREIRE
& 2 - 3
<
3 L B B B O I L OO RN N NN SRRy Ny L L L
o
] o q sl [g 2| | o
= 8 #| [8 8l 8 o
a 2l o« 1B 3] 133 | 4| |2 3 3 |o
g ENENFENENE :LIE ERE BN
P Y - N H N H N N Z N NE £l 2,[8
> E g =T lelT et e 8 878 g8 g|m w7
8 & |o| |m| |2 |» Lu) < m| |m ml |m m| B =
o ~ HREIREIRES al |2 2| |2 2| = i
oy % A |af |a] = 2| |& 2 EIME A & -
% 3
&

]
]
]
]
]
J
]
]
]

3x3 conv, 128
poal, /2
343 conv, 256.
3x3 conv, 256.
L2
3x3 conv, 256

VGG-19
mage

@
8
=
g
g
2
2
-

3x3 conv, 64
3x3 cony, 64
poel, /2
33 conv, 256
poal, /2
3x3 conv, 512
¥
3x3 conv, 512
¥
3x3 conv, 512
¥
3x3 conv, 512
pool, /2
3x3 conv, 512
¥
313 conv, 512
¥
3x3 conv, 512
A2
3x3 conv, 512
Y
pool, /2
fc 4096

[
\

size: 28 [

=3
an
5w
ER

output
size: 112
output
output
size: 14
output
size: 7
output
size: 1

ResNet architecture, compared to VGG-19 Notice the residual connections — the 34-layer network
with residual connections is much easier to train (shown in the paper in terms of convergence), and
with skip connections it is possible to train very deep networks
(ResNet with 152 layers achieves impressive performance on the Image Classification Challenge)
(Image: He et al., tech report on ArXiv)

Modern deep learning models almost always include some form of residual connections as an
integral component of their building blocks.

5) U-Net — Proposed in 2015 by Ronneberger et al., U-Net is important because it provided an
architecture capable of working to solve pixel-level tasks. The architectures discussed above all assume
that the final layer of neurons is carrying out a task that is to be solved at the image level — a single
answer (such as for example, the class the image belongs to) is obtained after considering all the
information contained in the input image.

However, many image-related problems demand a solution at the pixel level. For instance,
semantic image segmentation which is the process of dividing an image into regions each of which
corresponds to an object from a known class, and labelling each region with the appropriate class. The
output in this case must be an image of the same size as the input, but instead of pixels we expect
object labels. Similarly, image restoration tasks such as noise removal, de-blurring, contrast
adjustment, and white balancing require as output an image of the same size as the input.

Network architectures we have seen so far will not work for these tasks — they succeed specifically
by abstracting and condensing meaning from large inputs, and reducing the size of the feature maps
progressively. They are not appropriate to solve pixel-level problems.

U-Net provided an architecture capable of addressing processing pipelines whose final output is a
pixel map. Originally designed for semantic segmentation, it (or variations of it) have been applied to
all sorts of image processing tasks. U-Net consists of two symmetric networks attached to one another
as shown below:

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

@
R

32 64 32 32 1
o

az
64 64 128
T
1
H
ot
= Contracting Residual layer
128 128 256

""" Expanding Residual layer

Input patch
400x400

100°
v
4002 l
4000 |
400°
400x400

—
2007 {

Output probability
map

2007

—> > — !
3 o I 3 » W Last Residual layer
= 2 S 18 2
=% Concatenation
256 256 256 =3 Average Pooling 2x2
—> _y: | —
2 g ! T 2 %5 @ = Up-sample 2x2
=% Convolution 3x3
Feature maps
. s 5 % Convolution 1x1 {sigmoid activation)
2 Concatenated feature maps by e .
256 256 == Transfer to residual block

U-Net architecture. The first half of the network is a standard ConvNet in the style
of AlexNet or VGG. The second half is a mirror image with residual connections
whose job (on top of further processing) is to up-scale the feature maps
produced by the first half of the network so as to obtain a full-size result.
(Image: Gomez-de-Mariscal et al., CC-BY-4.0)

This type of architecture has become very common in applications of convolutional networks. The
first half of the network is an encoder — it is a standard ConvINet similar to AlexNet, and it can have
any number and configuration of convolutional layers, pooling layers, and batch normalization. Just

like AlexNet or VGG the job of the encoder is to extract meaningful features that help the network
achieve its goal.

The second half of the network is called the decoder — its job is to take the feature map produced
by the encoder and produce larger feature maps that are weighted combinations of the lower
resolution features. The weights are learned by training to provide the interpolation from features at
lower resolution to features at higher resolution that best helps the network with the task at hand.

Importantly, each layer in the decoder works with two sources of information: The feature map
produced by the previous layer, and the feature map produced by the corresponding layer in the
encoder (this is a residual connection). These two maps are concatenated, and then processed through a
1x1xN convolution kernel to produce a combined feature map with the correct dimensions. Finally,

the layer up-samples the map using its own bank of interpolation kernels to produce a result twice the
size (along the width and height).

A final pair of layers perform additional convolutions to produce the network’s result, which is an
image with the same with and height as the input. In the case of the original U-Net, the value for each
pixel is a label (an integer number) identifying a particular object in the input.

Variations of U-Net have been developed for a wide range of applications in segmentation, object
detection, and image restoration.

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

Segmentation results from the original U-Net paper by Ronneberger et al., the segmentation
from U-Net is shown as a solid colour, the yellow outline is the ground truth boundary
for each cell, as marked by an expert human observer

(a) Noisey(14.78dB) (b) BM3D(28.36dB) (c) DnCNN(28.68dB)

(d) FFDNet(28.75dB) (e) IRCNN(28.69dB) (f) RatUNet(29.14dB)

Results comparing a variant of U-Net (RatUNet) with several competing methods for image
denoising (including alternate deep-network architectures). RatUNet achieves the best results in terms of RMS error
(Image: Zhang et al., CC-BY-4.0)

Transfer Learning

A particularly useful property of deep neural networks is that often entire blocks of them can be re-
purposed for tasks other than the original one they were trained with. The process of re-training a
model to perform a related task so that only a limited amount of computation and training is required to
achieve good results is called transfer learning.

Suppose we wanted to train a convolutional network to recognize images of different products
offered at a small convenience store (for instance, so that the automatic cashier can recognize produce
without the user having to input a product code or scan a barcode).

We could, of course, design and train our own convolutional network in the style of AlexNet or
VGG, but why not make use of a model that has already been trained to solve a similar task (image
category recognition) though on a different dataset?

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada
In our example above, we can rely on the following observation:

- The convolutional parts of a model like AlexNet, VGG, or ResNet have been trained to be very
effective at extracting meaningful features on reqgular images — even though their training comes from
a specific dataset, the dataset itself is very large and rich in terms of the diversity of visual information
contained in images the network has already seen during training.

- Therefore, we can think of the convolutional layers of such a model as a fairly good general
purpose feature extraction model for image categorization tasks.

- Therefore, we can take the pre-trained convolutional layers of one of these models, and attach a
different classification head — this means, replacing the final, fully-connected network with a new one
that we can train for our specific image categorization task (recognizing produce).

- The training process only needs to learn the weights of the new classification head and does not
change any of the weights in the convolutional layers. This means we require much less training data,
and the computational expense of the training process is significantly reduced.

Convolutional, feature extraction block Classification
head
T A

T —

"

aat

belpo s

- - - -
e
New classification
head. Only these
B layers have to be

~ trained

Frozen (nor updated during training) convolutional layers

The process is shown above with the original AlexNet — we can download a pre-trained model,
replace the classification head, and re-train only the final, fully-connected part of the network on the
new training data. Because we are training only a couple of layers, and because these are the layers
closest to the output, training is much easier, faster, and requires less training data to achieve good
results.

After the new classification head has been trained, we an optionally do some fine-tuning of the
convolutional layers by performing a small amount of training on the full network. This has to be done

CSC D84 — Artificial Intelligence (c) 2025 F. Estrada

only after the new classification head has become as good as possible with the pre-trained feature
detection block.

Transfer learning has many variants, and the specific sequence of layers that needs to be re-
trained depends on the type of model that is being used. However, it has proven to be incredibly useful,
and libraries of pre-trained models for a variety of purposes are nowadays readily available for every
conceivable platform, language, and task. The ability to quickly re-purpose an existing model for a new
(related) task is one of the reasons deep learning has been so successful and gained such wide adoption.

Acknowledgements: A big thank you to Allan Jepson for carefully reading through these notes and
providing me with detailed and very precise feedback on how to make them better!

