
CSC D84 – Artificial Intelligence (c) 2025 F. Estrada

Unit 8 – Convolutional Networks

One of the earliest and most successful specialized architectures in Deep Learning is what we 
know as a convolutional network. In order to understand how they are built, how they work, and how 
their architecture is designed we first have to think of the particular problems they were designed to 
solve.

We have already successfully  trained neural  networks  to  carry  out  fairly  sophisticated pattern 
recognition – we built fully connected networks capable of recognizing hand-written digits, discovered 
that a fully connected network with a single hidden layer can perform this task quite well, but we also  
discovered that on more complex problems (classifying images in the CIFAR-10 dataset) the network 
struggles to learn a model that generalizes well to previously unseen images.

There are several limitations imposed by the fully-connected architecture that limit the usefulness 
of such networks for tasks that have to be performed on images: pattern recognition (such as OCR, 
object detection, tracking of objects on video), image classification, image segmentation, automatic 
annotation, or image restoration tasks (noise removal, de-blurring, contrast or colour enhancements, 
etc.).

Firstly – a fully-connected network requires a  fixed size input  image – by design, the network 
requires an input of a fixed size. For the digit recognition task, all our inputs had to be scaled to the  
correct size, and contain the digits we are interested in classifying at a reasonably similar size and at the 
correct location and orientation in each image. This is not particularly realistic if what we want is a  
network that detects digits (or other characters) on images of any type – document scans, photographs,  
graphic art. Such images will have any size, the characters in them will appear at  anwhere,  and will 
show a variety of distortions in size, orientation, shape, colour, and more.

Text and other characters on regular images can be at any location, have any size/orientation, be drawn on any font and colour, and have 
an arbitrary background – how would we transform these into perfectly scaled, centered, clean (no background) images to feed to our 

fully connected digit classification network? (Images: right side by George Hodan, Public Domain. Left side, samples from the MNIST 
digit recognition dataset)

We could imagine training a fully connected network to carry out the digit recognition task on 
much larger images – for instance, we could fix the image resolution at 1920x1080 pixels (a standard  
HD image frame) and see how far we get. 

Here’s how we get in trouble with a fully-connected network:

* Each neuron in the hidden layer will require just over 2 million weights to connect to pixels in
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    the input image

* Suppose we train a network with 625 units (as we did on the MNIST dataset), that will mean
   the first layer of neurons will have over 1.2 billion weights connecting units to the pixels in the

          input image

This is a lot of weights, simply for the first layer of a network to have access to the input – most of  
which will be  irrelevant  to the task most of the time (ask yourself what is the likelihood that on a 
particular image, a particular pixel is part of a pattern that sets it out as a digit we need to classify). The 
problem itself is way too difficult to solve as a general task – we would be requiring the network to  
learn  every  possibly  location,  orientation,  size,  colour,  font,  and background that  could  identify  a 
particular digit or character we are interested in recognizing. 

To handle such complexity we would expect to require a network with a very large number of units 
distributed across some number of hidden layers – the number of network weights would quickly grow 
to  amounts  that  are  not  practical.  Beyond requiring  huge  amounts  of  data  to  train  (each  digit  or  
character  must  appear  multiple  times  at  each  possible  location,  orientation,  size,  colour,  and 
background), it is not clear that it would be even possible to train such a large network to perform well  
on this task.

The  point  of  the  above  is  to  say  that  a  fully  connected  network is  not  the  right  kind  of  
architecture for approaching the problem.

Problems  in  image  processing  have  common  properties  that  motivate  the  use  of  a  different 
architecture that provides invariance to scale, orientation, contrast, and background. Fortunately, we 
can draw on decades of research in image processing and computer vision to guide us in designing a 
network architecture that can achieve all of these.

Two important lessons from earlier computer vision research

1) Meaningful feature extraction is essential

Images have too many pixels, and pixels are not very informative on their own – the value of a 
particular pixel  (i,j) tells us very little in general about anything at all. So, handling any reasonably 
interesting image-related problem requires that we move away from pixel values, and instead think in  
terms of meaningful features. 

In this context, a feature should be thought of as a pattern of interest that is present within a 
spatially contiguous region of an image. As an example, consider the image below – and imagine we 
are trying to solve the following task: Identify and count the illuminated windows in all the buildings in  
the scene.
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Since  we  are  looking  for  illuminated  windows,  we  want  to  look  for  bright  regions  that  are  
surrounded  by  dark  borders.  Individual  bright  pixels  or  individual  dark  pixels  aren’t  very  useful 
because each window contains many such – however, we can design a small (in this case 9 pixel by 9  
pixel) feature of interest that basically looks like a bright blob with the general shape of what we might 
expect a window to look like.

The feature is simply a smaller image. We will now slide the feature image over the large input  
photograph and measure how well the input photo resembles our feature of interest at each possible 
location, creating a feature map that shows how strongly the input image resembles our blob at every 
location we may place it.

The result of this process is shown above – the feature image has been scaled up (otherwise it  
would be too tiny to see!). The resulting feature map is shown on the right hand side – bright pixels in 
the feature map show locations where the input image is very similar to our feature. Notice that many 
of the windows have been highlighted!

A couple of important things are taking place here:

-  We are  taking an input  image and  extracting a  feature  map  showing where  an  interesting 
feature may be present.  Such features of interest are not individual pixels, but rather, small image 
regions that capture a pattern that is somehow useful to the task at hand.

- The  feature map is  sparse – large regions in it are quite dark, meaning they are likely of no 
interest in solving our specific problem. At the same time, we get responses to the filter anywhere over  
the image. There is no expectation the pattern may appear at a particular location, and the input image 
itself can have any size.

Discrete convolutions in 2-D

The process informally discussed above is carried out in practice through the mathematical process 
of convolution. In the context of image processing, a discrete convolution in 2-D takes as input a pair  
of 2-D arrays, one of which corresponds to input data, and the second of which represents a  filter  
kernel – this latter array is typically much smaller than the input image, and defines an operation we 
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want to perform over image regions of the same size as the  kernel.  A 2-D discrete convolution  is 
defined as:

,

here, the kernel k(i,j) has size w (it is assumed to be square, and the size is odd so it has a unique entry 
that can be called the kernel’s center). The input image is  f(x,y) and the result of the convolution is 
g(x,y).

- To compute g(x,y), the kernel is placed over the input image f(x,y) so that the kernel’s center is 
exactly at (x,y). This means the kernel will overlap a square region of size w centered at (x,y).

- The product of the flipped kernel with the input image region it overlaps is then computed by
multiplying together the corresponding pixel and kernel entries.

- The sum of these products over the entire region is the result of the convolution.

A small but important point is that the kernel is flipped in both directions before the convolution is 
computed (notice the indexing on f(x,y) above, it effectively flips the order of kernel entries as they are 
applied to corresponding image pixels). This is because by convention the convolution operation must  
preserve the property that on an input that corresponds to a delta function (a single 1, everywhere else 
0), the result of the convolution should be the filter kernel itself.

This is an expected property of linear, shift-invariant filters.

In summary – image processing tasks usually require  detecting meaningful features on images, 
the detection process relies on using a filter kernel and applying it to the input image by convolution. 
The resulting  feature map encodes the responses to the filter  kernel.  Because we perform feature 
extraction over all possible image locations,  this process achieves (discrete) translation invariance. 
We no longer care where the pattern of interest appears, the feature map will record its presence. 

A few notes:

- Filter kernels can be designed to perform a wide variety of tasks, not only feature detection. For 
example, a  Gaussian kernel can be used for  smoothing the input image, a  Laplacian kernel can be 
used for edge detection, and so on.

- To be effective for  feature detection, a kernel must be  zero mean, and  pattern matching (the 
kernel’s spatial arrangement mirrors the feature we intend to detect).

- Kernels can have more than 2 dimensions. As we will see shortly in the context of convolutional 
networks, a 3-D kernel with multiple layers can be convolved with a 3-D array using a corresponding 
3-D convolution. Generalizing this to N-D inputs and kernels is straightforward.



CSC D84 – Artificial Intelligence (c) 2025 F. Estrada

- Care must be taken at the boundaries where the kernel may have regions that are outside of the 
image. Typically, these regions are padded with zeroes for the purpose of computing the convolution, 
but other options are possible.

2) Achieving scale invariance requires processing at multiple scales

One of the stronger sources of variation in images is  scale. Consider once again the problem of 
counting illuminated windows, in the context of the image below:

Consider the different in size of the illuminated window in the 
two circled regions – a single kernel won’t be able to detect both

(Image: Lenny K, FLICKR, CC BY-2.0)

The filter kernel we used to highlight possible windows has a specific size and shape. As noted 
above, feature detecting kernels are pattern matching filters, therefore it can only respond strongly to 
windows that have a fairly similar size and shape. If we want to detect the same feature of interest at 
whatever size it may appear in an image, we need to  use kernels of different sizes  (with different 
spatial scales).
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We will come back to this idea in short order, as it is built into the architecture of convolutional 
networks.

Let’s  recap:  complex  image-related  tasks  rely  on  feature  detection which  is  carried  out  via 
convolution  with  carefully designed filter kernels at  multiple scales. The feature detection process 
extracts meaningful features and focuses further processing on image regions that appear useful for the 
task  at  hand.  Multi-scale  processing provides  (discrete)  invariance  to  scale and  allows  feature 
extraction to detect meaningful features whatever their size.

The two principles discussed above provide a powerful framework for image understanding and 
image  processing,  and  they  form  the  foundation  for  the  design  and  computation  performed  by 
convolutional networks.

Why ConvNets?

The framework described above can be used to perform fairly complex image processing tasks – 
but each new task requires designing a set of kernels that are adapted to the particular problem being 
solved, building an ad-hoc processing pipeline that extracts  features, and feeding those features to a 
machine learning algorithm trained on the task that needs solving.

We know neural networks are very powerful at learning interesting patterns in input data, so why 
not use a neural net to learn the set of features that is helpful for solving a task? At the same time, 
we can leverage the ability of multi-layer networks to  build more complexity and expressive power  
layer by layer, enabling them to successfully solve very complex tasks. 

Convolutional Networks (ConvNets) are specialized deep learning architectures whose purpose is 
precisely that: The network will  learn from training data the set of kernels that can extract useful 
features  for  whatever  task  the  network  is  being  trained  to  solve.  It  will  apply  these  kernels  by 
convolution  to input data to  extract feature maps,  and  through repeated application of this process 
across  multiple  layers  of  kernels  and convolutions it  will  build  more meaningful,  powerful,  and  
expressive  features. Because of the architecture of the network (as will be seen shortly), high-level 
features will  be  scale and translation invariant,  while  the use of a suitably large set  of learned  
kernels will provide invariance to rotation, contrast, background and other sources of variability in 
the input patterns the network is designed to detect. 

A final fully-connected layer can then take the final feature maps produced by the convolutional 
layers in the network and carry out  classification,  regression, annotation or any other related task 
using as input a set of features that are optimized for the task.

Let’s see how this is actually implemented in terms of the architecture of a ConvNet. And for that  
we should begin by looking at a single convolutional layer.

The architecture of a convolutional layer

Unlike regular, fully-connected networks, each unit in a convolutional network’s layer is connected 
to a  set of weights that form a square kernel with a pre-defined size.  The kernel size is set as a 
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parameter and is fixed for  all the units within the layer  (though note that different layers can have 
different kernel sizes). The organization of the computation units in a ConvNet layer is shown below
(the kernel images show the flipped kernels, as per the convolution definition).

Units in a convolutional network layer work as specialized feature detectors. Each of them will 
learn a kernel of a pre-defined size. The kernel can be 2-D (for instance if the input is a grayscale  
image), or it can be N-D: For example, if the input is an RGB image the kernel would be 3-D, and  
further layers inside the network can have many layers corresponding to the number of feature maps 
produced by the preceding layer. The non-linearity (often a ReLU or similar function) introduced by 
the activation function in each unit is essential. The feature maps are non-linear activations resulting 
from responses to the specific kernel learned by each unit in the layer. The output of a ConvNet layer is 
a feature map with M layers – such a feature map provides abstraction and allows succeeding layers to 
learn kernels that detect even more meaningful/useful features. To make this point clear, consider the 
image below:
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Notice that the second ConvNet layer is using as input feature maps produced by the first layer – 
its input is already more meaningful/useful for the task the network is being trained to solve, and now 
a second convolutional layer can extract meaningful features in the patterns of interest identified by  
the first layer – the second layer is learning to find combinations of features from the first layer that 
are even more interesting/useful for the task being learned.

Stacking additional layers results in progressively more  abstract,  and more  informative feature 
maps.  In the same way that  the ability of  a  fully connected network to fit  extremely complicated 
functions is compounded with the addition of each hidden layer, the ability of a convolutional network 
to  extract  meaningful  information  from  images  is  compounded  with  each  additional  layer  of 
convolution kernels and their non-linear units.

Multi-scale Feature Detection

The above explains the the  computational and feature extraction functions of a convolutional 
layer, but there is one more component that is  often, though not always attached to convolutional 
layers like the ones discussed above.

Recall that earlier on we raised the issue of using kernels at multiple scales to detect features at  
multiple scales. A standard convolutional layer has fixed-size kernels (all the units in the same layer 
work  on  kernels  with  the  same  dimension).  In  order  to  achieve  (discrete)  scale  invariance, 
convolutional networks often take advantage of the following observation:

-  Kernel  responses  have  strong  spatial  correlations.  This  is  the  result  of  applying  a  kernel  
representing a feature bigger than individual pixels to every location in the image. Given a specific 
position (x,y) that contains the feature of interest, we can expect a strong response to the kernel at (x,y), 
but also at nearby locations, such as (x-1,y), (x,y-1), (x-1, y-2), and so on – within a small radius whose 
width depends on the size of the kernel as well as the shape of the feature of interest that it represents.

-  This  means that  information in the  extracted feature maps is  redundant  within small  image 
regions.  As  a  result  of  this,  we  can  reduce  the  resolution  of  the  feature  maps output  by  one 
convolutional layer without missing any of the locations where a particular feature has been detected.

To illustrate this, consider the image below showing a magnified region within the feature map 
extracted with the original kernel we used earlier to detect windows in buildings:
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As seen above, filter responses are not localized with very high resolution – the general principle is  
this:

- Responses to a filter kernel with wide spatial support are spatially correlated and show a pattern 
similar to what is shown above: the response has a  peak at whatever location best agrees with the 
kernel’s pattern, and decays smoothly around it
 

- As a result of the above, we do not need and in fact do not want to keep all the kernel responses. 
We only need the peak response for a particular location

Convolutional networks take advantage of the above in order to achieve  scale invariance and 
reduce the computational expense of feature extraction. This is done with a combination of:

1) Computing convolutions not at every (x,y) location, but instead, evaluate the kernel at locations 
spaced a fixed distance away from each other. This is called a stride and is a design parameter for the 
convolutional layer. If, for instance, the stride for the layer is 3, the feature map will be computed by 
evaluating the  kernel at a  grid of locations 3 pixels away from each other along both the x and y 
directions. The resulting feature map will have 1/3 the resolution of the input in either direction.

2) An additional pooling layer which keeps either the maximum, or the average kernel response  
within small,  non-overlapping regions of the  feature map.  For instance, a  3x3 maxpool layer will 
preserve only the maximum value within a 3x3 region of the feature map.

Therefore, a typical convolutional layer consists of:

- A layer of units that compute convolution with filter kernels followed by a non-linear activation  
(typically ReLU). Convolutions are computed at locations spaced by the appropriate stride to produce 
feature maps with a smaller size than the input.

- An optional (thought very often added) pooling layer that finds and reports either the max or the 
average response within small, non-overlapping image regions. The pooling layer has no weights that 
need to  be  learned.  If  a a  pooling layer exists,  then the  final  feature  map will  contain only  one 
response for each small neighbourhood processed by the pooling layer.

A complete convolutional network consists of:

- A series of convolutional layers, each with their own kernel size,  stride,  number of units, and 
optional pooling layer (the typical configuration is shown above).

-  A final  fully-connected network that  takes  as  input  the  feature  maps  output  by  the  last  
convolutional  layer and  uses  those  to  solve  the  specified  task.  Typical  tasks  that  convolutional 
networks  excel  at  include,  among others,   object  detection,  classification,  annotation,  and  image 
restoration.
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- Depending on the problem being solved, the fully-connected layer may be replaced by a different 
type of network architecture (e.g. for image restoration tasks, more convolutional layers are employed, 
as will be discussed below).

For a network with the architecture described above, the training process has the goal of allowing 
the different layers to layers to learn the  kernels that allow the network to perform the task it was 
designed for. The network  learns a large filter bank  that is able to detect  relevant features  at any 
orientation and position. By applying non-linear activations and multi-scale processing the detected 
features become abstracted and more representative of meaningful image content while allowing the 
network to handle the large variability present in typical images.

Let us summarize what we have learned thus far:

- Convolutional networks rely on the detection of meaningful features using specialized kernels 
learned from training data and optimized for the task the network is being trained to solve

-  They  achieve  invariance  to  translation  and  other  transformations of  the  relevant  patterns 
involved in solving a task by learning a large bank of filter kernels that detects relevant features at  
multiple orientations, and at any location in the input

- They achieve  scale invariance  in a  computationally efficient way by using a combination of 
stride steps greater than 1, and a pooling layer that preserves only one value for each small, non-
overlapping region in the feature maps output by the non-linear, convolution units.

- They often have a final fully-connected network whose job is to use the final, small-size feature 
maps produced by the last layer of convolutions to make a decision that helps solve a difficult image 
processing problem. Because the final layer has small feature maps, implementing the fully-connected 
network is feasible and doesn’t require huge numbers of units.

The design of the network includes  the number and configuration of each convolutional layer 
(the number of units, the type of activation function, the stride, the size of the kernels, and whether or  
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not to use a pooling layer),  the  configuration  of the  final layer (which often is a fully-connected 
network).  A lot  of  the  work  required  in  solving  a  particular  problem goes  toward  figuring  out  a 
configuration that works well. 

It is useful to spend a bit of time learning about well known designs that have shown to perform 
well  for  particular problems.  These designs became the starting point  for  further refinements and 
advances in specific fields of application.

Case studies in applications of convolutional networks

1) LeNet – Proposed in the early 1990’s by LeCun et al., it consisted of a convolutional network 
for the purpose of hand-written digit recognition, and was demonstrated on the MNIST dataset.

LeNet-5, 1998. (Image: Zhang et al., Wikimedia Commons, CC-SA-4.0)

The first layer of convolutions uses 6 units to create 6 feature maps, same size as the input. A  
pooling layer reduces these maps to a size of 14x14 (which means the pooling layer looks at 2x2 
patches). The next layer of convolutions contains 16 units and computes 16 feature maps, which are the 
passed to another pooling layer. The final feature maps have a size of 5x5, and there are 16 of them. 
This yields a total of  400 values that are input to a  fully connected network with 3 layers. The last 
layer with 10 units is used to detect each of the hand-written digits that may be present in the input (the 
outputs are passed through a softmax function which turns them into probabilities for each class).

This network is interesting because we can compare it with our fully-connected, 2-layer network 
trained on the MNIST digit data. LeNet achieves a higher correct classification rate on test data (the 
reported accuracy is close to 99%). More importantly, it performs significantly better on the CIFAR-10 
dataset  (with  accuracy  close  to  75%,  compared  to  40% from the  largest,  2-layer  fully  connected 
network we have trained ourselves). 

This should not be too surprising – LeNet-5 is a  deeper network  (on top of two convolutional 
layers, it also has one more hidden layer), and takes advantage of the abstraction and feature detection 
power of convolutional networks. What should be remarkable is how a relatively small convolutional 
network can quickly outperform fairly large fully-connected networks on image-related tasks.
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2)  AlexNet  – Proposed  in  2012  by  Krizhevsky  et  al.  It  demonstrated  what  at  the  time  was 
unprecedented performance in a large-scale, image recognition task (the ImageNet Large Scale Image 
Recognition Challenge, the task is to recognize objects belonging to one of 1000 different categories).  
The structure of AlexNet is shown below – the convolutional layers use ReLU activations:

AlexNet architecture, convolution layers are light orange, pooling layers are green,
fully-connected layers are blue

AlexNet is important in that it resulted in a major shift toward research in convolutional networks 
and deep learning.  Further  work has yielded even stronger models  for  image classification,  object  
recognition, and image processing.

3) VGG-16 – Proposed by Simonyan and Zisserman in 2014, it consists of a significantly deeper 
network of convolutional layers, and achieved a significant improvement in classification accuracy on 
the  same  recognition  challenge.  The  structure  of  VGG-16  is  shown  below,  and  consists  of  16 
computation layers  (that is, not counting the max-pooling layers or the final softmax classification 
layer).

It is important to note that the architectures of VGG and AlexNet are pretty much identical. What 
changes are the specific parameters of the network: The number of layers, the number of units, kernel  
sizes, strides, and organization of the pooling layers. But the processing pipeline is clear to see:

Use a sequence of convolutional layers to extract progressively more meaningful features while  
reducing the size of the feature maps to a point where it is practical to use a fully-connected network 
to perform the classification task. 

The input to the fully-connected network is a highly abstracted, expressive, informative feature 
map that provides it with the power required to accurately identify an image as containing an object 
from 1 of the 1000 possible classes.
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Architecture of the VGG-16 network
(Image: Paras Varshney, Apache 2.0 license)

It  should be noted that without a major difference in architecture, significant improvements in 
classification accuracy were achieved by increasing the number of layers in the network. Variations of 
VGG with additional layers exist, and specialized versions trained to perform other image classification 
tasks have been developed. 

4) ResNet –  Proposed in 2015 by He et al. As we have discussed in the context of deep, fully 
connected networks, adding layers to the network makes the training challenging due to problems with 
gradient propagation (vanishing gradient, exploding gradient).

As  we saw above,  improvements  in  performance  on tasks  such as  image  categorization  were 
achieved by increasing the number of layers in the model – the gradient propagation issues become 
much more challenging as we add layers, limiting the depth of networks we can effectively train.

We have mentioned before that adding skip (also called residual) connections to a deep network 
can help reduce the problems caused by vanishing or exploding gradients, so it makes sense we should 
take advantage of such connections in ConvNets. 

ResNet demonstrated that it is possible to build  very deep ConvNets (with over 150 layers!) by 
organizing them into residual blocks – these blocks consist of a sequence of convolutional layers with 
a skip connection going across them. The basic architecture is shown below (keep in mind that many 
variations  are  possible,  the  residual  blocks often contain  pooling layers and  batch normalization 
layers as well as convolutions). In the example below, solid skip connections are just an element-wise 
sum, while dotted-line skip connections include a pooling layer (notice the factor of 1/2 in the size of  
the input at these points in the network). 
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ResNet architecture, compared to VGG-19 Notice the residual connections – the 34-layer network
with residual connections is much easier to train (shown in the paper in terms of convergence), and

with skip connections it is possible to train very deep networks 
(ResNet with 152 layers achieves impressive performance on the Image Classification Challenge)

(Image: He et al., tech report on ArXiv)

Modern deep learning models almost always include some form of  residual connections  as an 
integral component of their building blocks.

5) U-Net – Proposed in 2015 by Ronneberger et al., U-Net is important because it provided an 
architecture capable of working to solve pixel-level tasks. The architectures discussed above all assume 
that the final layer of neurons is carrying out a task that is to be solved at the  image level – a single 
answer (such as for example,  the class the image belongs to) is  obtained after considering all  the 
information contained in the input image.

However,  many  image-related  problems  demand  a  solution  at  the pixel  level.  For  instance, 
semantic image segmentation which is the process of dividing an image into regions each of which 
corresponds to an object from a known class, and labelling each region with the appropriate class. The 
output in this case must be an image of the same size as the input, but instead of pixels we expect  
object  labels. Similarly,  image  restoration  tasks  such  as noise  removal,  de-blurring,  contrast  
adjustment, and white balancing require as output an image of the same size as the input. 

Network architectures we have seen so far will not work for these tasks – they succeed specifically  
by abstracting and condensing meaning from large inputs, and reducing the size of the feature maps 
progressively. They are not appropriate to solve pixel-level problems.

U-Net provided an architecture capable of addressing processing pipelines whose final output is a 
pixel map. Originally designed for semantic segmentation, it (or variations of it) have been applied to 
all sorts of image processing tasks. U-Net consists of two symmetric networks attached to one another 
as shown below:
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U-Net architecture. The first half of the network is a standard ConvNet in the style
of AlexNet or VGG. The second half is a mirror image with residual connections

whose job (on top of further processing) is to up-scale the feature maps
produced by the first half of the network so as to obtain a full-size result.

(Image: Gomez-de-Mariscal et al., CC-BY-4.0)

This type of architecture has become very common in applications of convolutional networks. The 
first half of the network is an encoder – it is a standard ConvNet similar to AlexNet, and it can have 
any number and configuration of convolutional layers, pooling layers, and batch normalization. Just 
like AlexNet or  VGG the job of the encoder is to extract  meaningful features that help the network 
achieve its goal.

The second half of the network is called the decoder – its job is to take the feature map produced 
by  the  encoder and  produce  larger  feature  maps  that  are  weighted  combinations  of  the  lower 
resolution features. The weights are learned by training to provide the interpolation from features at 
lower resolution to features at higher resolution that best helps the network with the task at hand.

Importantly, each layer in the  decoder works with two sources of information: The  feature map 
produced by the previous layer,  and the  feature map produced by the  corresponding layer in the  
encoder (this is a residual connection). These two maps are concatenated, and then processed through a 
1x1xN convolution  kernel to produce a  combined feature map with the correct dimensions. Finally, 
the layer up-samples the map using its own bank of interpolation kernels to produce a result twice the 
size (along the width and height).

A final pair of layers perform additional convolutions to produce the network’s result, which is an 
image with the same with and height as the input. In the case of the original U-Net, the value for each 
pixel is a label (an integer number) identifying a particular object in the input.

Variations of U-Net have been developed for a wide range of applications in segmentation, object  
detection, and image restoration. 
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Segmentation results from the original U-Net paper by Ronneberger et al., the segmentation
from U-Net is shown as a solid colour, the yellow outline is the ground truth boundary

for each cell, as marked by an expert human observer

Results comparing a variant of U-Net (RatUNet) with several competing methods for image
denoising (including alternate deep-network architectures). RatUNet achieves the best results in terms of RMS error

(Image: Zhang et al., CC-BY-4.0)

Transfer Learning

A particularly useful property of deep neural networks is that often entire blocks of them can be re-
purposed for tasks other than the original one they were trained with. The process of re-training a 
model to perform a related task so that only a limited amount of computation and training is required to 
achieve good results is called transfer learning.

Suppose we wanted to train a convolutional network to recognize images of different products 
offered at a small convenience store (for instance, so that the automatic cashier can recognize produce 
without the user having to input a product code or scan a barcode). 

We could, of course, design and train our own convolutional network in the style of  AlexNet or 
VGG, but why not make use of a model that has already been trained to solve a similar task (image  
category recognition) though on a different dataset?
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In our example above, we can rely on the following observation:

- The convolutional parts of a model like AlexNet, VGG, or ResNet have been trained to be very 
effective at extracting meaningful features on regular images – even though their training comes from 
a specific dataset, the dataset itself is very large and rich in terms of the diversity of visual information 
contained in images the network has already seen during training.

- Therefore, we can think of the convolutional layers of such a model as a fairly good  general  
purpose feature extraction model for image categorization tasks.

- Therefore, we can take the pre-trained convolutional layers of one of these models, and attach a 
different classification head – this means, replacing the final, fully-connected network with a new one 
that we can train for our specific image categorization task (recognizing produce).

- The training process only needs to learn the weights of the new classification head and does not 
change any of the weights in the convolutional layers. This means we require much less training data, 
and the computational expense of the training process is significantly reduced.

The process is shown above with the original  AlexNet – we can download a pre-trained model,  
replace the classification head, and re-train only the final, fully-connected part of the network on the 
new training data. Because we are training only a couple of layers, and because these are the layers 
closest to the output, training is much easier, faster, and requires less training data to achieve good 
results.

After the new classification head has been trained, we an optionally do some fine-tuning of the 
convolutional layers by performing a small amount of training on the full network. This has to be done 



CSC D84 – Artificial Intelligence (c) 2025 F. Estrada

only after the new  classification head  has become as good as possible with the pre-trained  feature 
detection block.

Transfer learning has many variants,  and the specific sequence of layers that needs to be re-
trained depends on the type of model that is being used. However, it has proven to be incredibly useful, 
and libraries of pre-trained models for a variety of purposes are nowadays readily available for every 
conceivable platform, language, and task. The ability to quickly re-purpose an existing model for a new 
(related) task is one of the reasons deep learning has been so successful and gained such wide adoption. 
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