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4 3D Objects
Having studied geometric primitives and their properties in 2D, it is time to expand our scope to
deal with 3D objects and surfaces. The tools we will employ are the same ones we relied on when
studying 2D geometric primitives, namely: Implicit or parametric equations describing simple 3D
surfaces, points and vectors in 3D, and affine transformations now applied to 3D primitives to
create a wide range of shapes. Once we have understood how to manipulate 3D surfaces we will
be able to model complex scenes for rendering.

Figure 1:
A Mobius Snail illustrating a 3D surface model viewed from different locations [Source:

Wikipedia, Author: Random0532]

In this section, we will pay close attention to the geometric properties of surfaces. In particular, we
will spend some time learning how to determine the orientation of a surface at a specific location.
The surface orientation is typically represented with a normal vector, and obtaining this vector is
essential for determining the appearance of that specific surface point under illumination.

4.1 Surface Representations
As with 2D objects, we can represent 3D objects in parametric and implicit forms. (There are
also explicit forms for 3D surfaces — sometimes called “height fields” — but we will not cover
them here).

4.2 Planes
• Implicit: (p̄ − p̄0) · ~n = 0, where p̄0 is a point in R3 on the plane, and ~n is a normal vector

perpendicular to the plane.

A plane can be defined uniquely by three non-colinear points p̄1, p̄2, p̄3. Let ~a = p̄2− p̄1 and
~b = p̄3 − p̄1, so ~a and ~b are vectors in the plane. Then ~n = ~a ×~b. Since the points are not
colinear, ‖~n‖ 6= 0.
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• Parametric: s̄(α, β) = p̄0 + α~a+ β~b, for α, β ∈ R.

Note:
This is similar to the parametric form of a line: l̄(α) = p̄0 + α~a.

A planar patch is a parallelogram defined by bounds on α and β.

Example:
Let 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1:

a

bp
0

4.3 Surface Tangents and Normals
The tangent to a curve at p̄ is the instantaneous direction of the curve at p̄.

The tangent plane to a surface at p̄ is analogous. It is defined as the plane containing tangent
vectors to all curves on the surface that go through p̄.

A surface normal at a point p̄ is a vector perpendicular to a tangent plane. It therefore corresponds
to the unique direction that is perpendicular to the surface at p̄.

4.3.1 Curves on Surfaces

The parametric form p̄(α, β) of a surface defines a mapping from 2D points to 3D points: every
2D point (α, β) in R2 corresponds to a 3D point p̄ in R3. Moreover, consider a curve l̄(λ) =
(α(λ), β(λ)) in 2D — there is a corresponding curve in 3D contained within the surface: l̄∗(λ) =
p̄(l̄(λ)).
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4.3.2 Parametric Form

For a curve c̄(λ) = (x(λ), y(λ), z(λ))T in 3D, the tangent is

dc̄(λ)

dλ
=

(
dx(λ)

dλ
,
dy(λ)

dλ
,
dz(λ)

dλ

)
. (1)

For a surface point s̄(α, β), two tangent vectors can be computed:

∂s̄

∂α
and

∂s̄

∂β
. (2)

1Derivation:
Consider a point (α0, β0) in 2D which corresponds to a 3D point s̄(α0, β0). Define
two straight lines in 2D:

d̄(λ1) = (λ1, β0)T (3)
ē(λ2) = (α0, λ2)T (4)

These lines correspond to curves in 3D:

d̄∗(λ1) = s̄(d̄(λ1)) (5)
ē∗(λ2) = s̄(d̄(λ2)) (6)

Using the chain rule for vector functions, the tangents of these curves are:

∂d̄∗

∂λ1

=
∂s̄

∂α

∂d̄α
∂λ1

+
∂s̄

∂β

∂d̄β
∂λ1

=
∂s̄

∂α
(7)

∂ē∗

∂λ2

=
∂s̄

∂α

∂ēα
∂λ2

+
∂s̄

∂β

∂ēβ
∂λ2

=
∂s̄

∂β
(8)

Example:
The illustration below shows a torus
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The red curve shows a contour for constant α, changing β between 0 and 2π. The
purple curve shows a contour for constant β, varying α between 0 and 2π. The inset
shows the two tangent vectors that form the tangent plane at a point on the surface.

The normal of s̄ at α = α0, β = β0 is

~n(α0, β0) =

(
∂s̄

∂α

∣∣∣∣
α0,β0

)
×

(
∂s̄

∂β

∣∣∣∣
α0,β0

)
. (9)

The tangent plane is a plane containing the surface at s̄(α0, β0) with normal vector equal to the
surface normal. The equation for the tangent plane is:

~n(α0, β0) · (p̄− s̄(α0, β0)) = 0. (10)

What if we used different curves in 2D to define the tangent plane? It can be shown that we get the
same tangent plane; in other words, tangent vectors of all 2D curves through a given surface point
are contained within a single tangent plane. (Try this as an exercise).

Note:
The normal vector is not unique. If ~n is a normal vector, then any vector α~n is also
normal to the surface, for α ∈ R. What this means is that the normal can be scaled,
and the direction can be reversed.
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4.3.3 Implicit Form

In the implicit form, a surface is defined as the set of points p̄ that satisfy f(p̄) = 0 for some
function f . A normal is given by the gradient of f ,

~n(p̄) = ∇f(p̄)|p̄ (11)

where∇f =
(
∂f(p̄)
∂x

, ∂f(p̄)
∂y

, ∂f(p̄)
∂z

)
.

1Derivation:
Consider a 3D curve c̄(λ) that is contained within the 3D surface, and that passes
through p̄0 at λ0. In other words, c̄(λ0) = p̄0 and

f(c̄(λ)) = 0 (12)

for all λ. Differentiating both sides gives:

∂f

∂λ
= 0 (13)

Expanding the left-hand side, we see:

∂f

∂λ
=

∂f

∂x

∂c̄x
∂λ

+
∂f

∂y

∂c̄y
∂λ

+
∂f

∂z

∂c̄z
∂λ

(14)

= ∇f(p̄)|p̄ ·
dc̄

dλ
= 0 (15)

This last line states that the gradient is perpendicular to the curve tangent, which is
the definition of the normal vector.

Example:
The implicit form of a sphere is: f(p̄) = ‖p̄ − c̄‖2 − R2 = 0. The normal at a point
p̄ is: ∇f = 2(p̄− c̄).

Exercise: show that the normal computed for a plane is the same, regardless of whether it is
computed using the parametric or implicit forms. (This was done in class). Try it for another
surface.

4.4 Parametric Surfaces
4.4.1 Bilinear Patch

A bilinear patch is defined by four points, no three of which are colinear.
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Given p̄00, p̄01, p̄10, p̄11, define

l̄0(α) = (1− α)p̄00 + αp̄10,

l̄1(α) = (1− α)p̄01 + αp̄11.

Then connect l̄0(α) and l̄1(α) with a line:

p̄(α, β) = (1− β)l̄0(α) + βl̄1(α),

for 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

Question: when is a bilinear patch not equivalent to a planar patch? Hint: a planar patch is defined
by 3 points, but a bilinear patch is defined by 4.

4.4.2 Cylinder

A cylinder is constructed by moving a point on a line l along a closed planar curve p0(α) such that
the direction of the line is held constant.

If the direction of the line l is ~d, the cylinder is defined as

p̄(α, β) = p0(α) + β~d.

A right cylinder has ~d perpendicular to the plane containing p0(α).

A circular cylinder is a cylinder where p0(α) is a circle.

Example:
A right circular cylinder can be defined by p0(α) = (r cos(α), r sin(α), 0), for 0 ≤
α < 2π, and ~d = (0, 0, 1).

So p0(α, β) = (r cos(α), r sin(α), β), for 0 ≤ β ≤ 1.
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To find the normal at a point on this cylinder, we can use the implicit form
f(x, y, z) = x2 + y2 − r2 = 0 to find ∇f = 2(x, y, 0).

Using the parametric form directly to find the normal, we have

∂p̄

∂α
= r(− sin(α), cos(α), 0), and

∂p̄

∂β
= (0, 0, 1), so

∂p̄

∂α
× ∂p̄

∂β
= (r cos(α)r sin(α), 0).

Note:
The cross product of two vectors ~a = (a1, a2, a3) and~b = (b1, b2, b3) can
be found by taking the determinant of the matrix, i j k

a1 a2 a3

b1 b2 b3

,
thus, ~a×~b = (a2b3 − b2a3, b1a3 − a1b3, a1b2 − b1a2).

4.4.3 Surface of Revolution

To form a surface of revolution, we revolve a curve in the x-z plane, c̄(β) = (x(β), 0, z(β)),
about the z-axis.

Hence, each point on c̄ traces out a circle parallel to the x-y plane with radius |x(β)|.
Circles then have the form (r cos(α), r sin(α)), where α is the parameter of revolution. So the
rotated surface has the parametric form

s̄(α, β) = (x(β) cos(α), x(β) sin(α), z(β)).

Example:

Building a surface of revolution. The shape of the surface is determined by that of
the planar, parametric curve on the x-z plane.
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Revolving the curve around the y axis turns each point on the curve into a circle. The
radius of the circle is the distance from the y axis to the parametric curve.

Revolving the entire curve yields the final surface.
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Example:
If c̄(β) is a line perpendicular to the x-axis, we have a right circular cylinder.

The torus shown in the text above is a surface of revolution:

c̄(β) = (d+ r cos(β), 0, r sin(β)).

4.4.4 Quadric

A quadric is a generalization of a conic section to 3D. The implicit form of a quadric in the
standard position is

ax2 + by2 + cz2 + d = 0,

ax2 + by2 + ez = 0,

for a, b, c, d, e ∈ R. There are six basic types of quadric surfaces, which depend on the signs of the
parameters.
They are the ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, elliptic cone, elliptic
paraboloid, and hyperbolic paraboloid (saddle). Except for the hyperbolic paraboloid and some
ellipsoids, all of them may be expressed as surfaces of revolution.

Example:
An ellipsoid has the implicit form

x2

a2
+
y2

b2
+
z2

c2
− 1 = 0.
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In parametric form, this is

s̄(α, β) = (a sin(β) cos(α), b sin(β) sin(α), c cos(β)),

for β ∈ [0, π] and α ∈ (−π, π].

4.4.5 Polygonal Mesh

A polygonal mesh is a collection of polygons (vertices, edges, and faces). As polygons may be
used to approximate curves, a polygonal mesh may be used to approximate a surface.

vertex

edge

face

A polyhedron is a closed, connected polygonal mesh. Each edge must be shared by two faces.

A face refers to a planar polygonal patch within a mesh.

A mesh is simple when its topology is equivalent to that of a sphere. That is, it has no holes.

Given a parametric surface, s̄(α, β), we can sample values of α and β to generate a polygonal mesh
approximating s̄.

4.5 3D Affine Transformations
We have already seen that 2D transformations can be used to build complex shapes out of a few
simple geometric primitives. In 3D, transformations have many important uses beyond shape
modeling: They will be used for coordinate frame conversion, animation, and camera modeling.

An affine transform in 3D looks the same as in 2D: F (p̄) = Ap̄ + ~t for A ∈ R3×3, p̄,~t ∈ R3. A
homogeneous affine transformation is

F̂ (p̂) = M̂p̂, where p̂ =

[
p̄
1

]
, M̂ =

[
A ~t
~0T 1

]
.
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Translation: A = I , ~t = (tx, ty, tz).

Scaling: A = diag(sx, sy, sz), ~t = ~0.

Rotation: A = R, ~t = ~0, and det(R) = 1.

3D rotations are much more complex than 2D rotations, so we will consider only elementary
rotations about the x, y, and z axes.

For a rotation about the z-axis, the z coordinate remains unchanged, and the rotation occurs in the
x-y plane. So if q̄ = Rp̄, then qz = pz. That is,[

qx
qy

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
px
py

]
.

Including the z coordinate, this becomes

Rz(θ) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

.
Similarly, rotation about the x-axis is

Rx(θ) =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

.
For rotation about the y-axis,

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

.
4.6 Spherical Coordinates
Any three dimensional vector ~u = (ux, uy, uz) may be represented in spherical coordinates.
By computing a polar angle φ counterclockwise about the y-axis from the z-axis and an azimuthal
angle θ counterclockwise about the z-axis from the x-axis, we can define a vector in the appropriate
direction. Then it is only a matter of scaling this vector to the correct length (u2

x + u2
y + u2

z)
−1/2 to

match ~u.
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Given angles φ and θ, we can find a unit vector as ~u = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)).

Given a vector ~u, its azimuthal angle is given by θ = arctan
(
uy
ux

)
and its polar angle is φ =

arctan
(

(u2x+u2y)1/2

uz

)
. This formula does not require that ~u be a unit vector.

4.6.1 Rotation of a Point About a Line

Spherical coordinates are useful in finding the rotation of a point about an arbitrary line. Let
l̄(λ) = λ~u with ‖~u‖ = 1, and ~u having azimuthal angle θ and polar angle φ. We may compose
elementary rotations to get the effect of rotating a point p̄ about l̄(λ) by a counterclockwise angle
ρ:

1. Align ~u with the z-axis.

• Rotate by −θ about the z-axis so ~u goes to the xz-plane.

• Rotate up to the z-axis by rotating by −φ about the y-axis.

Hence, q̄ = Ry(−φ)Rz(−θ)p̄

2. Apply a rotation by ρ about the z-axis: Rz(ρ).

3. Invert the first step to move the z-axis back to ~u: Rz(θ)Ry(φ) = (Ry(−φ)Rz(−θ))−1.

Finally, our formula is q̄ = R~u(ρ)p̄ = Rz(θ)Ry(φ)Rz(ρ)Ry(−φ)Rz(−θ)p̄.
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4.7 Nonlinear Transformations
Affine transformations are a first-order model of shape deformation. With affine transformations,
scaling and shear are the simplest nonrigid deformations. Common higher-order deformations
include tapering, twisting, and bending.

Example:
To create a nonlinear taper, instead of constantly scaling in x and y for all z, as in

q̄ =

 a 0 0
0 b 0
0 0 1

p̄,
let a and b be functions of z, so

q̄ =

 a(p̄z) 0 0
0 b(p̄z) 0
0 0 1

p̄.
A linear taper looks like a(z) = α0 + α1z.
A quadratic taper would be a(z) = α0 + α1z + α2z

2.

x

y

z

(a) Linear taper

x

y

z

(b) Nonlinear taper
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