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Abstract

Trigraph list homomorphism problems (also known as list matrix partition problems)
have generated recent interest, partly because there are concrete problems that are not
known to be polynomial time solvable or NP -complete. Thus while digraph list homo-
morphism problems enjoy dichotomy (each problem is NP -complete or polynomial time
solvable), such dichotomy is not necessarily expected for trigraph list homomorphism
problems. However, in this paper, we identify a large class of trigraphs for which list ho-
momorphism problems do exhibit a dichotomy. They consist of trigraphs with a tree-like
structure, and, in particular, include all trigraphs whose underlying graphs are trees. In
fact, we show that for these tree-like trigraphs, the trigraph list homomorphism problem
is polynomially equivalent to a related digraph list homomorphism problem. We also
describe a few examples illustrating that our conditions defining the tree-like trigraphs
are necessary at least for some trigraphs.
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1. Introduction

A trigraph H consists of a set V = V (H) of vertices, and two disjoint sets of directed
edges on V – the set of weak edges W (H) ⊆ V × V , and the set of strong edges S(H) ⊆
V ×V . If both edge sets W (H), S(H), viewed as relations on V , are symmetric, we have
a symmetric, or undirected trigraph. A weak, respectively strong, edge vv is called a
weak, respectively strong, loop at v.

The adjacency matrix of a trigraph H , with respect to an enumeration v1, v2, . . . , vn

of its vertices, is the n × n matrix M over 0, 1, ∗, in which Mi,j = 0 if vivj is not an
edge, Mi,j = ∗ if vivj is a weak edge, and Mi,j = 1 if vivj is a strong edge. Note that a
trigraph H is symmetric if and only if its adjacency matrix is symmetric.
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We consider the class of digraphs included in the class of trigraphs, by viewing each
digraph H as a trigraph with the same vertex set V (H), and with the weak edge set
W (H) = E(H) and strong edge set S(H) = ∅. Conversely, if H is a trigraph, the
associated digraph of H is the digraph with the same vertex set V (H), and with the edge
set E(H) = W (H) ∪ S(H). Moreover, the underlying graph of the trigraph H is the
underlying graph of the associated digraph, and the symmetric graph of the trigraph H

is the symmetric graph of the associated digraph. To be specific, xy is an edge of the
underlying graph of H just if xy ∈ W (H)∪S(H) or yx ∈ W (H)∪S(H), and xy is an edge
of the symmetric graph of H just if xy ∈ W (H) ∪ S(H) and yx ∈ W (H) ∪ S(H). These
conventions allow us to extend the usual graph and digraph terminology to trigraphs. We
speak, for instance, of adjacent vertices, components, neighbours, cutpoints, or bridges of
a trigraph H , meaning the corresponding notions in the associated digraph of H , or in
its underlying graph; and we speak of symmetric edges, symmetric neighbours, etc. in a
trigraph H , meaning the edges, neighbours, etc., in the symmetric graph of H .

Let G be a digraph and H a trigraph. A homomorphism of G to H is a mapping
f : V (G) → V (H) such that the following two conditions are satisfied for each u 6= v:

– if uv ∈ E(G) then f(u)f(v) ∈ W (H) ∪ S(H)

– if uv 6∈ E(G) then f(u)f(v) 6∈ S(H).

In other words, edges of G must map to either weak or strong edges of H , and
non-edges of G must map to either non-edges or weak edges of H .

If each vertex v of the digraph G has a list L(v) ⊆ V (H), then a list homomorphism of
G to H , with respect to the lists L, is a homomorphism f of G to H such that f(v) ∈ L(v)
for all v ∈ V (G). Following standard practice [16], we also call a homomorphism of G to
H an H-colouring of G, and a list homomorphism of G to H (with respect to lists L) a
list H-colouring of G (with respect to L).

Suppose H is a fixed trigraph. The H-colouring problem HOM(H) has as instances
digraphs G, and asks whether or not G admits an H-colouring. The list H-colouring
problem L-HOM(H) has as instances digraphs G with lists L, and asks whether or not
G admits a list H-colouring with respect to L. As noted earlier, H could be a digraph,
viewed as a trigraph (with W (H) = E(H), S(H) = ∅). Digraph homomorphism and
list homomorphism problems have been of much interest [16]. If necessary, we will em-
phasize the distinction between trigraph list homomorphism problems and digraph list
homomorphism problems, depending on whether H is a trigraph or a digraph respec-
tively, i.e., whether H has any strong edges or not. However, note that the input G is
always a digraph.

For a fixed trigraph H , the list H-colouring problem L-HOM(H) concerns the exis-
tence of vertex partitions of the input digraphs G. For instance, if H is the undirected
trigraph with V (H) = {0, 1}, with a strong loop at 1 and a weak edge joining 0 and 1,
then an H-colouring of G is precisely a partition of V (G) into a clique and an indepen-
dent set. Thus G is H-colourable if and only if G is a split graph. Many graph partition
problems, especially those arising from the theory of perfect graphs, can be formulated as
trigraph homomorphism (or list homomorphism) problems; this is discussed in detail in
[7]. Equivalently, all these problems can be described in terms of the adjacency matrix of
the trigraph, in the language of matrix partitions and list partitions (see [2, 7, 9, 10]). In
this paper it will be more convenient to emphasize the trigraph (rather than the matrix)
terminology, since we are dealing with the structure of the trigraph H .
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It is generally believed [12] that for each digraph H the H-colouring problem HOM(H)
is NP -complete or polynomial time solvable. (This is equivalent to the so-called CSP
Dichotomy Conjecture of Feder and Vardi [12].) One special case when the dichotomy
conjecture is known to hold is the case of undirected graphs (i.e., symmetric digraphs).
In this case, HOM(H) is polynomial time solvable if H has a loop or is bipartite and
is NP -complete otherwise [17]. For the list homomorphism problem L-HOM(H), it
is shown in [6] that L-HOM(H) is polynomial time solvable if H is a so-called bi-arc
graph (a simultaneous generalization of reflexive interval graphs and bipartite graphs
whose complements are circular arc graphs), and is NP -complete otherwise. A more
general result of Bulatov [1] handles all constraint satisfaction problems, implying, in
particular, that for each digraph H , the list H-colouring problem L-HOM(H) is NP -
complete or polynomial time solvable. By contrast, this is not known for trigraph list
homomorphism problems, and in [3] it is only proved that for each trigraph H , the

list H-colouring problem is NP -complete or quasi-polynomial (of complexity nO(logk n)).
All list H-colouring problems L-HOM(H) for trigraphs H with three or fewer vertices
have been classified as NP -complete or polynomial time solvable in [10]. For symmetric
trigraphs with four vertices, this has been accomplished in [2], with the exception of a
single trigraph H ; the corresponding problem remains open and has earned the name the
stubborn problem (Figure 3a). The best known algorithm for this problem has complexity
nO(log n/ log log n), implying it is unlikely to be NP -complete [9]. Thus (polynomial / NP -
complete) dichotomy for trigraph list homomorphism problems seems less likely than for
digraph list homomorphism problems.

In this paper we prove dichotomy for the class of trigraph trees, i.e., for trigraphs
whose underlying graph is a tree. It turns out that if H is a trigraph tree, then the list
H-colouring problem is polynomially equivalent to a list H−-colouring problem where
H− is a digraph obtained from H by removing all vertices with a strong loop and removing
all other strong edges xy (and their converses yx if any).

We conduct the proof of this result in such a way that it in fact implies the dichotomy
for a large class of trigraphs, which includes all digraphs and all trigraph trees. We think
of these trigraphs as tree-like, although it is only the structure of the strong edges that is
tree-like. For trigraphs that are not tree-like (in our definition), we illustrate the possible
complications. We believe that our class of tree-like trigraphs covers an important portion
of the class of trigraphs H in which the strong edges do not significantly impact the
complexity of the list H-colouring problem.

2. Tools

Let H be a trigraph, and let G be a digraph with list L(u) ⊆ V (H) for each u ∈ V (G).
We shall denote by n the number of vertices in G, and by k the number of vertices in H .
We say that lists L′ are a reduction of L, if we have L′(u) ⊆ L(u) for each u ∈ V (G).

In the following text, we shall say that lists L can be reduced to satisfy property P to
mean the following statement: for every instance consisting of a graph G with lists L,
there exists lists L′ such that (i) the lists L′ can be found in polynomial time, (ii) the
lists L′ are a reduction of L, (iii) the lists L′ satisfy property P , and (iv) G has a list
H-colouring with respect to L if and only if G has a list H-colouring with respect to L′.

We shall say that lists L can be transformed to satisfy property P to mean that for
every instance G with lists L, there exists a set L = {Li}i∈I of lists such that (i) the set
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L can be constructed in polynomial time, (ii) each Li is a reduction of L, (iii) each Li

satisfies property P , and (iv) G has a list H-colouring with respect to L if and only if
there exists i ∈ I such that G has a list H-colouring with respect to Li.

We illustrate the two concepts in Figure 1.
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Figure 1: Illustrating the concepts of “reduced” and “transformed”. The circles represent lists. An
arrow from L to L

′ means that L
′ is a reduction of L. The middle and the right figure illustrate Lemma

6 and 9 respectively. Labels arc, sep, and s-d are shorthands for arc-consistency, separator-consistency,
and sparse-dense-consistency.

We say that lists L are non-empty if the list L(u) for each vertex u ∈ V (G) is not
empty. Clearly, if G admits a list homomorphism to H with respect to L, then the lists
L are non-empty. Hence, to avoid trivial cases in what follows, we shall always assume
that lists L are non-empty.

We say that lists L are arc-consistent if for each u, v ∈ V (G) and each x ∈ L(u), there
exists y ∈ L(v) such that (i) xy ∈ W (H) ∪ S(H) if uv ∈ E(G), (ii) yx ∈ W (H) ∪ S(H)
if vu ∈ E(G), (iii) xy 6∈ S(H) if uv 6∈ E(G), and (iv) yx 6∈ S(H) if vu 6∈ E(G).

Lemma 1. Lists L can be reduced to be arc-consistent.

Proof. If some u, v ∈ V (G) violate the above condition for x ∈ L(u), no H-colouring of
G with respect to L maps u to x. Hence, x can be removed from L(u) without changing
the solution. We repeatedly test for such violations and reduce the lists if a violation is
found. After at most n × k such steps either we obtain arc-consistent lists, or some list
L(u) becomes empty, in which case there is no solution. �

We say that lists L contain representatives, if there is a set X ⊆ V (H) such that

(i) for each v ∈ V (G), the list L(v) ⊆ X , and

(ii) for each x ∈ X , there is a vertex v ∈ V (G) with L(v) = {x},

Lemma 2. Lists L can be transformed to contain representatives.
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Proof. We choose a subset X of the vertices of H . For each x 6∈ X , we remove x from
all lists. For each x ∈ X , we find some vertex v with x ∈ L(v) and change its list to
{x}. If this is possible, we obtain lists containing representatives. Otherwise, we make
a different choice of vertices v or set X . It can be seen that we have at most (n + 1)k

different lists we can construct this way. The claim now follows. �

The symmetric trigraph H ′ associated with H is the trigraph on the vertices of H with
strong edges xy iff xy, yx ∈ S(H), and with weak edges xy iff xy 6∈ S(H) or yx 6∈ S(H)
but xy, yx ∈ W (H) ∪ S(H).

A graph G is chordal if G contains no induced cycle of length four or longer. A chordal
completion G′ of G is a chordal graph on the vertices of G with E(G′) ⊇ E(G). A chordal
completion G′ is minimal if no chordal completion G′′ of G satisfies E(G′′) $ E(G′).

Proposition 3. [19] Let G′ be a minimal chordal completion of G, and let C be a clique
of G. Then there are no edges in G′ between vertices of different components of G − C.

We say that lists L contain strong representatives, if for each strong loop x of H ,
there is a set Sx ⊆ V (H) such that

(i) L(v) ⊆ Sx whenever x ∈ L(v),

(ii) each vertex of Sx \ {x} is a symmetric neighbour of x, and

(iii) Sx \ {x} is connected in the symmetric graph of H .

Lemma 4. Lists L can be transformed to contain strong representatives.

Proof. Let G be a digraph with lists L, and let f be a list H-colouring of G with
respect to L. By Lemmata 1 and 2, we may assume that the lists L are arc-consistent
and contain representatives.

Let x be a strong loop of H . Since f is a homomorphism, if f(u) = f(v) = x for
u, v ∈ V (G), we must have both uv and vu in E(G). Hence, the set C = f−1(x) induces
a symmetric clique in G.

Let G′ be the symmetric graph of G, and H ′ be the symmetric trigraph associated
with H . Clearly, C also induces a clique in G′. Moreover, it is easy to show that f is
also a list H ′-colouring of G′ with respect to L.

Now, suppose that x appears on some list. Then, since the lists L contain represen-
tatives, there is a vertex vx ∈ V (G) with L(vx) = {x}.

Let N denote the subset of V (H) containing x and its symmetric neighbours. Let M

denote the subset of V (G) containing vx and its symmetric neighbours. Let B denote
the subset of V (G) containing all vertices u ∈ V (G) with x ∈ L(u). Since the lists L are
arc-consistent, we must have B ⊆ M . Also, for each u ∈ M , we have L(u) ⊆ N .

Now, since f respects lists L, we have x ∈ L(u), for each u ∈ C. Hence, C ⊆ B, and
therefore, C induces a clique in G′[B]. Furthermore, since B ⊆ M , we have L(u) ⊆ N

for each u ∈ B. Hence, f restricted to B is a homomorphism of G′[B] to H ′[N ]. In
particular, each component of G′[B]−C maps by f to a unique component of H ′[N ]−x.

Now, let G′′ be a minimal chordal completion of G′[B]. Let C′′ be the vertices of
a maximal clique of G′′ that completely contains C. By Proposition 3, all vertices of
C′′ \ C belong to one component of G′[B] − C. Hence, by the above remark, there is a
unique component K of H ′[N ] − x such that f(u) ∈ V (K) for each u ∈ C′′ \ C.
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It now follows that G admits a list H-colouring with respect to L if and only if
for some maximal clique C′′ of a minimal chordal completion G′′ of G′[B], and some
component K of H ′[N ] − x, the graph G admits a list H-colouring with respect to L

such that the vertices outside of C′′ do not map to x, and the vertices in C′′ map to x

or the vertices of K. Hence, we can modify the lists L by removing x from the vertices
outside C′′ and by reducing the lists of the vertices in C′′ to V (K) ∪ {x}. Such lists,
clearly, contain a strong representative for x. (Take Sx to be V (K) ∪ {x}.)

To conclude, we remark that the graph G′ and the sets B and N , as well as, a minimal
chordal completion G′′ of G′[B] by the result [19] can be found in polynomial time. Since
G′′ is chordal, it has at most n maximal cliques [14]. Also, there are at most k different
components K of H ′[N ]−x. Hence, we can reduce the problem to at most (nk)k different
instances with strong representatives. The proof is now complete. �

Note that if lists L contain representatives, respectively strong representatives, then
any non-empty reduction L′ of L also contains representatives, respectively strong rep-
resentatives.

Let F be a set of edges of H . Let G\\F denote the graph obtained from G by
removing all edges uv ∈ E(G) such that xy ∈ F for some x ∈ L(u) and y ∈ L(v).

We say that lists L are separator-consistent on F , if for each component C of G\\F

and each component K of H \ F ,

(i) either there exists a list K-colouring of C with respect to L,

(ii) or no vertex of K appears on the list of any vertex of C.

Lemma 5. If L-HOM(H \F ) is polynomial time solvable, then lists L can be reduced to
be separator-consistent on F .

Proof. We obtain a separator-concistent lists L′ from L as follows. For each component
C of G\\F , and each component K of H \F , we test if C admits a list K-colouring with
respect to L. If not, then we remove all vertices of K from the lists of the vertices of
C. Since homomorphisms map connected graphs only to connected graphs, the claim
follows. �

In particular, we have the following property.

Lemma 6. If L-HOM(H \F ) is polynomial time solvable, then lists L can be reduced to
be arc-consistent and separator-consistent on F .

Proof. We apply Lemmata 1 and 5 to L until the lists no longer change. Since at each
step the lists are reduced, the claim follows. �

We remark that for X ⊆ V (H), we say that lists L are separator-consistent on X , if
they are separator-consistent on F , where F is the set of edges of H with at least one
endpoint in X .

Let X and Y be two sets of vertices of H such that each vertex of X has a strong
loop, and no vertex of Y has a loop.

We say that lists L are sparse-dense-consistent on X and Y if for each v ∈ V (G) such
that L(v) ⊆ X ∪ Y , we have L(v) ⊆ X or L(v) ⊆ Y .
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Lemma 7. If L-HOM(H [X ]) and L-HOM(H [Y ]) are polynomial time solvable, then lists
L can be transformed to be sparse-dense-consistent on X and Y .

Proof. Let S and D be classes of digraphs closed under taking induced subgraphs.
Suppose that there is a constant c = c(S,D) such that each digraph in S ∩ D has at
most c vertices. Then by [7], for any n-vertex digraph G, there are at most n2c partitions
V (G) = V1 ∪ V2 such that G[V1] ∈ S and G[V2] ∈ D. (We call each such partition an
(S,D)-partition of G.) All these partitions can be enumerated in time n2c+2T (n) where
T (n) is the complexity of recognizing digraphs in S and in D.

Now, let S be the set of all digraphs admitting an H [X ]-colouring and D be the set
of all digraphs admitting an H [Y ]-colouring; we have c(S,D) ≤ |X | · |Y |. Let Z denote
the vertices u of G with L(u) ⊆ X ∪ Y . We observe that any list H-colouring of G

with respect to L induces an (S,D)-partition of G[Z]. Hence, for each (S,D)-partition
Z = A ∪ B of G[Z], we construct lists L′ on H as follows: L′(u) = L(u) ∩ X if u ∈ A,
L′(u) = L(u) ∩ Y if u ∈ B, and L′(u) = L(u) otherwise. Clearly, L′ is sparse-dense

consistent on X and Y . Now, since there are at most nk2

such partitions, the claim
follows. �

Let D be a set of vertices of H , and let x, y be two vertices of H . We say that y weakly
dominates x on D, if for each z ∈ D, we have that zy is a weak edge in H whenever zx

is a weak edge in H , and yz is a weak edge in H whenever xz is a weak edge in H .
We say that y weakly dominates x if y weakly dominates x on V (H).

Lemma 8. If y weakly dominates x, then lists L can be reduced to satisfy x 6∈ L(u)
whenever y ∈ L(u).

Proof. By Lemmata 1 and 2, we may assume that the lists L are arc-consistent and
contain representatives. Let f be a list H-colouring of G with respect to L. Let f ′ be a
mapping such that f ′(u) = y if f(u) = x and y ∈ L(u), and f ′(u) = f(u) otherwise. We
show that f ′ is also a homomorphism and the claim will follow.

Let t be any vertex (including x and y) of H . Suppose that xt ∈ S(H), yt is not an
edge, and t appears on some list. We claim that no list L(u) contains both x and y. To
prove this, let vt be a vertex with L(vt) = {t}. Suppose that x, y ∈ L(u). If uvt ∈ E(G),
then by arc-consistency of L, we obtain y 6∈ L(u). If uvt 6∈ E(G), similarly x 6∈ L(u), a
contradiction.

Moreover, by symmetry, if tx ∈ S(H) and ty is not an edge, or if x and y exchange
places, we also have that no list contains both x and y. In addition, since y weakly
dominates x, we obtain that either both x and y have strong loops, or both have no
loops, or y has a weak loop.

Now, it is not difficult to directly verify that f ′ is a homomorphism using the above
observations and the fact that y weakly dominates x.

Hence, G has a list H-colouring with respect to L if and only if G has a list H-
colouring with respect to lists L′ obtained from L by removing x from each list L(v) that
also contains y. That concludes the proof. �

Let X , Y , and Z be three sets of vertices of H such that each vertex of X has a strong
loop, no vertex of Y has a loop, and each vertex of Z has a weak loop. Suppose that

7



each vertex of Z weakly dominates each vertex of Y , and that we have L(u) ⊆ X ∪Y ∪Z

whenever L(u) ∩ X 6= ∅.

Lemma 9. Let X, Y, Z be as above. If L-HOM(H [X ]) and L-HOM(H − X) are poly-
nomial time solvable, then lists L can be transformed to be arc-consistent, separator-
consistent on X, and sparse-dense-consistent on X and Y .

Proof. We observe that by Lemma 8, we may assume that no list L(u) contains both
a vertex of Y and a vertex of Z. Hence, either L(u) ⊆ X ∪ Z, or L(u) ⊆ X ∪ Y , or
L(u) ∩ X = ∅ for each u ∈ V (G).

Now, let Li be one of the lists we obtain from L by applying sparse-dense-consistency
on X and Y (Lemma 7). Clearly, we have either Li(u) ⊆ X , or Li(u) ⊆ Y , or Li(u)∩X =
∅, or Li(u) ∩ Y = ∅ for each u ∈ V (G). In particular, any reduction of Li must also
satisfy this condition. Hence, we can apply Lemma 6 to Li, and the claim follows. �

Let A ∪ B be a partition of the vertices of H . Let F be the edges of H that have
exactly one endpoint in A. Let X respectively Y be the vertices of A respectively B with
at least one incident edge of F .

We say that G is separable on F , if for each vertex v ∈ V (G),

(i) L(v) contains at most one vertex of X and at most one vertex of Y ,

(ii) if L(v) contains a vertex of X , it contains no vertex of A \ X , and

(iii) if L(v) contains a vertex of Y , it contains no vertex of B \ Y .

Lemma 10. If L-HOM(H − X − Y ) is polynomial time solvable, then L-HOM(H) is
polynomial time solvable on the class of all digraphs G separable on F .

Proof. First, we observe if G with lists L is separable on F , then for any reduction L′

of L, the graph G with lists L′ is separable on F . Hence, by Lemmata 1 and 2, we may
assume that lists L are arc-consistent and contain representatives.

Next, we show that L-HOM(H [A]) can be solved in polymial time on any G\\F given
that G is separable on F . Indeed, consider a component C of G\\F , and let L′ be lists
such that L′(u) = L(u) ∩ A for each u ∈ V (C). Since G is separable on F , we have
either L′(u) ⊆ A \ X , or |L′(u)| = 1. Hence, if B denotes the vertices with |L′(u)| = 1,
then arc-consistency of L implies that C has a list H [A]-colouring with respect to L if
and only if C − B has a list (H − X − Y )-colouring with respect to L′. Similarly, for
L-HOM(H [B]). Hence, L-HOM(H \F ) can be solved in polynomial time for G\\F given
G is separable on F .

It now follows by Lemma 6 that we may assume that the lists L are arc-consistent and
separator-consistent on F . We also assume that lists L are non-empty, since otherwise
there is no solution.

Let H0 be the trigraph constructed from H [X ∪ Y ] by adding vertices a and b with
weak loops such that a has a weak symmetric edge to each vertex of X , and b has a weak
symmetric edge to each vertex of Y .

Let L0 be lists obtained from L by replacing by a each z ∈ L(u) such that z ∈ A \X ,
and replacing by b each z ∈ L(u) such that z ∈ B \ Y . Also, let A0 = X ∪ {a} and
B0 = Y ∪ {b}.
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Let f0 be a list H0-colouring of G with respect to L0. Let f be a list (H \ F )-
colouring of G\\F with respect to L such that for each u ∈ V (G), we have f(u) ∈ A if
f0(u) ∈ A0, and f(u) ∈ B if f0(u) ∈ B0. Since the lists L are separator-consistent on F ,
such colouring can be found.

We make some observations about f . First, note that f(u) = x if f0(u) = x where
x ∈ X . Indeed, this follows since G is separable on F , and f0 respects lists L0. Similarly,
f(u) = y if f0(u) = y ∈ Y . Moreover, f(u) 6∈ X if f0(u) = a, and f(u) 6∈ Y if f0(u) = b.
It now follows that f is a homomorphism of G to H with respect to L.

Finally, we observe that the lists L0 are all of size at most two. Hence, the mapping
f0 can be found in polynomial time by the standard reduction to 2SAT . That concludes
the proof. �

3. Dichotomy for trigraph trees

In this section, we prove the dichotomy for L-HOM(H) for trigraphs trees H , i.e.,
for trigraphs H whose underlying graph is a tree. We remark that some partial results
along these lines are included in [18]; specifically, the case when the underlying graph of
H is a path is discussed there.

Let H− be the digraph obtained from a trigraph H by removing all edges xy such
that at least one of xy, yx is a strong edge of H , and by removing all vertices x such that
xx is a strong loop in H .

Theorem 11. If H is a trigraph tree, then L-HOM(H) is polynomially equivalent to
L-HOM(H−).

Corollary 12. If H is a trigraph tree, then L-HOM(H) is polynomial time solvable or
NP -complete.

Proof. Suppose that L-HOM(H) is polynomial time solvable. Observe that, since
the underlying graph of H is a tree, H− is an induced subgraph of H . Hence, any
instace of L-HOM(H−) is also an instance of L-HOM(H). Therefore, L-HOM(H−) is
also polynomial time solvable.

Suppose that L-HOM(H−) is polynomial time solvable. We prove the Theorem by
induction on the size of V (H). Hence, we shall assume that for each vertex x of H ,
L-HOM(H − x) is polynomial time solvable.

Let G with lists L be an instance of L-HOM(H). If H contains no strong loops or
strong edges, then H = H− and there is nothing to prove.

Suppose that H contains a strong loop at x. By Lemmata 1, 2, and 4 we may assume
that the lists L are arc-consistent and contain representatives and strong representatives.

Consider the strong representative Sx of x. Let B denote the vertices u ∈ V (G) with
x ∈ L(u). If x has no symmetric neighbours, Sx = {x}. Hence, L(v) = {x} whenever
x ∈ L(v). Therefore, since the lists L are arc-consistent, G admits a list H-colouring
with respect to L if and only if G−B admits a list (H − x)-colouring with respect to L.
Since L-HOM(H − x) is polynomial time solvable, the claim follows.

Now, suppose that x has symmetric neighbours. Since the underlying graph of H is
a tree, it follows that Sx = {x, y} where y is a symmetric neighbour of x.
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First, suppose that y has no loop. We apply Lemma 9 for X = {x}, Y = {y},
and Z = ∅, and we see that we may assume that the lists L are arc-consistent and
sparse-dense-consistent on {x} and {y}. That is, we have L(u) = {x} or L(u) = {y}
or L(u) \ {x, y} 6= ∅ for each u ∈ V (G). In particular, because Sx = {x, y}, we have
L(u) = {x} whenever x ∈ L(u). Since the lists L are arc-consistent, the claim follows
exactly as above.

Next, suppose that y has a weak loop. Let K be the component of H − x to which y

belongs. Observe that y weakly dominates x on V (K). We apply Lemma 9 for X = {x},
Y = ∅, and Z = {y}. This implies that we may assume that the lists L are arc-consistent
and separator-consistent on X . Moreover, G − B admits a list (H − x)-colouring with
respect to L, since otherwise LHOM(H) has no solution for G with lists L.

Hence, we let f0 be a list (H − x)-colouring of G − B with respect to L such that
f0 reduced to any component C of G − B is a K-colouring as long as a vertex of K

appears on the list of some vertex of C. Since the lists L are separator-consistent on
X , such mapping must exist. In fact, f0 can be constructed in polynomial time, since
L-HOM(H − x) is polynomial time solvable.

We extend this mapping to G and show that this yields a homomorphism. Let f be
a mapping defined as follows.

f(u) =







x if u ∈ B and L(u) = {x}
y if u ∈ B and L(u) = {x, y}
f0(u) otherwise

Note that since Sx = {x, y}, we have for u ∈ B either L(u) = {x} or L(u) = {x, y}.
Hence, the mapping f is well-defined. Moreover, f clearly respects lists L. We show that
f is also a homomorphism.

Suppose that f(u)f(v) 6∈ W (H) ∪ S(H) for some uv ∈ E(G). Clearly, at least one of
u, v must belong to B, since f0 is a homomorphism. Also, if L(u) = {x}, or L(v) = {x},
or both u, v ∈ B, we obtain a contradiction by arc-consistency of L. Hence, we can
assume, by symmetry, that u ∈ B, v 6∈ B, and f(u) = y. Since the list L are arc-
consistent, there exists s ∈ L(v) such that ys ∈ W (H)∪S(H). In particular, s 6= x since
v 6∈ B, and hence, s belongs to K. Therefore, if C is the component of G − B to which
v belongs, f0 restricted to C is a K-colouring. In particular, f(v) = f0(v) ∈ V (K).

Now, if xf(v) ∈ S(H), both x and y cannot belong to L(u) by arc-consistency. If
xf(v) ∈ W (H), then yf(v) ∈ W (H) since y weakly dominates x on V (K). Therefore,
xf(v) 6∈ W (H) ∪ S(H). But, since the lists L are arc-consistent, and L(u) = {x, y}, we
obtain a contradiction.

Suppose now that f(u)f(v) ∈ S(H) for uv 6∈ E(G). Clearly, u ∈ B or v ∈ B. Again,
if L(u) = {x}, or L(v) = {x}, or u, v ∈ B, we have a contradiction. Hence, we can
assume, by symmetry, that u ∈ B, v 6∈ B, and f(u) = y. Also, since yf(v) is an edge
and v 6∈ B, f(v) belongs to K. Now, similarly as above, xf(v) can neither be a non-edge
nor a weak edge by arc-consistency of L, respectively the fact that y weakly dominates
x on V (K). Therefore, xf(v) ∈ S(H), and again, since the lists L are arc-consistent and
L(u) = {x, y}, we have a contradiction.

This proves that f is indeed a list H-colouring of G with respect to L, and clearly, f

can be constructed in polynomial time.

Next, suppose that y has a strong loop. Consider the strong representative Sy.
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If Sy = {y} or Sy = {y, x′} where x′ 6= x, it follows that L(u) = {x} whenever x ∈ L(u).
In this case, the claim follows, as above, from arc-consistency of L. Hence, we may
assume Sx = Sy = {x, y}. We observe that H \ {xy, yx} contains two components, a
component A which contains x, and a component B which contains y. Therefore, if we
let X = {x} and Y = {y}, then the list L(v) of any vertex v ∈ V (G) either does not
contain both x and y, or L(v) ⊆ {x, y}. This shows that G is separable on F = {xy}. In
addition, L-HOM(H − {x, y}) is polynomial time solvable. Therefore, by Lemma 10, we
can solve L-HOM(H) for G with lists L in polynomial time.

Finally, suppose that H contains a strong edge xy, and yx is an edge of H . Let A be
the component of H \{xy, yx} which contains x, and B be the component which contains
y. Let X = {x} and Y = {y}. If x does not appear on the list of any vertex in G, then G

with lists L is an instance of L-HOM(H − x) which is polynomial time solvable. Similarly
for y. Hence, since the lists L contain representatives, there exist vertices vx, vy ∈ V (G)
such that L(vx) = {x} and L(vy) = {y}. Now, suppose that the list L(u) contains x.
By arc-consistency, we must have uvy ∈ E(G). Since y is not adjacent to any vertex of
A \ X and uvy ∈ E(G), no vertex of A \ X can appear on the list L(u). Similarly, if
y ∈ L(u), no vertex of B \Y appears on the list L(u). This shows that G is separable on
F = {xy, yx}. If yx is not an edge of H , the same argument shows that G is separable
on F = {xy}. In both cases, the claim follows by Lemma 10.

That concludes the proof. �

4. Extensions

In this section, we extend the dichotomy from the previous section to a larger class
of trigraphs which we refer to as tree-like. In fact, we prove the dichotomy for this class
using the same tools we used in the previous section. We have stated these tools in a
sufficiently general way to easily allow for this extension.

Domination property

We say that an ordering x1, . . . , xt of vertices is a domination ordering, if xi weakly
dominates xj whenever i < j.

Let H be a trigraph, and suppose that x is strong loop of H . For a component K

of H − x, let RK denote the set of all symmetric neighbours of x in K. Recall that
according to our conventions, y is a symmetric neighbour of x just if both xy and yx are
in W (H) ∪ S(H).

We say that a component K satisfies the domination property if

(D1) no vertex of RK has a strong loop, and

(D2) the vertices of RK with weak loops admit a domination ordering, each weakly dom-
inates x on V (K), and each weakly dominates every vertex of RK without a loop.

Matching property

Let F be the edges of H . We say that F separates H if each edge xy ∈ F has its
endpoints x, y in different components of H \F . Thus F separates H if and only if there
is a partition of V (H) such that F is the set of all edges between different parts.
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Let F ∗ consist of all edges xy ∈ F such that neither xy nor yx is a strong edge of H .
We say that F satisfies the matching property if

(M1) F separates H ,

(M2) for any xy ∈ F ∗, both xx and yy are strong loops,

(M3) if xy, zy ∈ F , and neither xy nor zy is a bridge of H , then xz is not a symmetric
edge, and xx or zz is a strong loop,

(M4) if xy, xz ∈ F , and neither xy nor xz is a bridge of H , then yz is not a symmetric
edge, and yy or zz is a strong loop.

(M5) if xy ∈ F ∗, and xz and yw are symmetric edges with xz 6∈ F , then zw 6∈ F ∗ and
xw 6∈ F ∗.

(M6) if xy ∈ F ∗, and xz and yw are symmetric edges with yw 6∈ F , then zw 6∈ F ∗ and
zy 6∈ F ∗.

4.1. Tree-like trigraphs

We are now in a position to define the class T of tree-like trigraphs.

(T1) If H has no strong edges (or loops), then H ∈ T

(T2) If H contains a strong loop at x such that H − x ∈ T and each component of H − x

satisfies the domination property, then H ∈ T .

(T3) If H contains a set F of edges such that H \ F ∈ T and the set F satisfies the
matching property, then H ∈ T .

Theorem 13. If H is a tree-like trigraph, i.e., if H ∈ T , then L-HOM(H) is polynomi-
ally equivalent to L-HOM(H−). In particular, L-HOM(H) is polynomial time solvable
or NP -complete.

Proof. We prove the Theorem by structural induction on H . We shall assume that
H is connected, otherwise we treat each component of H separately. If H is a digraph,
there is nothing to prove.

Suppose that H contains a strong loop at x such that H−x ∈ T and each component
of H − x satisfies the domination property. If L-HOM(H) is polynomial time solvable,
then so is L-HOM(H − x). On the other hand, since H − x ∈ T , we shall assume, by
induction, that L-HOM(H − x) is polynomial time solvable.

Let G with lists L be an instance of L-HOM(H). By Lemmata 1, 2, and 4, we may
assume that the lists L contain representatives and strong representatives.

Consider the strong representative Sx. Let B be the vertices u ∈ V (G) with x ∈ L(u).
It follows that there is a unique connected component K of H−x such that Sx\{x} ⊆ K.
Let X = {x}, let Y be the vertices of Sx with no loops, and Z be the vertices of Sx

with weak loops. Since K satisfies the domination property, we have Sx = X ∪ Y ∪ Z.
Also, Z admits a domination ordering z1, . . . , z|Z|, and each vertex of Z dominates every
vertex of Y . For u ∈ V (G), let min(u) denote the vertex zi ∈ L(u) with the smallest
index i. Now, by Lemma 7, we may assume that for each u ∈ V (G), either L(u) = {x},
or L(u) = {x, min(u)}, or x 6∈ L(u).

Moreover, L-HOM(H [X ]) and L-HOM(H − X) are polynomial time solvable since
X = {x}, and by the inductive hypothesis, respectively. Hence, we can apply Lemma 9
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to X, Y, Z to obtain that we may assume that the lists L are arc-consistent, separator-
consistent on X , and sparse-dense-consistent on X and Y .

Now, let f0 be a list (H − x)-colouring of G − B with respect to L, such that f0

reduced to any component C of G−B is a K-colouring as long as a vertex of K appears
on the list of some vertex of C. Since the lists L are separator-consistent on X , such
mapping must exist and can be found in polynomial time.

We extend the mapping f0 to a mapping f as follows.

f(u) =







x if u ∈ B and L(u) = {x}
min(u) if u ∈ B and L(u) = {x, min(u)}
f0(u) otherwise

By the above remark, the mapping f is well-defined. It also clearly respects the lists L.
It remains to show that f is a homomorphism. The proof of this follows exactly as

in the proof of Theorem 11, and hence, we skip further details.

Now, suppose that H contains edges F satisfying the matching property and such
that H \F ∈ T . Again, we assume that L-HOM(H \F ) is polynomial time solvable, and
that the lists L are arc-consistent, contain representatives and strong representatives.

First, we observe that any subset F0 of F satisfies the matching property in H ′ =
H \ (F \ F0). In particular, H ′ \ F0 = H \ F ∈ T .

Therefore, we can proceed by induction on F . We denote by VF the vertices of H

with at least one incident edge from F .
We observe that if a vertex x ∈ VF does not appear on any list, we can remove from

F all edges incident to x. Since there is at least one such edge, the claim follows by
induction. Hence, we shall assume that each vertex of VF appears on some list.

Let x ∈ VF be a strong loop. Consider the strong representative Sx. We claim that
either Sx = {x, y} where xy ∈ F , or Sx belongs to a component of H \F . To prove this,
suppose that y, y′ ∈ Sx \ {x} and xy ∈ F . Clearly, both xy, xy′, and yy′ are symmetric
edges. Since F separates H , at least one of xy′, yy′ must be in F . But that contradicts
the matching property.

Now, suppose that Sx belongs to a component of H \F . Let Qx denote the union of
lists of vertices u ∈ V (G) with x ∈ L(u). We have Qx ⊆ Sx. Since x ∈ VF , there exists
y with xy ∈ F or yx ∈ F .

By symmetry, suppose that xy ∈ F , and suppose also that xy is a weak edge. Hence,
y is a strong loop. Consider the strong representative Sy. Suppose first that Sy also
belongs to a component of H \ F . Clearly, Sx ∩ Sy = ∅. In particular, Qx ∩ Qy = ∅
where Qy is the union of lists L(u) with y ∈ L(u). Furthermore, for z ∈ Qx \ {x} and
w ∈ Qy \ {y}, we have by the matching property that zy, xw are not edges of H , and
either zw ∈ S(H) or zw is not an edge of H . In particular, if zw ∈ S(H), then arc-
consistency of L implies z 6∈ Qx. Hence, it follows that the only edge in H from Qx to Qy

is the edge xy. This implies that for any uv ∈ E(G) with x ∈ L(u) and y ∈ L(v), we have
L(u) = {x} and L(v) = {y} by arc-consistency of L. Therefore, we can remove all such
edges uv, and after that, we can remove xy from F . The claim now follows by induction.

Next, suppose that Qy = {y, w} where wy ∈ F . Let z ∈ Qx \ {x}. By the matching
property, we have zy 6∈ W (H)∪S(H). Also, either zw ∈ S(H) or zw is not an edge, and
either xw ∈ S(H) or xw is not an edge. If zw ∈ S(H), then arc-consistency of L implies
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w 6∈ Qy. If xw ∈ S(H) and zw is not an edge, then arc-consistency of L implies z 6∈ Qx.
Again, the only edge from Qx to Qy is the edge xy, and the claim follows by induction.

Therefore, we may assume that any strong loop x ∈ VF is either incident to a strong
edge of F , or we have Sx = {x, y} where xy ∈ F .

Recall that F separates H . First, suppose that H \ F contains exactly two com-
ponents. We prove that G is separable on F . Suppose that we have x ∈ L(u) where
x ∈ VF . Let K be the component of H \ F which contains x. Suppose that there exists
y such that xy ∈ F or yx ∈ F and one of xy, yx is strong. Then, by the matching
property and arc-consistency of L, the list L(u) contains no vertex of K other than x.
If no such y exists, then xx must be a strong loop. Hence, by the above assumption, we
have Sx = {x, y} where xy ∈ F . Therefore, L(u) again contains no vertex of K other
than x. The claim now follows by Lemma 10.

Finally, suppose that H \F contains more than two components. Let F0 be a smallest
subset of F such that H \ F0 is disconnected. Since H is connected and H \ F is
disconnected, the set F0 must exist. As remarked above, F \ F0 satisfies the matching
property in H \ F0. Also, it can be seen that F0 satisfies the matching property in H .
Since F0 contains at least one edge and H \F0 contains exactly two components because
of minimality, the claim follows by induction.

That concludes the proof. �

The class T admits a few natural extensions which we shall only mention tangentially.
For instance, we shall observe the following simple fact.

Theorem 14. If each vertex of H has a strong loop, and the symmetric graph of H

contains no triangles, then L-HOM(H) is polynomial time solvable.

Proof. Let G with lists L be an instance of L-HOM(H). By Lemma 4, we may assume
that the lists L contain strong representatives. Since the symmetric graph of H has no
triangles, it follows that for each x ∈ V (H), the strong representative Sx contains at
most two elements. The problem now can be reduced to 2SAT which is polynomial time
solvable. �

As a consequence, we can extend the class T by adding another basis clause to its
recursive description:

(T1′) If each vertex of H has a strong loop, and the symmetric graph of H contains no
triangles, then H ∈ T .

Similarly, if H has no weak edges, i.e., if W (H) = ∅, then L-HOM(H) is polynomially
solvable [3, 7]. Hence, we can also add the following clause:

(T2′) If H has no weak edges, then H ∈ T .

4.2. Trigraph trees and special tree-like trigraphs

Since the recursive description of the class T is complex, we shall identify a subclass
of T which can be defined directly.
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Let F (H) denote all edges xy of H such that either

(i) xy or yx is a strong edge of H , or
(ii) xy and yx are weak edges of H , and x and y are strong loops of H .

We say that H is a special tree-like trigraph if there is a set F ′ ⊇ F (H) of edges of H

such that

(S1) F ′ satisfies the matching property, and
(S2) for every strong loop x of H \ F ′, each component K of H \ F ′ − x satisfies the

domination property in H \ F ′.

Let S denote the class of all special tree-like trigraphs. Also, let T0 denote the class
of all trigraph trees.

Theorem 15. T0 ⊆ S ⊆ T .

Proof. First, let H be in T0. Consider the set F ′ = F (H). Since each edge in F ′ is a
bridge of H , conditions (M1), (M3) and (M4) are satisfied for F ′. Also, the edges of F ′ do
not form cycles in H since H is a trigraph tree, and hence, (M5) and (M6) are satisfied.
Therefore, F ′ satisfies the matching property. On the other hand, for every vertex x of
H with a strong loop, each component of H − x satisfies the domination property, since
x is adjacent to at most one vertex of this component. It follows that H ∈ S.

Now, for H ∈ S, it suffices to observe that edges xy of F ′ \ F (H) have both x and y

strong loops. Hence, after removing F ′ using (T3) and then removing all vertices with
strong loops using (T2), we obtain precisely H− which is a digraph. Hence, by (T1), we
conclude that H ∈ T . �

Corollary 16. If H is a special tree-like trigraph, i.e., if H ∈ S, then L-HOM(H) is
polynomial time solvable or NP -complete.

Although some simple extensions of tree-like, or special tree-like trigraphs are possible
(such as, say, Theorem 14), we shall mention in the conclusions some example trigraphs
outside T for which the first part of Theorem 13 fails.

4.3. Representatives of strong edges

In this section, we describe an extension of the notion of strong representatives to
strong edges of trigraphs.

The underlying trigraph H ′ of H is the trigraph on the vertices of H with strong edges
xy such that xy ∈ S(H) or yx ∈ S(H), and with weak edges xy such that xy, yx 6∈ S(H)
and xy ∈ W (H) or yx ∈ W (H).

We denote by G2 the digraph on the vertices of G with edges xy such that xy ∈ E(G)
or xz, zy ∈ E(G) for some z ∈ V (G).

We denote by H2 the trigraph on the vertices of H with strong edges xy such that
xy ∈ S(H) or xz, zy ∈ S(H) for some z ∈ V (G), and with weak edges xy such that
xy 6∈ S(H2), and xy ∈ W (H) or xz, zy ∈ W (H) ∪ S(H) for some z ∈ V (G).

We say that an edge xy of H is admissible, if there exist vertices u, v ∈ V (G) such
that x ∈ L(u) and y ∈ L(v).

We say that lists L contain representatives for strong edges, if for each admissible
strong edge xy in H , there is a set Sxy such that
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(i) L(v) ⊆ Sxy whenever x ∈ L(v) or y ∈ L(v),

(ii) each vertex of Sxy \ {x, y} is a neighbour of x or a neighbour of y,

(iii) if x and y have no common neighbours, then Sxy\{x, y} contains only neighbours of
x or only neighbours of y,

(iv) if yx is a strong edge, then each vertex of Sxy\{x, y} is a symmetric neighbours of
x or a symmetric neighbour of y,

(v) if yx is a strong edge, and x and y have no common symmetric neighbours, then
Sxy\{x, y} contains only symmetric neighbours of x or only symmetric neighbours of y.

Lemma 17. Lists L can be transformed to contain representatives for strong edges.

Proof. By Lemmata 1 and 2, we may assume that the lists L are arc-consistent and
contain representatives.

Let f be a list H-colouring of G with respect to L, and let xy be an admissible
strong edge of H . Let C = f−1(x) ∪ f−1(y), let N denote all vertices of V (H) that are
neighbours of x or y, and let B denote all vertices u ∈ V (G) with x ∈ L(u) or y ∈ L(u).
We have C ⊆ B. Also, since lists L are arc-consistent, we have L(u) ⊆ N for each u ∈ B.

Let G′ be the underlying graph of G and H ′ be the underlying trigraph of H . It is
easy to verify that f is a homomorphism of G′ to H ′. In particular, f is a surjective
mapping from of B to N0, where N0 = f(B). Clearly, N0 ⊆ N .

Now, it is not difficult to prove that f is a homomorphism of (G′[B])2 to (H ′[N0])
2.

(For this, we need the above remark about surjectivity.) We observe that C induces a
clique in (G′[B])2. Hence, using the same argument as in the proof of Lemma 4, there is
a maximal clique C′′ of a minimal chordal completion G′′ of (G′[B])2 such that for each
u ∈ C′′ \C, we have f(u) ∈ V (K) where K is a unique component of (H ′[N0])

2 −{x, y}.
In particular, if x and y have no common neighbours, then V (K) either contains only
neighbours of x or it contains only neighbours of y. Hence, we let Sxy = V (K) ∪ {x, y}.

Now, if yx is also a strong edge, we obtain Sxy by replacing G with the symmetric
graph of G, and replacing H with the symmetric trigraph of H . The remainder of the
proof follows exactly as in Lemma 4. �

4.4. Trigraph cycles

A trigraph H is a trigraph cycle if the underlying graph of H is a cycle. Let H be a
trigraph cycle. We say that H is a good cycle if H has at least one of the following:

(i) two strong edges, or

(ii) three consecutive strong loops, or

(iii) two pairs of consecutive strong loops, or

(iv) a strong edge and a distinct pair of consecutive strong loops, or

(v) two strong loops joined by a nonsymmetric edge, or

(vi) a strong loop whose neighbours have no loops, or

(vii) a strong loop with non-symmetric edges to neighbours, or

(viii) a strong edge with at least one endpoint having no loop.

Theorem 18. If H is a good cycle, then the problem L-HOM(H) is polynomial time
solvable or NP -complete.
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Figure 2 illustrates example trigraph cycles whose complexity is not determined by
our theorem. These are cycles H that contain vertices x, y such that either xy ∈ S(H)
and xx, yy ∈ W (H), or all of xx, xy, yx, and yy are edges (weak or strong) but at least
one is strong. (Only three typical cases of this are shown in the figure).

We prove the theorem by reducing the problem to an induced subgraph of H . Un-
fortunately, if H is a trigraph cycle that is not a good cycle, such reduction may not
be possible at all. The complement of the stable cutset problem (Figure 3c) is a good
example illustrating this difficulty.

Proof. We assume that H has at least five vertices, since otherwise the claim follows
from [2]. Let G with lists L be an instance of L-HOM(H). By Lemmata 1, 2, 4, and 17, we
assume that the lists L are arc-consistent, contain representatives, strong representatives,
and representatives for strong edges. Also, we assume that each vertex x of H appears
on some list, since otherwise we can reduce the problem H − x, which is a trigraph tree,
and the claim follows by Theorem 11.

Suppose that H contains two strong edges e, e′. If F = {e, e′} satisfies the matching
property, then we are done by Theorem 13. Otherwise, we must have e = xy and e′ = zy.
(The case e = yx and e′ = yz is symmetric.) Let t be any vertex (including x, z) of H

other than y. By arc-consistency of L, no list L(u) contains both y and t since xy and zy

are strong, but at least one of xt, zt is not an edge. Hence, we have L(u) = {y} whenever
y ∈ L(u). By arc-consistency of L, we can reduce the problem to H − y and we are done.

Next, if H contains two pairs of consecutive strong loops x, y and z, w with possibly
y = z, or a strong edge xy and a pair of strong loops z, w where {z, w} 6= {x, y}, then
F = {xy, zw} satisfies the matching property, and again we are done.

Hence, suppose that H contains strong loops x, y where xy is an edge, but yx is not.
Consider the strong representatives Sx and Sy. Clearly, Sx and Sy are disjoint. Also,
the only edge from Sx to Sy is the edge xy. Hence, by arc-consistency of L, if uv ∈ E(G)
with x ∈ L(u) and y ∈ L(v), we have L(u) = {x} and L(v) = {y}. In particular, we
can remove all such edges uv, and afterwards, we remove the edge xy from H . Now,
since H \ xy is a trigraph tree, by Theorem 11, we conclude that L-HOM(H \ xy) is
polynomially equivalent to L-HOM(H − x). Hence, we are done.

Next, suppose that H contains a strong loop x with neighbours y, y′ having no loops.
Consider the strong representative Sx. If Sx = {x, y}, then we apply Lemma 9 for
X = {x}, Y = {y}, and Z = ∅. This yields that the lists L are arc-consistent and sparse-
dense-consistent on X and Y . In particular, L(u) = {x} whenver x ∈ L(u). Similarly, if
Sx = {x, y′}. Hence, we can reduce the problem to H − x and we are done.

Now, suppose that H contains a strong loop x with non-symmetric edges between x

and its neighbours y, y′. Clearly, we have Sx = {x}. Hence, we can reduce the problem
to H − x and we are done.

Finally, suppose that H contains a strong edge xy whose one endpoint has no loop.
By symmetry suppose that x has no loop. Let z be the other neighbour of x and let
w be the other neighbour of y. Consider the representative Sxy. We have that either
Sxy = {x, y, w} or Sxy = {z, x, y}. By arc-consistency of L, no list L(u) contains both
y and w since xy is strong, but xw is not an edge. Similarly, no list L(u) contains both
x and y, or both x and z. Hence, if Sxy = {z, x, y}, we have L(u) = {x} whenever
x ∈ L(u), and if Sxy = {x, y, w}, we have L(u) = {y} whenever y ∈ L(u). Therefore, we
can reduce the problem to H − x or to H − y, and we are done. �
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Figure 2: Unresolved trigraph cycles.

4.5. Surjective list homomorphism

Finally, we describe how we can use our results to classify the complexity of finding
surjective list homomorphisms for some trigraphs.

We say that a homomorphism f of G to H is a a (vertex) surjective homomorphism
if f is a surjective mapping of V (G) onto V (H).

The surjective list H-colouring problem SL-HOM(H) takes as input a digraph G with
lists L, and asks whether or not G admits a surjective list homomorphism to H with
respect to L.

Let H−− be the digraph obtained from a trigraph H by removing all vertices x with
a strong loop at x or a strong edge xy or yx for some y.

Theorem 19. If H is a special tree-like trigraph, i.e., if H ∈ S, then SL-HOM(H) is
polynomially equivalent to SL-HOM(H−−). In particular, SL-HOM(H) is polynomial
time solvable or NP -complete.

Proof. Let H be any trigraph (not necessarily a special tree-like). First, we observe
that SL-HOM(H) is polynomially reducible to L-HOM(H), since SL-HOM(H) is a special
case of L-HOM(H).

Now, suppose that H contains a digraph H0 as an induced subgraph. Let G0 with lists
L0 be an instance of L-HOM(H0). Let H ′ be the digraph associated with H , and let G

be the disjoint union of G0 and H ′. Define L(x) = {x} for x ∈ V (H ′), and L(x) = L0(x)
for x ∈ V (G0). It now follows that G0 admits a list H0-colouring with respect to L0 if
and only if G admits a surjective list H-colouring with respect to L.

This yields that L-HOM(H−−) is polynomially equivalent to SL-HOM(H−−). In fact,
we can also conclude that SL-HOM(H−−) is polynomially reducible to SL-HOM(H).

Now, let H be a special tree-like digraph. Let F ′ ⊇ F (H) be the set of edges from
the definition of H . Let G with lists L be an instance of SL-HOM(H). We can assume
that each vertex of H appears on some list, since otherwise there is no solution. Now,
following the proof of Theorem 13, we conclude (depending on L) that there is a set
F ′′ ⊆ F ′ such that the instance G, L of L-HOM(H) is polynomially reducible to an
instance of L-HOM(H \ F ′′). In fact, the proof implies the instance is reducible to
an instance of L-HOM(H − U) where U are the vertices incident to the edges of F ′′.
Moreover, since each vertex of H appears on some list, the edges of F ′ \ F ′′ are only
between strong loops. Hence, U contains all vertices of H incident to strong edges.
Therefore, (H − U)− = H−−. Also, by the definition of H , for each strong loop x of
H−U , each connected component of H−U−x satisfies the domination property. Hence,
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Figure 3: a) the stubborn problem, b) the complement of the 3-colouring problem, c) the complement of
the stable cutset problem, d) a trigraph H with NP -complete L-HOM(H) but polynomial time solvable
SL-HOM(H).

by Theorem 13, L-HOM(H − U) is polynomially equivalent to L-HOM(H−−). Also, as
remarked earlier, SL-HOM(H−−) is polynomially equivalent to L-HOM(H−−). Hence,
SL-HOM(H) is polynomially reducible to SL-HOM(H−−).

That concludes the proof. �

The proof of this theorem in particular implies the following.

Corollary 20. If H is a digraph, then L-HOM(H) and SL-HOM(H) are polynomially
equivalent.

In fact, similarly, one can prove a stronger statement.

Proposition 21. If for no vertices x, y, z of H we have xy ∈ S(H) and xz 6∈ W (H) ∪
S(H), then L-HOM(H) and SL-HOM(H) are polynomially equivalent.

Note that if we have vertices x, y, z as described above, then an instance G in which
x occurs on some list allows us to use arc-consistency to make sure that no vertex has
both y and z on its list; while if x appears on no list, this no longer happens.

5. Conclusions

We investigated the list (and surjective list) homomorphism problems for trigraphs H .
When H is a digraph, we know that each such problem is polynomial time solvable or
NP -complete [1]. However, there are small trigraphs H for which such dichotomy is not
known, for instance, the trigraph in Figure 3a (corresponding to the so-called ”stubborn”
problem from [2]).

Hence, we have tried to identify properties of trigraphs H which allow us to prove
dichotomy. With this in mind, we have defined the class T of tree-like trigraphs, and
we proved that these trigraphs enjoy dichotomy. Slightly easier to define is the class S
of special tree-like trigraphs, included in T . In particular, the class of trigraphs whose
underlying graph is a tree, is included in S (and hence in T ).

We now offer some tangential evidence that our class T carves out a reasonable
portion of trigraphs where L-HOM(H) is polynomially equivalent to L-HOM(H−). For
instance, one way to violate the matching property is by having a vertex with a strong
loop adjacent to two other vertices with strong loops joined by a symmetric edge. The
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trigraph in Figure 3b illustrates this possibility, and also illustrates that a polynomial
time solvable (in this case trivial) problem L-HOM(H−) can arise from an NP -complete
problem L-HOM(H). (In this case, G admits a homomorphism to H if and only if the
complement of G is 3-colourable.) The trigraph in Figure 3c illustrates another way
to have this take place. Here, the two other vertices have weak loops and are joined
by a strong symmetric edge. In this case L-HOM(H) is also NP-complete, since it
corresponds (in the complement) to the stable cutset problem [13]. Thus we again have
an easy L-HOM(H−) with a hard L-HOM(H).

Of course, it is possible that some class of trigraphs enjoys dichotomy for reasons
different from polynomial equivalence of L-HOM(H) and L-HOM(H−). However, the
stubborn problem (Figure 3a) illustrates the fact that there are trigraphs H 6∈ T where
even the dichotomy is not clear. We note that the trigraph H for the stubborn problem
(the trigraph in Figure 3a) violates the domination property, since the statement (D2)
does not hold for the strong loop at x.

Finally, we have also introduced the surjective list homomorphism problem SL-HOM(H)
as an interesting variant of L-HOM(H). We were able to completely classify the complex-
ity of SL-HOM(H) for trigraphs H in the class S by proving polynomial equivalence with
SL-HOM(H−−). This result implies, in particular, that the two problems, L-HOM(H)
and SL-HOM(H), may not necessarily have the same complexity for all trigraphs H .
This difference was not noted before, since the two problems are polynomially equivalent
for all digraphs H . In fact, we have given a general condition for trigraphs H under which
the two problems SL-HOM(H) and L-HOM(H) are polynomially equivalent. Nonethe-
less, the trigraph H in Figure 3d illustrates a case where SL-HOM(H) is polynomial
time solvable, because using representatives and arc-consistency reduces all lists to size
at most two, while L-HOM(H) is NP -complete, because H−x corresponds to the stable
cutset problem [13].
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