
Polarity of Chordal Graphs

Tınaz Ekim a,1 Pavol Hell b,2, Juraj Stacho b,2,

Dominique de Werra a

aEcole Polytechnique Fédérale de Lausanne, ROSE, Lausanne, Switzerland

{tinaz.ekim, dewerra.ima}@epfl.ch
b School of Computing Science, Simon Fraser University,

Burnaby, B.C., Canada V5A 1S6

{pavol, jstacho}@cs.sfu.ca

Abstract

Polar graphs are a common generalization of bipartite, cobipartite, and split graphs.
They are defined by the existence of a certain partition of vertices, which is NP-
complete to decide for general graphs. It has been recently proved that for cographs,
the existence of such a partition can be characterized by finitely many forbidden
subgraphs, and hence tested in polynomial time. In this paper we address the ques-
tion of polarity of chordal graphs, arguing that this is in essence a question of
colourability, and hence chordal graphs are a natural restriction. We observe that
there is no finite forbidden subgraph characterization of polarity in chordal graphs;
nevertheless we present a polynomial time algorithm for polarity of chordal graphs.
We focus on a special case of polarity (called monopolarity) which turns out to
be the central concept for our algorithms. For the case of monopolar graphs, we
illustrate the structure of all minimal obstructions; it turns out that they can all be
described by a certain graph grammar, permitting our monopolarity algorithm to
be cast as a certifying algorithm.

Key words: chordal graph, polar graph, polynomial algorithm, graph grammar,
matrix partition, generalized colouring, forbidden subgraph characterization

1 Supported by Grant 200021-101455/1 and Grant 200020-113405 of the Swiss Na-
tional Science Foundation
2 Supported by a Discovery Grant from NSERC

Preprint submitted to Elsevier 4 July 2009



1 Introduction

It is well known that many colouring (or partition) problems, while NP-
complete in general, can be efficiently solved on the class of chordal graphs.
This includes classical colouring problems [9], as well as generalized colourings
[1], and matrix partitions [5,6,11]. In this paper we consider the case of polar
partitions.

A polar partition of a graph G is a partition of the vertex set V (G) into two
subsets Vr, Vb, such that Vb induces no P3 and Vr induces no P 3. Note that a
graph has no induced P3 if and only if it is a disjoint union of cliques, with no
other edges. (The binary relation ‘adjacent or equal’ becomes an equivalence
relation in this situation.) Thus a partition V (G) = Vr∪Vb is polar if and only
if Vb induces a disjoint union of cliques and Vr induces a complete multipartite
graph. (The edges between the two parts are not restricted.)

A graph G is polar if it admits a polar partition. As all partitions, a polar par-
tition can be usefully viewed as a colouring of the vertices of G: we shall refer
to elements of the sets Vr and Vb as red (r) and blue (b) vertices respectively.

It follows from this definition that the complement of a polar graph is also
polar and that polar graphs include such well studied graph classes as split
graphs, bipartite graphs, and cobipartite graphs [9]. The problem of polar
partitionability is NP-complete in general graphs [3], but has been solved in
polynomial time for the class of cographs [2]. As suggested above, a natural
class to consider in this context is the class of chordal graphs; we develop the
first polynomial time algorithm for polarity of chordal graphs.

A graph is chordal if it admits no induced cycle of length greater than three.
Equivalently, a graph is chordal if its vertices can be ordered as v1, v2, . . . , vn,
so that, for each i = 1, 2, . . . , n, any two neighbours vj , vj′ of vi with j 6=
j′, j > i, j′ > i are adjacent [9]. Such an ordering is called a perfect elimination
ordering of G. A perfect elimination ordering of a given graph G can be found
in linear time [9,15]. Linear time will always mean linear in the number of
vertices and edges. If the graph G is not chordal, the algorithm will in the
same time bound produce an induced cycle of length greater than three [16],
certifying its non-chordality. In a chordal graph with a perfect elimination
ordering v1, v2, . . . , vn, we denote by Fi the clique consisting of vi and all its
neighbours vj , j > i. These n cliques Fi can be found, also in linear time,
once the perfect elimination ordering is known. It is easy to see [9] that each
maximal clique of a chordal graph G is equal to some Fi. Therefore, in what
follows, we will be able to test various properties of all maximal cliques by
testing all cliques Fi.

While the polarity of cographs can be characterized by finitely many forbid-

2



den induced subgraphs, we show that there is no finite forbidden induced
subgraph characterization of polar chordal graphs. (For a special class of po-
lar chordal graphs we suggest a simple recursive construction generating all
minimal obstructions, see Figure 4; this will be taken up in [13].)

Polar partitions of chordal graphs take a restricted form. The complete mul-
tipartite graph induced by the red vertices has at most one part with more
than one vertex. (If two parts have at least two vertices each, we would obtain
an induced cycle with four vertices.) In particular, in a polar partition of a
chordal graph, the red vertices induce the join of a clique and a stable set.
(This means each vertex of the clique is adjacent to each vertex of the stable
set.) In the sequel, unless explicitely stated otherwise, we shall only consider
chordal graphs G. Therefore we amend the definition of a polar partition as
follows: a polar partition of a chordal graph G is a partition of its vertices into
a red stable set A, a red clique B, and blue cliques C1, C2, . . . Ck, so that A is
joined to B by all possible edges, and no edges join a Ci to any Cj with i 6= j.

In [4], the authors develop a general framework for similar partitions. Given
a symmetric m by m matrix M over 0, 1, ∗, they define an M-partition of a
graph G to be a partition of the vertices of G into sets V1, V2, . . . , Vm, such
that Vi is a stable set if M(i, i) = 0 and a clique if M(i, i) = 1, and such that,
for i 6= j, the set Vi is joined to the set Vj by no edges if M(i, j) = 0, and by
all possible edges if M(i, j) = 1. Asterisks indicate no restriction. It is easy
to see that a polar partition into A, B, C1, C2, . . . , Ck fits the definition of an
M-partition for a suitable matrix M = Mk with m = k + 2. The authors of
[5] have investigated the complexity of M-partitions in chordal graphs, and
found polynomial time algorithms for many natural matrices M , including the
above matrices Mk, for any fixed integer k. Surprizingly, there exist matrices
M for which the M-partition problem is NP-complete even when restricted
to chordal graphs [5]. Let M∞ denote the obvious infinite generalization of
Mk, corresponding to polar partitions A, B, C1, C2, . . . (k is not fixed). Our
problem is precisely the problem of M∞-partitionability of chordal graphs, and
our algorithm is one of the very few known non-trivial cases of polynomial M-
partition problems with infinite matrix M .

Our main goal is to present a polynomial time algorithm for finding a polar
partition of a chordal graph, if one exists - see Section 5. The algorithm is
obtained by combining the solutions of a number of special cases investigated
in the next two sections.

We mostly follow the standard terminology and notation of [18]. In particular,
a block of G is a maximal connected subgraph of G without cutpoints. A block
consisting of two adjacent vertices is called a trivial block, blocks with at least
three vertices are called non-trivial. A 2-connected graph is a graph G that is
a non-trivial block of itself.

3



Given a graph G and a set U ⊆ V (G), we denote by G − U the subgraph of
G obtained by removing all vertices in U ; if U = {u}, we simply write G− u.

2 Special Classes of Polar Graphs

A few special kinds of polar partitions play a role in our approach. First we
state them for general graphs G: a polar partition is called monopolar if the
red vertices form a stable set, and unipolar if the red vertices form a clique.
A graph is monopolar, or unipolar, if it admits a monopolar, respectively
unipolar, partition. This definition of monopolar graphs, more convenient for
our purposes, differs from that in [2]; it corresponds to the so-called stable
monopolar graphs of [2]. Observe that a partition is monopolar if and only if
there is no red P2 and no blue P3; similarly, a partition is unipolar if and only
if there is no red P 2 and no blue P3. A split partition is a monopolar partition
in which the blue vertices form a clique; a graph which admits a split partition
is called a split graph [9]. Split graphs can be recognized in linear time, even if
some vertices are precoloured (preassigned to be in the stable set (precoloured
red), or in the clique (precoloured blue)) [11].

For a chordal graph G, a polar partition is monopolar if and only if the red
clique B is empty, and unipolar if and only if the red stable set A is empty. A
monopolar partition of a chordal graph is a split partition if and only if there
is exactly one blue clique.

As noted above, we can obtain all maximal cliques of a chordal graph in linear
time. This is sufficient to recognize unipolar chordal graphs in polynomial time
as well. Indeed, we have the following observation.

Proposition 1 (Unipolarity of chordal graphs) A chordal graph G is
unipolar if and only if it has a maximal clique U such that G−U is a disjoint
union of cliques.

Proof. If such a clique U exists, we can colour its vertices red and colour
all remaining vertices blue. On the other hand, if the vertices are coloured
red and blue so that the red vertices form a clique, then any maximal clique
containing the red vertices can serve as U . 2

Testing whether a graph is a disjoint union of cliques can easily be accom-
plished by finding its components and checking their edges in linear time.
Thus we obtain an O(n3) unipolarity algorithm for chordal graphs. (For sim-
plicity we express the higher complexities purely in terms of the number of
vertices n.) In fact, we can apply the algorithm to test for unipolarity of a

4



graph G in which some vertices have been precoloured. It suffices to consider
only those cliques Fi which contain all the red precoloured vertices; and to
test sets U consisting of Fi from which all the blue precoloured vertices have
been removed. If some U results in G−U being a disjoint union of cliques, we
have a unipolar partition observing the precolouring, otherwise such a unipolar
partition does not exist.

We remark that unipolar graphs can be recognized in polynomial time even
for general graphs [17], and that unipolar chordal graphs can in fact be charac-
terized by a single forbidden induced subgraph, namely 2P3 [8]. By contrast, it
follows from [7] that recognizing monopolar graphs in general is NP-complete.

In the next section, we shall focus on monopolar partitions in chordal graphs.
For now, we take up an important special class of monopolar partitions, which
will play a role in Section 5. A singly monopolar partition of a chordal graph
G is a monopolar partition of G in which each blue clique Ci has at most one
red neighbour. (A red neighbour of Ci is a red vertex adjacent to at least one
vertex of Ci.) A chordal graph that admits a singly monopolar partition is
called singly monopolar.

It follows that in any singly monopolar partition of a chordal graph G, each
connected component has at most one red vertex; and if a component K has
a red vertex v, then K − v is a disjoint union of cliques.

For a connected graph H , we denote by VH the set of all vertices u such that
H − u is a disjoint union of cliques. Of course, the set VH may be empty.

Proposition 2 (Single monopolarity of chordal graphs) A chordal
graph G is singly monopolar if and only if each component K of G has VK 6= ∅.
All singly monopolar partitions of G are obtained by choosing one vertex of
each VK to be coloured red, except for the components K that are cliques, where
we may choose to colour no vertex red. 2

We note that the resulting algorithm can also be easily adapted to allow for
precoloured vertices.

There are only a few possible ways a connected graph H can have non-empty
VH . Specifically, if H − u is P3-free, then either H is P3-free and hence H is
a complete graph, VH = V (H), and each H − u has just one component; or
there is an induced P3 in H and hence VH can have at most three vertices. (A
similar argument deals with removing vertices u so that H − u is F -free for
any fixed F .)

5



3 Monopolar Chordal Graphs

The most interesting special case is that of monopolar chordal graphs. Since
the disjoint union of two monopolar graphs is again monopolar, we shall focus
on connected graphs. For 2-connected graphs we have the following observa-
tion.

Proposition 3 A 2-connected graph G is both chordal and monopolar if and
only if it is a split graph.

Proof. Clearly if G is a split graph, it is also monopolar and chordal. Con-
versely, if G is a 2-connected chordal graph, and X a stable set such that G−X
is a disjoint union of cliques C1, C2, . . . , Ck, then we must have k = 1, or else
X would contain a minimal cutset of G which is not a clique (impossible in
chordal graphs), or has one vertex (impossible in 2-connected graphs). Thus
G is a split graph. 2

For connected chordal graphs that contain cutpoints, we shall analyze the
structure of their blocks. It is easy to see that a non-trivial block must have
each vertex in a triangle. Thus we obtain the following frequently used obser-
vation.

Proposition 4 In any monopolar partition of a non-trivial block of a chordal
graph, each vertex has a blue neighbour. 2

The structure of the blocks will be analyzed using a variant of the block-
cutpoint tree T (G) of G [18]. We augment the set of real cutpoints (which are
as usual the vertices whose removal disconnects the graph), by adding artificial
cutpoints, namely, those vertices belonging to trivial blocks which are not real
cutpoints. (See Figure 2 and the accompanying text for an example.) We shall
use the term cutpoint to mean either a real cutpoint or an artificial cutpoint.
The nodes of the block-cutpoint tree T (G) are all blocks and all cutpoints of
G. In T (G) we have the following edges: a cutpoint is adjacent to all blocks
to which it belongs. The tree T (G) is considered rooted at a fixed cutpoint
root; we write p(v) for the parent of node v, write ch(v) for the set of vertices
w such that p(w) = v (the children of v), write gc(v) for the set of vertices
w such that p(p(w)) = v (the grandchildren of v), and write tg(v) for the set
of all w ∈ gc(v) such that p(w) is a trivial block (the trivial grandchildren).
We call w ∈ ch(v) trivial child (respectively non-trivial child) of v if w is a
trivial (respectively non-trivial) block. Note that the leaves of T (G) are either
(artificial) cutpoints or non-trivial blocks.

Instead of just finding one monopolar partition of G, we shall compute a
structure that contains all such partitions. A multicolouring ℓ of G is a mapping

6



which assigns to each vertex of G a set of colours ℓ(v) ⊆ {r, b} (recall that r
stands for red, b for blue), called the list of v. For two multicolourings ℓ, ℓ′ of
G, we shall write ℓ 4 ℓ′ if ℓ(v) ⊆ ℓ′(v) for each v ∈ V (G). If ℓ(v) contains a
single colour for each v ∈ V (G), then ℓ assigns to each vertex a single colour
(red or blue), and we view it as a colouring, or partition, of G. If a colouring
(partition) ℓ satisfies ℓ 4 ℓ′, we say that ℓ is contained in ℓ′, and ℓ′ contains
ℓ. (Note that ℓ is obtained by choosing one colour from each list ℓ′(v).) A
multicolouring of G is a monopolar multicolouring if it contains a monopolar
partition of G. We shall usually write r for the singleton set {r} and b for the
singleton set {b}. Note that the trivial multicolouring L with L(v) = {r, b}, for
all v ∈ V (G), is the largest element of the partial order 4. To decide if G has a
monopolar partition, we only need to decide whether the trivial multicolouring
L is monopolar. In the algorithm below, we may start with this multicolouring
ℓ0 = L, or we may start with a more restrictive multicolouring ℓ0, if certain
vertices have been already precoloured.

We shall compute a final multicolouring which contains all possible monopolar
partitions of G contained in the initial multicolouring ℓ0. We shall construct
the lists in a bottom-up fashion in the block-cutpoint tree T (G). We shall
focus the computation on the nodes of T (G) which are cutpoints of G, and so
proceed from a vertex to its grandparent. At any time in the computation, S
will denote the set of already processed vertices.

It is important to remember, when reading the rest of this section, that a
partition assigns to each vertex a single colour, and a multicolouring assigns
to each vertex a set (list) of colours.

Recognizing Monopolar Multicolourings

Input: A chordal graph G with a multicolouring ℓ0.
Task: Decide if ℓ0 is a monopolar multicolouring

Action: Obtain the block-cutpoint tree T of G. Denote by C its set
of cutpoints, and root T at some fixed root ∈ C. If some block is not
a split graph, then ℓ0 is not a monopolar multicolouring. Otherwise,
starting with the initial multicolouring ℓ ← ℓ0, and the initial set
S ← ∅ (of already processed cutpoints), modify the current ℓ and S
as follows.
As long as S 6= C, pick a vertex v ∈ C \ S such that gc(v) ⊆ S, add v
to S, and process its list ℓ(v) by performing the following two steps.

• Apply the Rules 1 - 8, and
• apply the Block Rule.

If the final multicolouring ℓ∗ ← ℓ has some list ℓ∗(v) empty, then ℓ0 is
not a monopolar multicolouring of G; otherwise it is.

7



Recall that C includes the artificial cutpoints (as defined earlier). Note that
the condition gc(v) ⊆ S is vacuously satisfied for the artificial cutpoints of T ,
so they can be added to S at any time.

We first explain the Rules. Recall that v is a cutpoint of G whose grandchildren
(if any) have all been already processed. The role of the Rules is to (possibly)
reduce the lists ℓ(v), eliminating colours that we know can no longer be used.
They are depicted in Figure 1, in left to right order. We use ⊠ to denote trivial
blocks, 2 for non-trivial blocks, and ◦ for cutpoints.

Rule 1 If some trivial grandchild w of v has ℓ(w) = r, then remove r from
ℓ(v).

Rule 2 If some trivial grandchild w of v, and some trivial grandchild w′ of w,
have ℓ(w) = ℓ(w′) = b, then remove b from ℓ(v).

Rule 3 If some trivial grandchildren w, w′ of v have ℓ(w) = ℓ(w′) = b, then
remove b from ℓ(v).

Rule 4 If some trivial grandchild w of v has ℓ(w) = b and v also has a child
that is a non-trivial block, then remove b from ℓ(v).

Rule 5 If v has two children that are non-trivial blocks, then remove b from
ℓ(v).

Rule 6 If both the parent of v and some child of v are non-trivial blocks, then
remove b from ℓ(v).

Rule 7 If some trivial grandchild w of v has ℓ(w) = b, and w has a child that
is a non-trivial block, then remove b from ℓ(v).

Rule 8 If some trivial grandchild w of v has ℓ(w) = b, and the parent of v is
a non-trivial block, then remove b from ℓ(v).

The Block Rule For each non-trivial block H ∈ ch(v), remove from the
current list ℓ(v) each colour (r, b) which cannot be the colour of v in a split
partition of H contained in ℓ.

These Rules are easy to implement directly. The Block Rule requires us to test
whether a graph with some vertices precoloured r or b admits a split partition;
an algorithm for this can be found in [11], cf. [10].

Rules 1 - 8 are justified by the observation that we only remove a colour
from ℓ(v) when no monopolar partition contained in ℓ can select it from ℓ(v),
because the vertices labeled r must be P2-free, and the vertices labeled b must
be P3-free - for Rules 4 - 8, see Proposition 4.

8



•

⊠

(−r)
v

r

•

⊠

⊠

(−b)
v

b

b

⊠

•

⊠

(−b)
v

bb

•

⊠

(−b)
v

b

• (−b)
v • (−b)

v •

⊠

(−b)
v

b

•

⊠

(−b)
v

b

Fig. 1. Rules 1 - 8

We have illustrated an example application of the rules in Figure 2. On the
left is the chordal graph to be tested for monopolarity; note that it has one
vertex precoloured r. In the middle is its block-cutpoint tree; note that the top
vertex is in fact an artificial cutpoint. Since the precoloured vertex is inside a
block it is not visible in the block-cutpoint tree. Nevertheless when the Block
Rule is applied, it forces the colour of the (unique) cutpoint of that block to
be b. Further applications of Rules 7, 1, 5, 1, and 2, in that order, result in
the colouring on the right.

r ⇒

⊠

⊠

⊠

⊠

⊠
⇒

⊠

⊠

⊠

⊠

⊠

b

r

b

b

r

r

Fig. 2. An illustration of the monopolarity recognition algorithm

Next we show that any monopolar partition of G contained in ℓ0 is also con-
tained in ℓ∗. Applying this to the trivial multicolouring ℓ0 in which all lists
ℓ0(v) = {r, b}, we obtain a multicolouring ℓ∗ which contains all monopolar
partitions of G.

Thus let ℓ0 denote the input multicolouring of G, let ℓ denote the changing
multicolouring during the execution of the algorithm, and let ℓ∗ denote the
final multicolouring produced by the algorithm. The correctness of the algo-
rithm is justified by the following fact.

Proposition 5 The final multicolouring ℓ∗ contains every monopolar parti-
tion contained in ℓ0.

9



Proof. We shall prove by induction on number of iterations of the algorithm,
that this remains true for the changing multicolouring ℓ. It is clearly true for
ℓ = ℓ0, so we assume that this is so for the current ℓ, and perform one iteration
of the algorithm. The statement remains valid after the vertex v is processed,
since Rules 1 - 8, as well as the Block Rule are used to eliminate only those
colours that could never be used in a monopolar partition. 2

In particular, we obtain

Corollary 6 If some vertex v of G has ℓ∗(v) = ∅, then the multicolouring ℓ0

is not monopolar; in particular if this happens when ℓ0 = L, then G is not a
monopolar graph. 2

We shall also use the following fact about the monopolar recognition algo-
rithm.

Proposition 7 Suppose the execution of the monopolar recognition algorithm
has just processed a vertex v, without creating an empty list ℓ(x) for any pro-
cessed vertex x. Then we have

• if r ∈ ℓ(v) then b ∈ ℓ(w) for all w ∈ tg(v),
• if b ∈ ℓ(v) then r ∈ ℓ(w) for all w ∈ tg(v) except possibly one w = w0, and

if w0 is such an exception, then
· ℓ(w0) = {b}
· r ∈ ℓ(w′) for all w′ ∈ tg(w0),
· both v and w0 have only trivial blocks as children, and
· if v 6= root, then p(v) is a trivial block.

Proof. Suppose first that r ∈ ℓ(v) but b 6∈ ℓ(w) for some w ∈ tg(v). Then
ℓ(w) = {r} since otherwise ℓ(w) = ∅ and algorithm would stop at w never
reaching v. Therefore r was eliminated from the list of v during its processing
(using the rule 1), which leads to a contradiction.

Similarly suppose that b ∈ ℓ(v) but r 6∈ ℓ(w0) for some w0 ∈ tg(v). Then
ℓ(w0) = {b} and it follows from the rules 4, 7 and 8 that neither v nor w0

have any non-trivial children or parents. Moreover observing the rules 2 and
3, we can also conclude that neither v nor w0 have any trivial children with
lists {b} other than w0. Therefore it follows that r ∈ ℓ(w′) for all w′ ∈ tg(v)
different from w0 and also r ∈ ℓ(w′′) for all w′′ ∈ tg(w0). (Note that the lists
of all these nodes must be non-empty since they were already processed.) 2

In order to use the recognition algorithm for finding monopolar partitions, it
remains to explain how to find a monopolar partition contained in ℓ∗, provided
all lists are non-empty. We use a top-down procedure in which we reduce the
lists ℓ∗(v) to single element lists ℓ1(v), starting from the root and proceeding
down in the tree.

10



Extracting a Monopolar Partition

Input: A chordal graph G with a monopolar multicolouring ℓ∗.
Task: Construct a monopolar partition ℓ1 contained in ℓ∗

Action: Starting with the initial multicolouring ℓ ← ℓ∗, process ver-
tices from the top down: if all ancestors of v have already been pro-
cessed, then process v as follows.
• If ℓ(v) = r, then set ℓ(w)← b for all trivial grandchildren w of v.
• If ℓ(v) = b, then set ℓ(w) ← r for all trivial grandchildren w of

v which have r ∈ ℓ(w). If there is a trivial grandchild w0 with
r /∈ ℓ(w0) then set ℓ(w0) ← b and set ℓ(w′) ← r for all trivial
grandchildren w′ of w0; also, mark w0 as processed.
• If ℓ(v) = {r, b}, then set ℓ(v) to either r or b and apply the corre-

sponding step above.
• For each non-trivial child of v, i.e., a non-trivial block H , apply a

split partition algorithm on H with respect to the precolouring ℓ,
to set the ℓ(w) for all children w of H .

After all vertices have been processed, set the final multicolouring
ℓ1 ← ℓ.

The fact that the colours assigned are always available, as well as the fact that
the exceptional grandchild w0 is unique and has no non-trivial children, follow
from Proposition 7. The correctness is justified by the following invariant being
maintained by the algorithm.

Proposition 8 Let v be the next vertex to be processed in the extraction al-
gorithm. Then ℓ(v′) has exactly one colour, for all ancestors v′ of v, and if v
has a trivial parent, then ℓ(v) 6= ℓ(z) where z is the grandparent of v. 2

The invariant allows us to treat the subtree (of the block-cutpoints tree T )
rooted at v independently of the remainder of T . It is now easy to see that the
operation of the algorithm ensures that the following Corollary is true. (Note
that the last bullet of the algorithm is justified by Rules 5 and 6, which allow
us to deal with non-trivial children of v independently.)

Corollary 9 The partition ℓ1 extracted from ℓ∗ by the algorithm is monopo-
lar. 2

Thus we have obtained the following result.

Theorem 10 (Monopolar chordal graphs) There is a linear time algo-
rithm to decide if a chordal graph is monopolar, and to find a monopolar
partition if one exists.

11



Proof. Split graphs can be recognized in linear time [9], even if some ver-
tices are precoloured [11]. The block-cutpoint tree can also be constructed in
linear time using [14]. Finally, each of the Rules 1 - 8 can be implemented
in O(deg(v)) steps, and the list of every vertex is accessed only a constant
number of times during the execution of the algorithm. 2

4 Forbidden Subgraphs

In the case of cographs, it has been shown in [2] that polarity can be character-
ized by the absence of a finite set of forbidden induced subgraphs. By contrast,
for chordal graphs, there are infinitely many minimal non-polar graphs. For
instance it is easy to check (directly or by executing our algorithms) that any
of the chordal graphs depicted in Figure 3 is minimal non-polar; it is also
minimal non-monopolar. Interestingly, it can be shown [13] that all chordal
minimal non-monopolar graphs can be generated by a simple recursive proce-
dure (which unwinds the operation of the monopolarity recognition algorithm
in case it rejects ℓ0). This turns out to be a particular example of the so-called
hyperedge replacement grammars [12]. The grammar Γ constructs a tree-like
structure (with at most three branches at any node) consisting of very simple
blocks (with at most six vertices each). Figure 3 suggests the idea of a repeti-
tion of simple substitutions; a more elaborate example of a graph generated by
the grammar is given in Figure 4. The grammar Γ will be described in detail
in [13]. (We remark that this grammar, in fact, generates also all precoloured
forbidden subgraphs for monopolarity of chordal graphs.)

. . .

Fig. 3. An infinite family of chordal minimal non-polar graphs

Fig. 4. An example chordal graph generated by the grammar Γ

Surprizingly, for 2-connected chordal graphs, there is a finite forbidden sub-
graph characterization of monopolarity.

12



Proposition 11 A 2-connected chordal graph G is monopolar if and only if it
does not contain any of the four forbidden induced subgraphs, given in Figure 5.

Proof. Clearly, the examples are 2-connected chordal graphs that are min-
imal non-monopolar. Conversely, by Proposition 3, it suffices to consider a
2-connected chordal graph G which is not a split graph. Hence G contains
four vertices inducing a disjoint union of edges xx′, yy′. (The other forbidden
induced subgraphs for split graphs, not possible for chordal graphs, are cycles
of length four and five [9].) By a simple application of Menger’s theorem, we
conclude that there exist disjoint paths P, P ′ from x to y and from x′ to y′.
(Add a vertex x∗ adjacent to x, x′ and a vertex y∗ adjacent to y, y′ and apply
Menger’s theorem to x∗, y∗.) This means we have a cycle xx′, P ′, y′y, P . It can
now easily be shown that chordality implies the cycle must contain a six-cycle
and hence one of the configurations listed in Figure 5. 2

Fig. 5. All 2-connected minimal non-monopolar chordal graphs

We note that the grammar Γ allows the monopolarity recognition algorithm to
be cast as a certifying algorithm - if the algorithm rejects ℓ0, it generates a min-
imal non-monopolar subgraph. This could be one of the blocks in Figure 5, or
a subgraph generated by the grammar (such as the one illustrated in Figures 3
or 4).

5 Polar Chordal Graphs

We are now ready to bring together the various pieces, and describe our poly-
nomial time algorithm to test for polarity of chordal graphs.

Let M be a clique of a chordal graph G. We shall say that M is good if there
exists a polar partition of G (with red independent set A, red clique B, and
blue cliques C1, C2, . . . , Ck), in which B = M . (Note that if M is a good clique,
then G−M is monopolar.) We shall say that M is nice if some polar partition
of G (with sets A, B, C1, . . . , Ck as above) has M = B ∪T where T ⊆ C1, and
if G−M is singly monopolar. Note that in both cases A ∩M = ∅.

A clique M is almost good if it is good or if M \ {a} is good for some a ∈M .
A clique M is almost nice if it is nice or if M \ {a} is nice for some a ∈M .

It turns out that if a graph G is polar, there must be an almost good or an
almost nice clique that is easy to find.

13



Proposition 12 (Polarity of chordal graphs) Let G be a polar chordal
graph which is not monopolar and not unipolar. Then at least one of the fol-
lowing must occur:

(1) G contains two non-adjacent vertices u, v such that N(u) ∩ N(v) is an
almost good clique, or

(2) G contains a maximal clique that is almost nice.

Proof. First we observe that the chordality of G implies that N(u) ∩ N(v)
is always a clique. Thus suppose none of these cliques, over all pairs of ver-
tices u, v is almost good, and consider a polar partition of G with the parts
A, B, C1, . . . , Ck. Let T be the set of all vertices of C1, . . . , Ck that are adja-
cent to each vertex of B. Since G is not unipolar, the set A has at least two
vertices, and any two vertices u, v of A must have a common blue neighbour t,
otherwise N(u)∩N(v) = B. We now observe that t is adjacent to every vertex
w in B, else we would have the induced four-cycle u, t, v, w without chords. In
other words, t ∈ T , and the set T must be non-empty.

We now observe that any two vertices u, v of T are adjacent. Otherwise, the
set N = N(u)∩N(v) would be a clique, as noted above. Moreover u, v would
not be in the same blue clique Ci, and so the clique N would consist of red
vertices of G. Since A is an independent set, this would mean that either N
or some N \ {a}, a ∈ A, would be equal to B, i.e., that N is almost good.
Therefore T is included in some blue clique, without loss of generality, the
clique C1. From the definitions, we have M = T ∪ B, a clique which contains
B. We now claim that M is a nice clique, i.e., that G−M is singly monopolar.

If a component K of G−M contained two distinct red vertices, then let u and
v be two nearest such vertices. Note that u, v must be in A, hence they are not
adjacent. Since K is connected, there is in K a shortest path P from u to v (of
length at least two); it follows from the choice of u, v that P −{u, v} contains
only blue vertices. We may also assume that B is not empty, since otherwise
G would be monopolar. Then consider the cycle wPw for any w ∈ B. (Since
u, v are in A, they must be adjacent to w). Since G is chordal and P is a
shortest path, w must be adjacent to all vertices of P . It now follows that
each vertex of P −{u, v} is adjacent to all vertices w of B, and hence belongs
to T , contradicting the fact that it is in G−M . Thus every component K has
at most one red vertex. Therefore, every blue clique is adjacent to at most one
red vertex.

It remains to observe that M is either a maximal clique of G, or becomes a
maximal clique of G by the addition of a single vertex of A. Thus M ∪ {a} is
almost nice. 2

We next describe how to test whether a clique B is good.

14



Proposition 13 (Good Clique) Suppose B is a clique in a chordal graph
G. Precolour all vertices v in G−B not completely joined to B by blue. Then
B is good if and only if this precolouring can be extended to a monopolar
partition of G− B. 2

Since our algorithm for monopolarity of chordal graphs allows precoloured
vertices, it can be used for this purpose.

In the remainder of this section we describe how to test whether a clique M is
nice, assuming we have a chordal graph G that is not monopolar, not unipolar,
and has no non-adjacent vertices u, v for which N(u)∩N(v) is an almost good
clique. Recall that we already have an algorithm to test whether G −M is
singly monopolar; if it is not, then M is not a nice clique. Otherwise, we can
proceed to colour the vertices of G red and blue, seeking a polar partition
of G in which M = B ∪ T where T ⊆ C1. We can take advantage of some
additional information: the set A must have more than one vertex (since G is
not unipolar), and any two vertices of A must have a common blue neighbour
(else their common neighbourhood would have been the good clique B). This
common blue neighbour must be in M , hence T = M \B must be non-empty.

Let K1, K2, . . . , Kh be the components of G−M . Recall that testing if G−M
is singly monopolar involves checking that each set VKi

is non-empty. (Recall
that VKi

consists of all vertices x for which Ki − x is a union of cliques.) At
most one of these vertices may be placed in the red independent set A, while
all the remaining vertices of Ki are placed in the blue cliques Cj. If Ki is a
clique, then of course VKi

= V (Ki) and any vertex can be coloured red; in this
case it is also possible to colour all vertices of Ki blue, i.e., the entire Ki is a
blue clique.

It seems harder to identify the clique C1. We can, however, try all the following
possibilities for C = C1 − T :

(1) C = ∅,
(2) C = Ki for some i = 1, 2 . . . , h,
(3) C is a component (clique) of Ki − a, for some i = 1, 2, . . . , h, and some

vertex a ∈ VKi
.

In case 1, no component Ki is chosen; in all other cases we call the chosen
component Ki the exceptional component, and the other components Kj , j 6= i
non-exceptional.

For each such possible scenario we colour G as follows.

In cases 2 and 3, the exceptional component is coloured by blue in case 2, and
coloured by blue except for a, which is coloured red, in case 3. In these cases,
we moreover colour all vertices of M non-adjacent to some vertex of C red.

15



To colour the non-exceptional components we consider the following line of
thought, relative to a fixed polar partition of G. If a non-exceptional compo-
nent K contains a (unique) red vertex, we shall denote it by vK . Then vK is
adjacent to all vertices of B, while the other vertices of K are not adjacent to
any vertex of M \B. In fact, no vertex x of K other than vK can be adjacent to
all vertices of B. Otherwise, consider any vertex y in T : since x and y belong
to different blue cliques, they must be non-adjacent, and N(x) ∩ N(y) must
contain only red vertices. It now follows that N(x) ∩N(y) is an almost good
clique, which we assumed was not the case. In other words, the neighbourhood
of vK in M strictly contains the neighbourhood of any other vertex x of K in
M . We shall call vK the maximum vertex of K.

Consider first a non-exceptional component K which is not a clique. We colour
the maximum vertex vK red, and all other vertices of K blue. If K is a clique,
we only colour the vertices v other than vK blue, leaving the colour of vK to
be decided below.

At this point we shall propagate the colours as follows.

• Propagation Rule 1. If v ∈ Kj is red, then all its non-neighbours in M
are blue.
• Propagation Rule 2. If u ∈ M is blue, then all its neighbours in any

non-exceptional component Kj are red.

If a vertex receives both red and blue colours by these rules, then we declare
M not nice. Otherwise, we set A to consist of all red vertices not in M , then
colour all uncoloured vertices of M red, setting B to consist of all red vertices
in M , and colour all remaining vertices not in M blue. It is now clear that A
is an independent set and B is a clique, and that each vertex of A is adjacent
to each vertex of B, by Propagation Rule 1. Moreover, (G−A)−B is a union
of cliques, by Propagation Rule 2 and the colouring of non-neighbours of C in
M .

Proposition 14 (Nice Clique) Suppose M is a clique in a chordal graph
G. Then M is nice if and only if one of the above scenarios yields a polar
partition. 2

16



The final algorithm for polarity of chordal graphs is summarized below.

Recognizing Polarity

Input: A chordal graph G
Task: Decide if G is polar

Action:
(1) Test if G is unipolar.
(2) Test if G is monopolar.
(3) Test, for any non-adjacent vertices u and v, whether N(u)∩N(v)

is an almost good clique.
(4) Test, for any maximal clique M , whether M is an almost nice

clique.
If any test succeeds, G is polar; otherwise it is not polar.

The correctness of the above polarity recognition algorithm follows from Propo-
sition 12. We now analyze its complexity. For simplicity we express everything
in terms of just the number n of vertices. Our unipolarity recognition algorithm
implicit in Proposition 1 yields complexity O(n3) for step 1. Our monopolarity
recognition algorithm for step 2 has complexity O(n2) (see Theorem 10). In
step 3, we test n2 times a set for being an almost good clique, each consisting of
O(n) tests for being a good clique. According to Proposition 13 this amounts
to testing monopolarity; in all, for step 3 we need at most time O(n2×n×n2).
In step 4 we test at most n sets for being an almost nice clique, each consisting
of O(n) tests for being a nice clique. This test for a nice clique is described in
detail above Proposition 14, and summarized below. It can be seen that this
takes at most time O(n3) since there are only O(n) possible choices for the
clique C (either there are at most three vertices a in VKi

or Ki − a has only
one component). Also we note that computing the sets VKi

in time O(n3) is
straightforward.

Hence one can implement the above algorithm in time O(n5). We have not
attempted to make a more careful analysis, nor to improve the efficiency of the
algorithm or its implementation. (For an improved version of this algorithm
with a slightly better time complexity we refer the reader to [13].)

Theorem 15 There is a polynomial time algorithm to test polarity of chordal
graphs. 2

As a concluding remark, we ask the following related open problem: given
a chordal graph G which is not monopolar (respectively not polar) find the
largest monopolar (respectively polar) induced subgraph of G.

17



Testing whether a Clique is Nice

Input: A clique M in a chordal graph G
Task: Decide if M is nice

Action:
• Find the components of G−M
• Compute the sets VKi

, i = 1, . . . , h
• For each choice of C (C is empty (1), or equal to some Ki (2) or a

component of some Ki − a, a ∈ VKi
(3)),

· colour a red (in case 3),
· colour blue the rest of the exceptional component (in cases 2 and

3),
· colour red the non-neighbours of any vertex of C in M ,
· colour red the maximum vertex of each non-exceptional compo-

nent K which is not a clique,
· colour blue all other vertices of each non-exceptional component

K, and
· apply Propagation Rules 1 and 2 as long as possible.

If a vertex receives both colours, M is not nice. Otherwise, colour all
uncoloured vertices in M red, and all uncoloured vertices not in M
blue.

Acknowledgements

We are thankful to two anonymous referees for their valuable suggestions that
improved the presentation. The first author was supported by Grant 200021-
101455/1 and Grant 200020-113405 of the Swiss National Science Foundation.
The second and third authors were supported by a Discovery Grant from
NSERC.

References

[1] Jason I. Brown and Derek G. Corneil, On generalized graph colorings, J. Graph
Theory 11 (1987) 87-99.

[2] T. Ekim, N.V.R. Mahadev, and D. de Werra, Polar cographs, to appear.

[3] Z.A. Chernyak and A.A. Chernyak, About recognizing (a,b)-classes of polar
graphs, Discrete Math. 62 (1986) 133-138.

[4] T. Feder, P. Hell, S. Klein, and R. Motwani, Complexity of graph partition
problems, 31st Annual ACM STOC (1999) 464–472.

18



[5] T. Feder, P. Hell, S. Klein, L.T. Nogueira, and F. Protti, List matrix partitions
of chordal graphs, Theoretical Computer Science 349 (2005) 52-66.

[6] T. Feder, P. Hell, Matrix partitions of perfect graphs, Discrete Math. 306 (2006)
2450-2460.

[7] A. Farrugia, Vertex-partitioning into fixed additive induced-hereditary properties
is NP-hard, Electronic J. Combin. 11 (2004)

[8] A.V. Gagarin, Chordal (1, β)-polar graphs, Vestsi Nats. Akad. Navuk Belarusi
Ser. Fiz.-Mat. Navuk (1999) 115-118, 143.

[9] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs,
Academic Press, New York, 1980.

[10] P. Hell and J. Nešeťril, Graphs and Homomorphisms, Oxford University
Press, 2004.

[11] P. Hell, S. Klein, L.T. Nogueira, and F. Protti, Partitioning chordal graphs into
independent sets and cliques, Discrete Applied Math. 141 (2004) 185-194.

[12] G. Rosenberg, Handbook of Graph Grammars and Computing by

Graph Transformations, Foundations World Scientific, vol. 1, 1997

[13] J. Stacho, Complexity of Generalized Colourings of Chordal Graphs, Ph.D.
Thesis, Simon Fraser University, 2008.

[14] R.E. Tarjan, Depth first search and linear graph algorithms, SIAM Journal on
Computing, 1 (1972) 146-160.

[15] R.E. Tarjan and M. Yannakakis, Simple linear time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs, SIAM J. Computing 13 (1984) 566-579.

[16] R.E. Tarjan and M.Y. Yannakakis, Addendum: simple linear-time algorithms
to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs, SIAM J. Comput. 14 (1985) 254-255.

[17] R.I. Tyshkevich and A.A. Chernyak, Algorithms for the canonical
decomposition of a graph and recognizing polarity, Izvestia Akad. Nauk BSSR,
ser. Fiz. Mat. Nauk. 6 (1985) 16-23, (in Russian).

[18] D. West, Introduction to Graph Theory, Prentice Hall, 1996.

19


