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Abstract

A graphG is amax point-tolerance (MPTgraph if each vertex of G can be mapped toointed-interval
(Iv, pv) wherely is an interval ofR and p, € I, such thatuvis an edge oG iff Iy N Iy, 2 {pu, pv}. MPT
graphs model relationships among DNA fragments in genomde-&ssociation studies as well as basic
transmission problems in telecommunications. We formaityoduce this graph class, characterize it,
study combinatorial optimization problems on it, and relatto several well known graph classes. We
characterize MPT graphs as a special case of several 2D grgomeersection graphs; namely, triangle,
rectangle, L-shape, and line segment intersection grayMesfurther characterize MPT as having certain
linear orders on their vertex set. Our last characterinaiothat MPT graphs are precisely obtained by
intersecting special pairs of interval graphs. We also stimt, on MPT graphs, the maximum weight
independent set problem can be solved in polynomial timectioring problem is NP-complete, and the
clique cover problem has a 2-approximation. Finally, we destrate several connections to known graph
classes; e.g., MPT graphs strictly contain interval gragois outerplanar graphs, but are incomparable to
permutation, chordal, and planar graphs.

Keywords: tolerance graphs, interval graphs, L-graphs, rectanggeseaction graphs, outerplanar graphs,
weighted independent set, coloring, clique cover.

1. Introduction

Interval graphs (namely, the intersection graphs of intervals ome) lare well-studied in computer
science and discrete mathematics (see e.g.,[14, 17]). Mampinatorial problems which are NP-hard
in general can be solvedtiently when restricted to interval graphs. For example,tfaximum clique
problem [17], the maximum weight independent set proble®j, [And the coloring problem [21] can all be
solved in linear time on interval graphs. The recognitioobbem is also solvable in linear time [2].

Due to their theoretical and practical significance manyegalizations of interval graphs have been
studied (see e.g.,[1, 8, 20, 22]). Particularly relevarthte work aretolerance graphsfirst introduced in
[22]. A graph is aolerancegraph (also known asmin tolerancegraph) when every vertexof G can be
associated with an intervd)} (of the real number lineR) and a tolerance valug € R such thatuv is an
edge ofG iff I, N Iy| = min{t,, t,}. Similarly, a graph is anax toleranceggraph when each vertaxof G can
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be associated with an intervgland tolerancé, such thauv € E(G) iff |1, N Iy| = maxt,, t,}. For a detailed
study of tolerance graphs see [23].

In this paper we introduce the classméx point-tolerance (MPTgraphs. A graplit is an MPT graph
when each vertex of G can be represented by an interli@bf R together with a poinp, € |, such that
two verticesuy, v are adjacentfi both p, and p, belong tol, N |; i.e., each pair of intervals can “tolerate” a
non-empty intersection (without forming an edge) as longtdesast one distinguished point is not contained
in this intersection. We call such a collectif(ty, py)}vev(c) of pointed intervals an MPT representation of
G. Moreover, we also denote eadh, {o,) by a triplet &, py, &) wheres, ande, denote the start and end of
Iy respectively.

MPT graphs have a number of practical applications. Theybeamsed to detect loss of heterozygosity
events in the human genome; see e.g., [24, 50]. In such apiphs an interval represents the maximal
boundary on a chromosome region from an individual that naagy@ deletion and the poitrepresents a
site in the considered region that shows evidence for aideledVIPT graphs also model telecommunication
networks; e.g., communication devices such that each elegteives messages on a particular bandwidth
(interval) and sends messages in a sub-band (point) of #ratviidth. In this situation the edges of the
MPT graph correspond to devices with direct two-way comrcation.

Some classical optimization problems on MPT graphs coore$po practical problems. For example,
when modeling genome-wide association studies, findingclitemosomal region showing the highest
evidence for a massive loss of heterozygosity in a populaifandividuals involves solving the maximum
clique problem and partitioning all evidence-of-deletsites into the minimal number of deletions involves
solving the minimum clique cover problem [3]. Similarly, telecommunications, a minimum clique cover
corresponds to partitioning the devices into a minimumemibn of sets of fully-communicable devices
and a maximum independent set is a largest set of non-concahlaidevices.

Interestingly, the maximum weight clique problem on a MP&mr was shown to be polynomially
solvable due to the fact that an MPT graph can have at @@#) maximal cliques [3]. Additionally, the
minimum weight clique cover problem was shown to be NP-cetegor submodular cost functions [3, 10].
The complexity of the unweighted clique cover problem on Mffdphs remains unresolved.

Finally, closely related to MPT graphs is the claséntérval catch digraphsA digraphD is aninterval
catch digraphwhen each vertexof D can be mapped to an inteniglof R together with a poinp, € |, such
thatuvis an arc oD iff p, € I,. Notice that MPT graphs are precisely the underlying urntiée graphs of
the symmetric edges of interval catch digraphs. Intervedhrcdigraphs have a vertex order characterization
[36], an asteroidal-triple characterization [40], and &pomial time recognition algorithm [41]. However,
these results do not translate to MPT graphs.

Our Contributions: We provide characterizations of MPT graphs, utilize thdsa&racterizations for
combinatorial optimization problems, and relate MPT gsafzhwell-known graph classes.

In section 2 we characterize MPT graphs as a special cdsg@@phs(intersection graphs of L-shapes
in the plane). This will imply that MPT is also a subclass aftamgle intersection graphs (also known as
boxicity-2 graphs [43]) and of triangle intersection graphVe also use this characterization to show that
interval graphs and 2D ray graphs are strict subclasses afdvi@phs. We further characterize MPT graphs
by certain linear vertex orders. In particular, we show tngraphG = (V, E) is MPT iff the vertices ofs
can be linearly ordered by so that no quadruple, v, w, x € V with u < v < w < x has the edgesw andvx
without the edgerw. Related to this ordering condition, we also describe MRaphs as the intersection of
two special interval graphs (see Theorem 5.5). Finally, MRaphs are characterized as intersection graphs
of certain line segments from cyclic line arrangements.

These characterizations are then used to study combialatgiimization problems on MPT graphs.
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Namely, we demonstrate that theeighted independent set (WI@pblem can be solved in polynomial
time, the clique cover problem can be 2-approximated inmuntyial time, and that theoloring problem is
NP-complete but can be lagfapproximated in polynomial time. As part of the approxiioas, we show
that the cligue cover numbe(G) is at most twice the independence numbég) and that the chromatic
numbery(G) is at mosiO(w log(w)) wherew is the clique numbér

Finally, we observe some structural results and compare gaphs to several well-known graph
classes. For example, we observe that outerplanar grapipsarer subclass of MPT graphs and character-
ize them by a “contact” MPT representation. We additionalhgerve infinite families of forbidden induced
subgraphs for MPT graphs which are constructed from namniat and non-outerplanar graphs.

Related Work: While our results have been obtained independently, thereseveral places which
overlap with some existing papers [35, 48, 49]. We will idigneach of these as they are presented. Some
of our results also appear in the Masters Thesis of our doeadthomas Hixon [25].

Preliminaries: All graphs considered in this paper are simple, undirecded, loopless (unless other-
wise stated). For a grapgh with vertex setV and edge sdE, we use the following notation. The symbols
n andm denoteV| and|E| respectively. For a subs8tof V, G[S] denotes the subgraph &finduced byS
andG \ S denotes the subgraph &finduced by \ S; i.e.,,G\ S = G[V \ S]. For a vertexv € V, N(v)
denotes the neighborhood wfi.e., the vertices it which are adjacent tg).

2. Geometric representations of MPT graphs

In this section we relate MPT graphs to geometric intersactjraphs. Specifically, we characterize
MPT graphs as intersection graphs of axis-aligned L-sheypese corner points form a line with negative
slope (namelylinear L-graphsas defined below). Once we formalize this it will be easy totbe¢ this
implies that MPT graphs are a special subclass of boxiciyaphs and triangle intersection graphs. This
equivalence is also observed in [48]. Later in this paper seethese characterizations to study combinato-
rial optimization problems on MPT graphs and to relate MPapdss to classical graph classes.

An L-shapeconsists of a vertical line segment and a horizontal linerssg with acornerthat is the
lowest point of the vertical segment and the left-most poirthe horizontal segment. We defindirzear
L-system/ to be a collection of L-shaped {, ..., Lp} in the plane such that the corner pointslaf, ...,

L, are distinct and form a line with negative slope. We say thgta@hG is alinear L-graphif G is the
intersection graph of a linear L-systehand we refer taf as a linear L-systernf G. We definelinear
rectangle graphsndlinear right-triangle graphssimilarly (i.e., with the lower-left corners of the shapes
forming a line with negative slope; note: we always consttierlower-left corner of each triangle to be the
right angle). In particular, it is easy to see that theseetigraph classes are the same; e.g., as in Figure 2.

Without loss of generality we assume that the corner pomtlilinear systems have the form £c)
for some positive integer. This allows us to specify each L-shapen a linear L-system byt(,c,r)
where: -t is the y-coordinate of the top af, (c_, —c_) is the corner point of, andr is the x-coordinate
of the right-most point of.. Such an L-shape is given in Figure 1.

Theorem 2.1. Max point-tolerance graphs are precisely linear L-graphs.

Proor. Let{(s1, p1,€1),--.,(S, Pn, €n)} be a MPT representation of a graghConsider the linear L-system
L ={L1,..., Ly} wheret, = —-s, ¢, = p;, andr, = &. The theorem follows from the depiction of this
construction given in Figure 3 O

1The bound on(G) follows from [4] and one of our characterizations.
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Figure 1: Anatomy of an L-shape in a linear L-system. Noti tve include a “platform” corresponding to the like-y = 0 to
emphasize the linearity of the system.
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Figure 2: (from left-to-right) The neB, a linear L-systeny of G, the linear rectangle-system corresponding’t@nd the linear
right-triangle-system corresponding fh

3. L-systems of Interval Graphs

In this section we connect interval graphs with MPT graph® d&' this by demonstrating that every
interval representation of a graph is equivalent toaachoredlinear L-system (see Definition 3.1 and
Lemma 3.2). Interval graphs have also been shown to be aassbof MPT graphs in [48]. In fact, they
show that rooted path graphs (a superclass of interval gjagle indeed a subclass of MPT graphs, but
they do not observe our characterization. We later use ligisacterization in our 2-approximation of clique
cover and to identify an infinite family of non-MPT graphs.

Definition 3.1. A linear L-system/ is anchoredif there existsA € R such thatt, < A < c_ for every
L € £. Note: we say that is anchoredat A and refer toA as theanchor pointof L.

Lemma 3.2. G = (V, E) is an interval graph G has an anchored linear L-system.

Proor. (=) Let7 = {l4,...,In} be an interval representation Gfwheres;, ande;; denote the starting and
ending points of the intervdl (respectively) for each € {1,...,n}. Furthermore, (wlog) assums > 0
ands;, < g, iff i < j. Consider the linear L-systetff = {Ly,...,Ln} such that; = (0,s;,&,); i.e., Lis
anchored at 0. Notice that, when two intervald; (1 < i < j < n) intersect, the corresponding L-shapes
Li, Lj will also intersect. Specifically, the horizontal segmehLowill intersect the vertical segment &f
(see Figure 4 (left)). Moreover, when two intervals areadigjthe corresponding L-shapes will be disjoint
since their horizontal segments will not have any commonoedinates (see Figure 4 (right)).

(&) Let £ = {L4,...,Ls} be an anchored linear L-system@f Consider the interval representation
I ={l1,...,1n} such that; = (c.,, r.,). The equivalence aof and.£ follows similarly to ). O

Corollary 3.3. Interval graphs are a strict subclass of MPT graphs.

Proor. This follows from Lemma 3.2 and the fact that a the graph guFe 2 is an MPT graph but not an
interval graph [34]. O
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Figure 3: lllustrating the equivalence between MPT reprgt®ns and linear L-systems. From left-to-right: theHage corre-
sponding to a pointed-interval, two examples of non-adjaeertices as pointed-intervals and the correspondirgalihs, and one
example of adjacent vertices as pointed-intervals anddiresponding linear Ls.
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Figure 4: lllustrating the mapping between intervals anddcsdjacent vertices (left) and non-adjacent verticeghf)i

4. Combinatorial Optimization Problems

In this section we will discuss the weighted independenf\#§) problem, clique cover (CC) problem,
and the coloring problem on MPT graphs. In particular, we ghbw the WIS problem can be solved in
O(n3) time, the CC problem can be 2-approximated in quadratie,tiime coloring problem is NP-complete
but can be log{)-approximated in linear time.

Throughout this section we consider an MPT gré&ph= (V, E) together with a linear L-systef =
{L1,...,Ln} of Gwherei < jiff the corner point of; occurs to the left of ;. Without loss of generality
we shall assume that the corner pointLofs (i, —i) for eachi € {1,...,n}; i.e.,p; = i in the corresponding
MPT representation and = (tj,i,r;).

4.1. Maximum Weight Independent Set

The IS problem, even for the unweighted case, is known to bedfplete for: L-graphs, boxicity-2
graphs, and triangle intersection graphs since they aothaiintersection graphs of vertical and horizontal
line segments (also known as 2-DIR) and the problem is NPptetenon 2-DIR [32]. Prior to [32], the IS
problem was known to be NP-complete on boxicity-2 graphs §IJ. However, for interval graphs, the
WIS problem is known to be solvable in linear time from a sefass (e.g.chordalgraphs [16]) of interval
graphs. A graph ishordalwhen it has no inducekl-cycle for allk > 4.

Notice that an independent set in an MPT graph correspondsctilection of disjoint L-shapes in
a linear L-system. We use this equivalence to solve the WéBlem on a vertex-weighted MPT graph
in polynomial time algorithm via dynamic programming. Oupaoach is an independent rediscovery
of a known algorithm to solve WIS on generalizations of iméémgraphs [35]. However we believe our
presentation is much clearer for the context of MPT grapHso Ahere has been a rec&n?) algorithm
for this problem [49], but here we believe that the simpli@f our approach helps in understanding the
structure of independent sets in MPT graphs and so we hakslettit.

We now discuss the key idea. L&t be a sub-collection of disjoint L-shapes 6f We say that an
L-shapeL; is dominantin 7 if it contains the right-most point among the L-shapegJini.e.,L; € 9 and
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ri = max g rj. Consider a dominarit; and some.j € J such thatj > i. Notice thatlL; cannot contain
any points to the right of the ling = r; (sinceL; is dominant). Moreovet, ; must occur strictly below the
liney = —i (sinceLj’s corner point is belovL;’s corner point). Similarly, folLj; € 7 with j* < i, Lj» again
cannot contain any points to the right of the le: r;j. Furthermorel . is contained strictly above the line
y = —i. Thus, for an L-shape;, if L; is dominant in a sub-collectiofy of disjoint L-shapes of, then the
L-shapes which belong tg” and precedé&; can be chosen independently of the L-shapes which belong to
g and followL;.

The following notation is depicted in Figure 5. Farb € {1,...,n} anda < b, let Lon1 = £ and
Lap = Lop N Lan+1 Where:

o Lop={Li:1<i<b-1,ri <rp andLinLy=0}; and
o Lanmi={Liza+1<i<nr<raandlnly=0}.

Figure 5: The L-shapes strictly contained in the shadednsgilustrateLoy, (left) and Ly n.1 (right).

Let optla, b] denote the maximum total weight of a collection of mutualigjoint L-shapes infap.
Notice thatopf0, n + 1] is the maximum weight of an independent setan Furthermore, by the above
discussion, we have the following recurrence dqta, b]:

opta, b] = max (opfa,i] +w(Li) + opti, b])

It is easy to see that the collection of sefsp : a,b € {0,...,n+ 1},a < b} can be computed i@(n°)
time (since each aof,p can be computed i®(n) time). Moreover, the size of the tabtept is O(n?), and
the time to compute each entry@§n). Thus, we have the following theorem.

Theorem 4.1. For a vertex weighted MPT graph with a given linear L-systatmaximum weight indepen-
dent set can be computeddfn®) time.

4.2. Clique Cover

The CC problem is known to be NP-complete on boxicity-2 geafifom unit square intersection graphs
[15]), and L-graphs (from circle graphs [29]). However is@vable in polynomial time on interval graphs
and outerplanar graphs.

In this subsection we describe a polynomial time 2-appraxiom algorithm for the CC problem on
MPT graphs. Our approach uses ideas similar to the algorfitirhitting set in [7]. From our algorithm
we will see that the clique cover numbglG) is at most twice the independence numés) for any MPT
graphG. Recently it has been observed that a hitting set for a lireangle-system can be 2-approximated
in polynomial time [49]. Such a hitting set also provides aesponding clique cover of the same size and
their proof implies the 2(G) bound. However, in this case our approach is faster andieimp
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Our algorithm begins with the linear L-systeth= {L4,...,Ln}. Recall thatL is ordered according to
the corner points of the L-shapes. Frafrwe greedily select an independent ke¥We then build a partial
clique cover ofG with one clique for each element bf Finally, we consider the grapd which remains
after removing these cliqgues and observe that it is an iatgmaph. SinceH is an interval graph we can
efficiently compute an optimal clique cover for it. This compkethe overview of our algorithm. Notice
that, sinceH will be an interval graph (i.e., a perfect graphjH) = a(H). Thus, the size of the clique cover
that we produce if| + a(H) < 2a(G). We now describe our algorithm in detail.

First we construct the greedy independent set as followslil-e {L1}, and letl; = I;_; U {L;} such that
L; does not intersect any L-shapd i andj the smallest index satisfying this property. lLet {L;,, ..., L;,}
be the maximal independent set constructed in this way sath;t< ij; wheneverj < j’. Sincel is an
independent set iG, we can see thdtis at most the clique cover number®@f We will construct a partial
clique cover usind and show that the remaining graphwill be an interval graph.

To this end, consider the following disjoint sets of versic&or eachj € {1,...,k -1}, letCj = {v, :

Ij < ¢ <ijsq, andr, > ij,1}. First we claim that each suedy is a clique, and then we claim that removing
all suchCjs fromG results in an interval grapH.

Claim 1: Cjis aclique.

Proor. Consider two vertices i@;. Their corner points occur between the cornerk;pandL; ,, , their top
points occur above the corner bf, (otherwise one of them would be chosen ihtmstead ofL,,), and
their right points occur to the right of the cornerlgf,,. Thus, they must intersect; i.€; is a clique. ©

Claim2: H=G\ (U'J-‘:l Cj) is an interval graph.

Proor. Considerv, in H whereij < p < ijy; and 1< j < k. First, due to our construction of either
Vp = Vi; Or Vp is @ neighbor of some, whereij <ij; i.e., the vertical segment of every sughintersects
the liney = ij. Second, we know that the right-most pointlgfis to the left ofL; , (sincevp ¢ Cj). This
implies that every neighbor, of v in H hasij < q < ij.1. Thus,H induced on its vertices betweepn and
Vi;,; is aninterval graph (since it has an anchored linear L-systechored atj) and is a disjoint union of
connected components Hif.

The same argument applies to vertiggsvith ix < p. This show thaH is the disjoint union of interval
graphs; i.e.H itself is an interval graph. O

Notice that the greedy independent set as well as the cliGuese easily generated in linear time.
Moreover, the CC problem on interval graphs can be solveiheaf time [26]. This leads to the main
theorem of this subsection.

Theorem 4.2. For an MPT graph G the clique cover number is at most twice tlieependence number.
Also, when a linear L-system is given as input, the cliquec®vcan be 2-approximated @(n + m) time.

4.3. Coloring

The coloring problem is known to be NP-complete on L-graggiscé circle graphs, also known as
interval overlap graphs, are contained in L-graphs [1] avidring circle graphs is NP-complete [19]), on
boxicity-2 graphs [27], and on triangle intersection gmfdince they include planar graphs [9] and coloring
is NP-complete on planar graphs [18]). On the other hand;dlwing problem can be solved in linear time
on interval graphs [21] and outerplanar graphs [42].

In this section we will demonstrate that it is NP-completelébermine the chromatic number for MPT
graphs, but it can be log)-approximated in polynomial time. We will ugdG) to denote the chromatic
number ofG.



Prior to proving the hardness result we observe &) can be logf)-approximated using known
techniques. For any boxicity-2 graj@ the relationship between th€G) andw(G) (the clique number)
has been well-studied. The best results regarding thisae$hip are given in [4]. The relevant result for
MPT graphs is as follows. For a boxicity-2 gra@with a rectangle system such that no rectangle contains
anothery(G) is O(w(G) log(w(G))) and this log()-approximation ofy(G) can be computed in polynomial
time. It is easy to see from our characterization of MPT gsagé linear boxicity-2 graphs, that this result
applies directly to MPT graphs. Thus, the chromatic numb&t®T graphs can be logf-approximated in
polynomial time.

We now turn to the hardness of coloring for MPT graphs. To de we transform the hardness of
coloring of circular-arc graphs to this clas€ircular-arc graphs are the intersection graphs of arcs of a
circle. Determining a minimum coloring of a circular-aragh is known to be NP-hard [19]; i.e., it is
NP-complete to determine whether a circular arc grapcislorable wherk is part of the input.

Theorem 4.3. It is NP-complete to determine the chromatic number for MRIpOs.

Proor. Consider a circular-arc grafgh = (V, E). We usen andm to denotgV| and|E| respectively. Now,
for anyk > 2, we will construct an MPT grap®’ = (V’, E’) such that:|V’| = O(n), |E’| = O(n?), and
x(G) < Kkiff y(G") < k. Moreover,G’ is easily constructed i@(n?) time. An example of this construction
is depicted in Figure 6. The basic idea is that we “cut” thewdar-arc representation at an arbitrary point
p. This point corresponds to a clique and we split every vettessing this point into two vertices so that
the result is an interval graph. This interval graph has ahared linear L-system to which we add a clique
consisting ok vertices. This clique will ensure that in any coloring ofthbnstructed graph, the two copies
of every split vertex have the same color. We now presentdired! proof.

Consider an arbitrary circular-arc representati@irof G (such a representation can be constructed in
O(n + m) time [37]). Letp be a fixed point on the circle oft and letAp = {Aq, ..., As} be the arcs ofA
that includep. The verticegvy, ..., vy} corresponding toA, form a clique inG (since the arcs all share the
point p). Hence, if no arcs pass through the pgnthenG is an interval graph; i.eG is an MPT graph and
so we can leG’ = G and we are done. Similarly, #f > k, theny(G) > k and we are done; i.e., we simply
let G’ be a clique orf vertices. Thus we may assume&¥ < k.

We now form an interval grapH from G by “cutting” the circular-arc representaticfi at the pointp.
Formally, for some small enough> 0 and each € {1, ..., ¢}, we replace the ar&; = (s, g) with two arcs
AI-1 =(s,p-e), andAi2 = (p+ ¢, §) and consideH as the resulting intersection graph. In particular, each
vertexy; is replaced by two verticeg andv? corresponding to the ar@§' andA? respectively. Notice that
V(H)l = n+ ¢and|E(H)] = m+ (g) Since there are no arcs passing through the gwintthis circular-
arc representation dfi, the graphH is an interval graph. Thus, by Lemma 3k2,has an anchored linear
L-system.

Finally, we add a clique of siZeto H so that the result is an MPT gra@i and in anyk-coloring ofG’,
the verticesvi1 andvi2 must be assigned the same color. To this end, we d&fire(V’, E’) as follows:

V' =V(H)U{ug,...,wl,

E = E(H)U{utviJ el 2Liefl,. o te{i+ 1, KUl i el KT # )L

We show thats’ has ak-coloring iff x(G) < k.

= Notice that the verticesi andv% are adjacent to the same clique of skee 1 in G’. Thus, in any
k-coloring ofG’, v; andvi must be assigned the same color. Inductively, it is easyetdheev; andvi2 must
also receive the same color in akieoloring of G’. Specifically,u;, vil, andvi2 will receive the same color
for everyi € {1,...,¢}. Thus, anyk-coloring of G’ provides &-coloring ofG.
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<= We can extend ank-coloring f : V(G) — {1,...,k} of G to ak-coloring f’ : V(G’) — {1,...,k} of
G’ as follows. For everyw € V(G) \ {v1,...,V}, setf’(v) = f(v). Foreach € {1,...,¢}, setf’(u) =
f/(vh) = f/(v?) = f(%), and then choosé’(Ue1), ..., f'(Uk) so that{f’(Ue1), ..., F/(u)} = {L,...,k}\
{f(v1),..., T(vp)}. Itis easy to see thdt is ak-coloring ofG’. This completes the proof of the claim.

All that remains is to show tha’ has the appropriate size and that it is an MPT graph. Notiae th
V(G = n+¢+k < 3nand[EG) = m+ () + (§) + (k=€) « 20 + 11 2t < 2n?. Thus,G’ has the
appropriate size. Furthermore, we can construct an MPEseptation o6’ by starting from an anchored
linear L-system oH and adding L-shapes for the new clique “above” this anchéineér L-system (see
Figure 6). Thus@G’ is an MPT graph.

From the above construction we can see that determininghttematic number for MPT graphs is
NP-hard, since it is NP-hard to determine the chromatic remfdyr circular-arc graphs. O

UL QU3 UAUS UG
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2 2 [ 2
3 3 .
7 4
5 5 >
6
— _
— Anchor point
Cut Vi
V3

ol byl Ly
VSVAZtV3V2V1

Figure 6: Sample construction from the proof of Theorem 4h@ng the “cut” contains 5 vertices akd- 6.

This leaves open thecoloring problem for fixedk > 3. In particular, note that in the above construction
it was necessary that the number of collbrsas part of the input, since for fixéd thek-coloring problem
is solvable in polynomial time on circular-arc graphs [19].

5. Other Characterizations

In this section we characterize MPT graphs by linear vertelers, the intersection of interval graphs,
and as a restricted class of segment graphs.

5.1. Vertex Ordering

Several well known graph classes have been characterizegdwyal linear orders on their vertices;
e.g., interval graphs (see Definition 5.1 and Theorem 518},interval graphs [46], chordal graphs [11],
and co-comparability graphs [33]. In this section we chiamdwe MPT graphs as graphs with MPT-orders
(see Definition 5.3 and Theorem 5.4). This ordering charaettion has been independently observed [48].
We then use this ordering to show that a graph is an MPT grdiphis the intersection of two “special”
interval graphs (see Theorem 5.5).



Definition 5.1. An I-order of a graphG with verticesvy, ..., Vs is an ordering/; < Vo < --- <V such that:
for everyu < v < w, if uw e E(G), thenuv € E(G).

Theorem 5.2. [39, 44, 45] G is an interval graphfiG has an |-order. Moreover for any interval represen-
tation 7 of a graph G, ordering the vertices of G by the left end-poaitheir intervals results in an I-order
of G.

Definition 5.3. An MPT-orderof a graphG with verticesvy, ..., Vv, is an ordering/; < vo < --- <V, such
that: for everyu < v < w < x, if uw, vx € E(G), thenvw € E(G).

Notice that MPT-order is a generalization of I-order. Intjgatar, leto- be an I-order of a grapB. Now
suppose we have, v,w, x € V(G) such thatu <, v <, W <, x anduw, vx € E(G). Sinceo is an I-order
with v <, w <, xandvx € E(G), the edgeswis forced. Thusg is an MPT-order; i.e., every l-order is also
an MPT-order. We now prove that MPT graphs are charactedagdte graphs with MPT-orders.

Theorem 5.4. G = (V,E) is an MPT graph G has an MPT-order (i.e., the vertices of G can be ordered
by < so that for every w,w, x e V, ifu< v <w < xand uwvx e E, then vwe E).

Proor. (=) Let {(s,,pv.&) : Vv € V} be an MPT representation @. Order the vertices o6 such
that vertexv comes before verten if p, < p,. Now, consider any four distinct verticesv, w, X where
u<v<w< xanduw,vx e E. Then, it is easy to realize that, due to the considered imgleit holds that
Sw < Pu < py ande, > px > pw, Which impliesvw e E.

(&) Let G = (V,E) be a graph with ordered vertex Sét= {vi,...,Vn} such that for any, j,k, £ €
{L...,nh ifi < j <k< Candv,Vjv, € Ethenwy; € E (i.e.,vi < --- < vy is an MPT-order). We now
construct an MPT representation®tbased on this ordering. For eaich {1,...,n}, let:

e 5 = min{i, j} wherej is thesmallestindex such thav;v; is an edge irG.
e p=i
e & = maxi, j} wherej is thelargestindex such thav,v; is an edge irG.

Clearly I = {(s, pi.g) : i € {1,...,n}} is an MPT representation in which every edgeGofs captured.
Now we need to demonstrate that this representation doasaiotie any edges which are not edge$sof
Suppose that for somgk € {1,...,n}, j <K, vjw ¢ E butsc < p; andej > px. Sincesc < p;j there must
bev; with i < j such that;jw € E. Similarly, there must bg, with £ > k such thatv;v, € E. However, we
now havei < j < k < £ with vjv, vjv, € E butvjv ¢ E; i.e., a contradiction to the vertex order. Thiss
an MPT representation @. O

Notice that, since every I-order is an MPT-order and eveaplgmwith an MPT-order is an MPT graph,
we have an alternate proof of Corollary 3.3; i.e., that ewetgrval graph is an MPT graph. Also, since the
order of vertices in an MPT-order corresponds to the ordérepoints in an MPT representation, they also
correspond to the order of the corner points in a linear ltesgsof an MPT graph.

We conclude this section by further characterizing MPT bsags the intersection of two related interval
graphs.

Theorem 5.5.G = (V,E) is an MPT graph with MPT-ordeo- = (vi < ... < Vy) iff there are interval
graphs H = (V,E1) and H, = (V, E») such that E= E; N E», o is an I-order of H, and the reverse af
(i.e.,\ < --- < vq)is an l-order of H.
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Proor. (=) Leto =v1 <--- < vybe an MPT-order o6, and letL be the linear L-system @ constructed

in the proof of Theorem 5.4 using this order; i®,< ¢, iff i < j. Construct an anchored linear L-system
L1 by extending the horizontal segment of every L-shap£ ito the right beyond the corner of the right-
most L-shape . Similarly, construct an anchored linear L-systénby extending the vertical segment
of everyL in £ so that it reaches above the corner of the left-most L-shaje By Lemma 3.2, each of;
and £> corresponds to an interval representation. Het= (V, E;) andH, = (V, Ep) be the interval graphs
specified byL; and.£,. Notice that, by Theorem 5.8; is an I-order oH, and the reverse af is an I-order

of H,. Thus, we just need to ensure tlatN E, = E. ClearlyE € E; N E, from our construction of’; and
L>. Moreover there can be no edge in b&handE, which is not inE simply due to how these “extra”
edges come into existence (see Figure 7).

Figure 7: (left)L,, L, such thauv e E; \ E. (right) Ly, L, such thauve E; \ E.

(&) LetHy = (V,E1) andH;, = (V, Ep) such thaty = {v1,... vy}, 00 = (Vi < --- < V) is an l-order of
H,, and the reverse af is an I-order ofH,. We now claim thatr is an MPT-order ofc = (V, E; N Ey).
Consider 1< i < j < k < £ < nwherevv, vjv, € E; N E>. Notice thatvjw € E; sincec is an |-order
of Hy andv;v, € E;. Similarly, vjvx € E; since the reverse ef is an I-order ofH, andviv, € E,. Thus,
VjVk € E1 N E> as needed. O

5.2. Cyclic Segment Graphs

In this section we characterize MPT graphs as intersectiaphg of line segments from a cyclic line
arrangement. Aine arrangemenis simply a collection of lines in the plane (see [13] for moreline
arrangements). A line arrangemetitis cyclicwhen there is a convex functidn(e.g., a parabola) such that
every line inA is tangent tof. We definecyclic segment graples the intersection graphs of line segments
where the underlying line arrangement is cyclic with resp@some functionf and each segment contains
a point onf. In the following theorem we prove that cyclic segment gsate precisely MPT graphs. This
follows easily from our characterization of MPT graphs vi@Morders (see Theorem 5.4).

Theorem 5.6. MPT graphs are precisely cyclic segment graphs.

Proor. Leto = (v1 < ... < vp) be an MPT-order of an MPT grapgh. We will construct a cyclic segment
representation oB by mapping each vertex to a segment of a line tangential tpanabolay = x2. First,
we assign each; the tangent ling; of the parabola for the poini,{?). Now, to choose the segment of
¢; for the vertexv; we consider the left-most and right-most vertices, gy andv; .., from N(v;) U {vi}.

In particular, we let the segmef for v; be defined as the segmentfstarting from¢; . and ending
on ¢ .. Note, ifi = imin (i = ima then we simply use the point, (%) as the starting (ending) point of
the segment;. Clearly eachS; passes through the poiritif). Thus, we have constructed a valid cyclic
segment representation. Consider an eggeof G with i < j. From our constructionS; passes through
the line/; in order to reacl$;,,,. Similarly, S; passes through the lingin order to reacts; .. Thus,S;
andS;j intersect. Now, suppose th&f andS; intersect ( < j), butv;v; is not an edge oG. In order for
these segments to intersect, each must need to “reach twedther. In particular, this means that there
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is Vp andvg such thatp < i < j < g, andvjvg andvjv, are edges i1G; i.e., this violates the MPT-order.
Therefore, every MPT graph has a cyclic segment repregamtat

To construct an MPT-order from a cyclic segment represiemtaine simply uses the order of the tangent
points and the proof follows similarly to the above. O

6. Non-MPT graphs and More Subclasses of MPT graphs

In this section we observe two additional strict subclaggs@dPT graphs (namely, outerplanar graphs
and 2D ray graphs). We further observe infinite families afoirs which are not MPT graphs.

6.1. Outerplanar graphs

In this section we consider outerplanar graphs as a restricirm of MPT graphs. In particular, we
consider linear L-contact-systems and demonstrate teagtphs of these contact systems are precisely
outerplanar graphs. It has been independently observeédtiterplanar graphs are a subclass of MPT
graphs [48]. Their proof is completely féérent from ours and does not provide the characterization we
have observed.

A graph isouterplanarif it has a crossing-free embedding in the plane such thateatices are on
the same face. Moreover, an outerplanar graph is said to B@malawhen it is not a proper subgraph
of any outerplanar graph with the same number of vertices wiWalemonstrate that outerplanar graphs
are precisely théinear contact L-graphgsee Definition 6.1 and Theorem 6.3). For more information on
contact L-graphs see [6, 5, 30].

Definition 6.1. A graphG is alinear L contact graphwhen it has a linear L-systed such that no two
L-shapes “cross-over” each other; i.e., for L-shapgs= (ty,Cy,ru),Lv = (tv,Cv, 1), if Ly N Ly # 0 and

Cy < Gy, then eitherc, = t, or ry = ¢,. Moreover, we say such an L contact systeradsilateralwhen, for

each L-shape, the vertical and horizontal segments havsthe length.

We will use the following characterization of maximal oyginar graphs related to 2-trees (which
follows easily from [38]). A2-treeis a graph that can be constructed by starting from an edgieaatively
adding vertices with exactly two adjacent neighbors. Seguiares will also play a role throughout this
section. Asemi-squarés a right-triangle whose vertical and horizontal sidestheesame length (i.e., the
lower-left “half” of a square). Moreover, it is known that molerance graphs are precisely semi-square
intersection graphs [28].

Theorem 6.2. Let G be a maximal outerplanar graph. For any edge,\of the outerface of G, the vertices
of G can be orderedyy..., Vv, such that v(2 < i < n) has exactly two neighbors, u and v, inG=
G[{v1,...,Vi—1] and uv is and edge of G. We refer to such an order asw@#erplanar-order

Theorem 6.3. Every maximal outerplanar graph G is a linear equilaterakantact graph.

Proor. Consider an outerplanar ordgt v, . .., v, of G. We iteratively build the linear equilateral-L contact
system as follows. Ldt,, = (-1,0,1) andL,, = (0, 1, 2) be the L-shapes fax, andv, respectively. Clearly
Ly, and Ly, contact each other at the point (), both terminate at this point, are equilateral, and their
corner points lie on the ling = —x. Moreover, the semi-square defined by the point®X@1, 0), (1, -1) is:
empty, its diagonal is a segment of the line: —x, and the point (10) is the point of contact betwedn,
andL,,. Now assume that we have a linear equilateral-L contacesy$}_1 for vy, ..., Vvi_1 such that every
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edgeuv on the outerface dBj_; corresponds to an empty semi-square as in the base case.télid &xs
representation to a representatiorGpfas follows. From the outerplanar ordering, the vesels adjacent

in Gj_; to precisely some pair, v such thauvis an edge on the outerface®f 1. Thus, we have an empty
semi-squarex, —X), (x+d, —x), (x+d, —x—d) where the pointX+d, —x) corresponds is the contact point of
Ly andLy. Considers; = £i_1 U{Ly} whereL,, = (X, x+d/2, x+d). Without loss of generality.,, contacts

L, at the point K + d/2, —x) andL, at the point K + d, —x — d/2). Moreover, these new contact points form
the appropriate empty and disjoint semi-squares as neddadlly, since the semi-square corresponding
to uv was empty before insertingy,, the L-shapd.,, does not intersect any other L-shapes. Ti{Ss a
linear equilateral L contact system as needed. ]

Similarly to how linear L-graphs are equivalent to lineawxiogly-2 graphs and linear right-triangle
graphs, we have the following corollary regarding lineamtest graphs.

Corollary 6.4. The following graph classes are equivalent: outerplaniagdr L contact, linear equilateral-
L contact, linear semi-square contact, linear square conta

Proor. Since maximal outerplanar graphs are linear equilaterabmtact graphs (by Theorem 6.3), all
outerplanar graphs are linear equilateral L contact graphgarticular, one may simply adjust an equilateral
L a by small amount to remove any individual contact with &eot_ such that no other contact is altered.

Moreover, given any of the contact representations ligiad,can easily construct an outerplanar draw-
ing of the graph. In particular, each verteis located at its corresponding corner point on the jine —x
and the edgesv are drawn by tracindg,, andLy to the corresponding contact point. Clearly all vertices li
on the outside of such a drawing and this can be done so thatges éentersect. O

6.2. 2D Ray Graphs

A graphis &D raygraph when itis an intersection graph of rays in the planeatie rays have at most
two directions and parallel rays do not intersect (i.es thia bipartite graph class). For more information
on this graph class see [31, 47]. We observe that 2D ray grfapimsa strict subclass of bipartite MPT
graphs and that they play an interesting role in the straadfineighborhoods of vertices of MPT graphs.

Proposition 6.5. 2D ray graphs are a strict subclass of bipartite MPT graphs.

Proor. Notice that, without loss of generality, we may assume #mgt 2D ray representation of a graph
G only uses| and « as the two directions its rays follow. With this in mind it ia®y to see that this
representation is in fact a linear L-system. In particweg, can imagine a line with negative slope that
intersects all the rays and occurs “below” and to the “leftany point of intersection between two rays.
Thus, by stopping all rays on this line we have a linear LeysbfG. Additionally, this inclusion is strict
since a 6-cycle is not a 2D ray graph [31], but it is easily tamted as a linear L-graph. O

Recall that MPT graphs have been shown to l@&) maximal cliques [3]. Moreover, every complete
bipartite graph is a 2D ray graph. Thud(n?) is a tight bound (up to a multiplicative constant) on the
number of maximal cliques in MPT graphs.

We now consider the neighborhood of a single vertex and vbd&e following connection to 2D ray
graphs and interval graphs.

Proposition 6.6. If G is an MPT graph and v is a vertex of G, then the neighborhafodcan be partitioned
into V_ and \k such that:
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e G[V_] and G VR] are interval graphs; and
¢ the bipartite graph induced by the edges connecting verficen \{ to Vris a 2D ray graph.

Proor. Let L be a linear L-system db. We setV| as the neighbors of whose corner points occur prior

to v's corner point and defin¥r to be the remaining neighbors @f Notice that the corner points of
vertices inVg will occur aftervin £. The L-shapes of/_ clearly form an anchored linear L-system and
as such correspond to an interval representation. Thusgehyma 3.2G[V_] and (similarly) G[VR] are
interval graphs. Moreover, by consideridfy one can easily see that the bipartite graph induced by the
edges connecting vertices frovh to Vg is a 2D ray graph. In particular, the horizontal segment¥,of
correspond te— rays and the vertical segments\g correspond tq rays. O

6.3. Non-MPT graphs

In this section we observe some structural properties of igRiphs that allow us to identify infinite
families of non-MPT graphs. These non-MPT graphs will allassvto compare MPT graphs to planar and
permutation graphs.

Proposition 6.7. If G is an MPT graph with non-adjacent vertices u and v, thgiN@) N N(V)] is an
interval graph.

Proor. Consider the relative position afandv in the linear L-system o&. Without loss of generality they
must occur as in Figure 8. In each possibility the cornertpafimny common neighbour af andv occurs
in the shaded region; i.e., in every linear L-systenGothe L-shapes corresponding hgu) N N(v) form
an anchored linear L-system (anchoreds/®oL-shape). Therefore, by Lemma 3@G[N(u) N N(V)] is an
interval graph.

Figure 8: The three ways to represent two non-adjacentcesi v in a linearL-model. Notice that any common neighborwf
andv must have its corner point in the shaded region.

O

Notice that Proposition 6.7 is tight. In particular, if ongda a independent skto an interval grapi®
such that every element bfis adjacent to every vertex @@, then the resulting grap®’ is an MPT graph.
Specifically, by Lemma 3.25 has an anchored linear L-systefin We form a linear L-system fo&’ as
follows. Starting from.L, one simply adds a set ¢ff horizontal segments such that the first one occurs
“just below” the anchor point of, and each subsequent segment occurs “just below” the piesEgment.
Each such segment will intersect every L-shape of (since they are anchored) and they are disjoint from
each other. Thus, this is a linear L-systemGjf i.e., G’ is an MPT graph. This leads to the following
observation regarding minimal forbidden induced subgsdphMPT graphs. The set of minimal forbidden
induced subgraphs of interval graphs is known [34] and igiiifi
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Observation 6.8. If H is a minimal forbidden induced subgraph for interval gres and G is obtained
from H by adding two non-adjacent universal vertices x and Mti.e., V(G) = V(H) U {x,y} and HG) =
E(H)uU{zu: z€ {x,y} and ue V(H)}, then either G, G {x}, or H is a minimal forbidden induced subgraph
of MPT graphs.

By Proposition 6.7 we see th#t, o, the graph formed by taking a 4-cycle together with two non-
adjacent vertices adjacent to each vertex of the cycle,tiam®IPT graph. However, it is easy to see that
this graph is a permutation graph as well as a planar graghRiggire 9). Moreover, non planar graphs
(e.g., the 5-cliqgue) and non permutation graphs (e.g., tetgin Figure 2) are both MPT graphs. Thus we
have the following observation.

Figure 9: A planar drawing of the non-MPT graph,, together with a permutation representation of it.

Observation 6.9. The MPT graph class is incomparable with both planar graphd permutation graphs.

The minimal forbidden induced subgraphs of MPT graphs oielmany more graphs than those built
from the graphs non-interval graphs. For example, we widivsithat the full subdivision of any non-
outerplanar graph is also not an MPT graph. Tiésubdivision Gof a graphH is the graph obtained
from H by subdividing every edge @. It is known that any string representatiérof the full-subdivision
H of a planar graplt is combinatorially equivalent to some planar embeddingdi2]. In particular,
in S, each edge of G corresponds to a strin§e which connects exactly the two strings corresponding
to vertices incident withe and Se does not intersect any other strings. From this it is easyg¢otisat the
full-subdivision of any non-planar graph is not a stringrdl2].

A graphG is anouter-stringgraph when it has a string representation such that, for d fikele C,
every string is contained withi@ and exactly one endpoint of each string belong€1dt is easy to see
that outer-string graphs are a superclass of MPT graphs;wee can easily replicate a linear L-system
with an outer-string representation. Moreover, in Lemnmi#6we observe that the full-subdivision of a
non-outerplanar graph is not an outer-string graph andsemurently, not an MPT graph.

Lemma 6.10. If H is a non-outerplanar graph and G is the graph obtainedhiréd by subdividing every
edge of H, then G is not an outer-string graph (i.e., G is noM#T graph).

Proor. SinceG is not outerplanar, any string representat®mof H necessarily contains a strirgy such
thatSy is contained in a region enclosed by the strings of &s#tnon-neighbors o¥. In particular, itis not
possible to draw a circle ontS so that botlS, and every string of the vertices Kisatisfy the outer-string
property. m|

Even with the set of forbidden graphs we have observed, #rerget many more which are not cap-
tured (e.g., the complement of a 7-cycle). Thus, a compleseription of the minimal forbidden induced
subgraphs for MPT graphs remains an open problem.
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7. Concluding Remarks

In this paper we have introduced max point-tolerance graphie have characterized this class and
demonstrated inclusions with respect to well-known gralplsses. Our results are summarized in Theo-
rems 7.2 and 7.3 below. We also solved the WIS problem in pohyal time, 2-approximated the clique
cover problem in polynomial time, showed the NP-completsnef the coloring problem, and lag¢
approximated the coloring problem in polynomial time.

Interesting open problems remain for this graph class. dsrthe most interesting is that of recognition.
Our characterizations of this graph class provide a varmétyways to approach this problem. Several
combinatorial optimization problems remain open for thigpdn class. Two particularly interesting ones
are: k-coloring (for fixedk) and unweighted clique cover. Additionally, one may bernetéed to further
study the relationships with existing graph classes.

Another direction of research would be to studin point-tolerance graphs. In particular, just as there
are min tolerance graphs and max tolerance graphs one caideonin point-tolerance (mPTgraphs.

Definition 7.1. A graphG = (V, E) is amin point-tolerance (mPTgraph if each vertex of G can be
mapped to gointed-interval(ly, py) wherel, is an interval ofR and py € I, such thauvis an edge oG iff
eitherpy € Iy or py € Iy.

It should be noted that there already exists a directed grigss utilizing this definition, namely, the
interval catch digraphs [40, 41] mentioned in the introdutt The min point-tolerance graphs are pre-
cisely the undirected graphs underlying interval catchagigs. In contrast, max point-tolerance graphs are
precisely the undirected graphs underlying the bi-diketgges of interval catch digraphs.

Theorem 7.2. The max point-tolerance graph class strictly includesnveaiegraphs, outerplanar graphs,
and 2D ray graphs.

Theorem 7.3. For a graph G= (V, E), the following are equivalent:

G is a max point-tolerance graph.

G is a linear L-graph (equivalently, a linear rectangle-gfaor a linear right-triangle-graph).

e The vertices of G can be ordered kyso that for every w,w,x € V(G), if u < v < w < x and
uw, vx € E(G), then vw is an edge of G.

e There are two interval graphs H= (V, E;) and H = (V, E») such that E= E; N E; and the vertices
of G can be ordered by so that for every i v < w if uw € E; then uve E; and if uwe E, then
wv e Eo.

e G is acyclic segment graph.

e There is an interval catch digraph B (V, A) such that the bi-directed arcs of D are precisely the

edges of G.
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