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Abstract. Planar graphs are known to have geometric representations
of various types, e.g. as contacts of disks, triangles or - in the bipartite
case - vertical and horizontal segments. It is known that such represen-
tations can be drawn in linear time, we here wonder whether it is as easy
to decide whether a partial representation can be completed to a repre-
sentation of the whole graph. We show that in each of the cases above,
this problem becomes NP-hard. These are the first classes of geometric
graphs where extending partial representations is provably harder than
recognition, as opposed to e.g. interval graphs, circle graphs, permutation
graphs or even standard representations of plane graphs.
On the positive side we give two polynomial time algorithms for the grid
contact case. The first one is for the case when all vertical segments
are pre-represented (note: the problem remains NP-complete when a
subset of the vertical segments is specified, even if none of the horizontals
are). Secondly, we show that the case when the vertical segments have
only their x-coordinates specified (i.e., they are ordered horizontally) is
polynomially equivalent to level planarity, which is known to be solvable
in polynomial time.

1 Introduction

An intersection representation of a graph G = (V,E) is a set family {Sv : v ∈ V }
such that uv is an edge of G iff Su ∩ Sv 6= ∅. Geometric representations (i.e.,
intersection representations where each set is a geometric object) of graphs have
been intensively studied both for their practical motivations and interesting al-
gorithmic properties. The motivations stem from VLSI designs, graphic layouts
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including the rectangular windows overlays, bioinformatics applications (includ-
ing DNA sequencing), cellular description of reachability and interference in
mobile networks, and many others. Geometric representations often also allow
problems which are NP-hard in general to be solved in polynomial time.

The oldest and probably best understood class of intersection graphs are in-
terval graphs, i.e., intersection graphs of intervals on a line [13]. They can be
recognized in linear time and all basic optimization problems like independent
set, clique or coloring can be solved on them in linear time as well. General-
izations of interval graphs include circular arc graphs [25, 12], the intersection
graphs of arcs on a circle. Circle graphs [4] are intersection graphs of chords of a
circle and as such include permutation graphs [2, 14], the intersection graphs of
straight-line segments connecting points on two parallel lines. Intersection graphs
of curves connecting points on two parallel lines, sometimes called the function
graphs [14], are exactly the complements of comparability graphs (graphs admit-
ting a transitive orientation). All these classes can be recognized in polynomial
time and the independent set and clique problems can be solved in polynomial
time on them as well. An overview of these and many other intersection-defined
graph classes is given in many textbooks [22, 5].

Geometric representations of graphs also help in visualizing the information
grasped by the graph structure. Thus, the question of recognizing these classes
and constructing a representation of a given type is rather important. Addition-
ally, in some cases the polynomial time algorithms mentioned above exploit geo-
metric representations. For the vast majority of the interesting classes of graphs
the complexity of their recognition is well understood on the level of Polynomial
versus NP-hard, with some cases where NP-membership is not known (for in-
tersection graphs of straight-line segments or intersection graphs of convex sets
in the plane, which are both known to be NP-hard to recognize, only PSPACE
membership of the recognition problem is known, as their recognition is complete
for the existential theory of the reals [24]). Recently, more attention has been
paid to the question of extending partial representations of graphs. This setting
corresponds to a situation where a part of the graph comes already represented
from the applied instance or when the visualization task comes from a customer
who does not want to see some part of the picture changed. Formally, we discuss
the following decision problem, parameterized by an intersection-defined class C:

RepExt(C)
Instance: A graph G and a C-representation R′ of an induced subgraph of G.
Question: Does there exist a C-representation R of G such that R′ ⊆ R?

This question falls into a natural paradigm of extending a partial solution of a
problem rather than building a solution from scratch, the latter approach be-
ing often easier. This common knowledge of architects and engineers can be
observed in graph coloring problems where it is well known that every cubic
bipartite graph is 3-edge-colorable, but extending a partial edge-coloring is NP-
complete [11], even for planar bipartite graphs [21]. Therefore it feels somewhat
unexpected that for the resolved cases of geometric intersection graphs, extend-
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ing partial solutions has not been harder than recognizing the particular classes6.
In particular, RepExt(C) is decidable in polynomial time when C is: interval
graphs [16], proper interval graphs [16], unit interval graphs [19], circle graphs [6],
permutation graphs [17], and function graphs [17]. These algorithms tend to ex-
tend the plain recognition ones in nontrivial ways through the use of special
data structures which capture all representations. Interestingly, even though the
classes of unit and proper interval graphs coincide, they are separated by the
partial representation extension problem; i.e., there are instances of partial rep-
resentations consisting of unit intervals that are extendible to a proper interval
representation, but not to a unit one [16].

In this paper we consider RepExt(C) when C is a contact graph class. This
work is motivated by several elegant theorems that show that all planar graphs
have geometric representations by contacts of various geometric objects. In gen-
eral, an intersection representation is a contact one if the interiors of any two
objects of the representation are disjoint. The classical example is Koebe’s the-
orem, often referred to as the kissing lemma or the coin representation, which
was rediscovered several times by several authors. It states that every planar
graph is the contact graph of a collection of disks in the plane [20]. The proof
of this theorem is nonconstructive but later Mohar [23] gave a polynomial time
algorithm for producing an approximate representation (there are planar graphs
that require irrational coordinates for some disk centers in any coin representa-
tion, and so approximate constructions are the best one can hope for, at least if
we want to describe the coordinates and radii by rational numbers). De Frays-
seix et al. [8] constructively proved that every planar graph is a contact graph
of triangles in the plane. In 1991, Hartman et al. [3] showed that every bipartite
planar graph has a grid contact representation, i.e., a contact representation in
which vertices of one class of bipartition are represented by vertical segments
and vertices of the other class by horizontal ones (this was also independently
shown by de Fraysseix et al. [7]).

We prove that in all of these cases, deciding whether a partial contact repre-
sentation of a planar (bipartite) graph can be extended to a contact representa-
tion of the entire graph is NP-hard. For geometric intersection graphs (i.e., for
intersection graphs of planar objects defined by their shape or geometrical prop-
erties), this collection of results provides the first examples where extending par-
tial representations is harder than deciding or constructing representations with
no initial constraints. Note that for extending partial representations by trian-
gles, convex sets, or disks, we only claim NP-hardness and not NP-completeness.
This is because the membership in the class NP is not known (similarly to recog-
nizing intersection graphs of disks, convex sets or straight line segments, where
only PSPACE membership is known).

In the last section of the paper we refocus on grid contact representations
of planar graphs and show that the partial representation extension problem

6 The only exception is formed by partial subtree-in-tree or path-in-tree representa-
tions of chordal graphs, but there the NP-hardness follows from limited space issues,
not any geometrical ones [18].
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remains NP-hard if only some of the vertical segments are prerepresented. On
the contrary, the problem becomes polynomially decidable if all of the vertical
segments are given in the input, and also if only their x-coordinates are given
(i.e., all horizontal segments and the vertical position of the vertical ones are
unspecified). The last mentioned case is shown to be polynomially equivalent to
testing level-planarity, a problem known to be decidable in linear time.

2 Grid Contact Graphs

For this section, let G = (V ∪ H,E) be a planar bipartite graph and let
n1 = |V |, n2 = |H|. As already mentioned, de Fraysseix et al. [7] proved that G
has a contact representation in which vertices of V are represented by vertical
line-segments, vertices of H by horizontal line-segments, no parallel segments
intersect, no two segments cross and any two segments u, v share a point (i.e.,
a point of contact) if and only if uv ∈ E (for simplicity we use the same symbol
for a vertex and the segment representing it). In particular, both V and H are
independent sets of vertices in G. The proof [7] is based on bipolar orientations
of planar graphs and their visibility representations. Such a representation can
be constructed in polynomial time. We show that the task becomes harder if
some of the vertices are pre-represented. The proof of the following theorem
plays an important role in the rest of the paper. The NP-hardness reductions
are all based on modifications of the gadgets constructed in it.

Theorem 1. Given a planar bipartite graph G and some of its vertices repre-
sented by vertical or horizontal line-segments, it is NP-complete to decide if the
partial representation can be extended to a grid contact representation of G.

Proof. The NP-membership is straightforward, since a grid intersection repre-
sentation can be described by the linear quasi-orders of n1 coordinates for the
vertical segments and n2 coordinates for the horizontal ones.

For the NP-hardness proof we reduce from Planar-3-SAT. Given a Boolean
formula Φ with a set C of clauses over a set X of variables such that the graph
GΦ = (C ∪X, {xc : (x ∈ c ∈ C) ∨ (¬x ∈ c ∈ C)}) is planar, it is NP-complete
to decide if Φ is satisfiable. This problem remains NP-complete even if every
variable occurs in 3 clauses, once negated and twice positive, and every clause
contains 2 or 3 literals [10] (in fact, Fellows et al. show NP-completeness even
in a stronger way, for planar clause-linked formulas, i.e., for formulas whose
incidence graphs remain planar after adding a cycle through all clause vertices,
but we do not need this assumption). Given such a formula, we first draw the
graph GΦ in a rectilinear way so that edges are piece-wise linear curves with all
segments either vertical or horizontal. We may further assume that the edges
leaving each variable are positioned so that the edges corresponding to the two
positive occurrences start with horizontal segments while the edge corresponding
to the negative occurrence starts with a vertical one. The planarity of GΦ can be
tested in linear time, and a rectilinear drawing can be also constructed in linear
time, even with a bounded number of bends per edge.

From this drawing we construct a graph G by a sequence of local replace-
ments. Every variable is replaced by a copy of a variable gadget, every clause
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Fig. 1. The brick and its two possible rep-
resentations.

false

Fig. 2. The schematic encoding of a
brick.

by a copy of a clause gadget, and the edges are replaced by chains of gadgets
whose length depends on the number of bends on the edge. All gadgets are con-
structed from two building blocks. The basic one, the so called brick, is depicted
in Fig. 1. The left part of the figure shows the subgraph, the right one a repre-
sentation by contacts of segments. In all figures the black vertices and segments
are those whose position is prescribed, and white vertices (dotted segments) are
the flexible ones. The middle vertical black segment is an isolated vertex and
thus cannot be crossed by any of the dotted ones. The dotted path connecting
the other two black vertices can be represented either above or below the middle
black segment. We use the schematic light grey rectangle depicted in Fig. 2 for
the brick, and the side which bears the dotted segment encodes the value false.
The bricks can also be rotated into a horizontal position, thus sending the false
value to the left or to the right.

The variable gadget consists of three bricks whose vertices are pairwise non-
adjacent. It is depicted in Fig. 3. From the overlapping corners of the bricks, it
either sends the value false along the vertical edge, in which case both horizontal
edges may transfer the value true, or it sends the value true along the vertical
edge, in which case both horizontal ones must send the value false. The former
case corresponds to the variable being evaluate as true, in the latter to false.

+ +

− true

− −

+ false

Fig. 3. The variable gadget.

Each rectilinear edge of GΦ is replaced by a sequence of bricks, one for each
linear segment, where these segments are linked again by overlapping corners.
In every feasible representation, the value false is transferred along the edge, see
Fig. 4. Note that it is possible for the edge gadget to transmit the value false
even when its first brick is set to true, but this does not change the satisfiability
of Φ.
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− −

+ false

false

Fig. 4. The edge gadget.

For the clause gadget we use a modified brick depicted in Fig. 5. In any
representation, at least one of the corners of the bounding rectangle must be
used by a dotted segment. The clause gadget consists of two normal bricks and
a modified one linked as depicted in Fig. 6. (For clauses containing 2 literals,
we use the same gadget with one dummy variable represented by a single brick
whose dotted path is pre-represented in the false position.) It is straightforward
to see that if all three literals in the clause evaluate to false, all of the corners
of the modified brick inside the clause gadget are blocked and the modified
brick itself cannot be represented. Thus if the graph constructed as above has a
representation, each clause must have at least one true literal and Φ is satisfiable.
On the other hand, if Φ is satisfiable, we construct a representation following the
lines and pictures above. Feasible representations of the clause gadget for the
cases when the bottom or a side incoming literal is true are depicted in Fig. 7.

Fig. 5. The modified brick.

+ +

−

Fig. 6. The clause gadget.

3 Triangles, Disks, and Convex Sets

De Fraysseix et al. [8] proved that every planar graph is a contact graph of isosce-
les triangles with parallel bases. The construction is based on canonical ordering
of the vertices in planar triangulations and can be performed in polynomial time.
We show that again, given some vertices pre-represented, it is NP-hard to decide
if the representation can be extended to a contact representation of the entire
graph. We prove this in a stronger form, noting that triangles are convex sets.

Theorem 2. Given a planar graph G and a partial representation R′ by contacts
of isosceles triangles, the following questions are NP-hard to decide
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true false false

true

Fig. 7. The representations of the clause gadget.

1. if R′ can be extended to an intersection representation of G by convex sets,

2. if R′ can be extended to a contact representation of G by convex sets,

3. if R′ can be extended to a contact representation of G by isosceles triangles.

Proof. We modify the proof of Theorem 1. First, note that the graph G con-
structed in the proof is a disjoint union of isolated vertices and paths and all
flexible vertices (i.e., those whose segments are not prescribed) are of degree 2.
Thus, any intersection representation by closed convex sets can be reduced to a
contact representation by segments (take the sets representing flexible vertices
one by one and replace each of them by the segment connecting the closest in-
tersection points with its two neighbors). These segments, however, do not need
to follow the vertical and horizontal directions. To force them to be “almost”
bi-directional, adjust the bricks by predrawing auxiliary guiding segments, very
close to each other, that leave a very narrow angle for the flexible (dotted) seg-
ments, as depicted in Fig. 8 (the guiding segments represent isolated vertices
and so must not be crossed or touched by any other segments of the repre-
sentation). If the width of the corridor between the guiding segments is small
enough with respect to the length of the central black segment, the corners of the
bounding rectangle are blocked by the dotted flexible segments as in the proof
of Theorem 1. A similar modification is applied to the modified brick. To keep
all flexible segments under control, we add extra blocking predrawn segments –
all loose corners will be blocked by an extra black segment and every corner of
the modified brick will be filled with three predrawn segments in an H-position
as shown in Fig. 9.

Fig. 8. The brick for the convex set reduc-
tion. Fig. 9. Extra blockage for the convex

set reduction.
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So if G has a representation by intersections of convex sets (extending the
given partial representation), then G has a contact representation by segments
with similar properties propagating the false assignment of variables as in the
proof of Theorem 1, and Φ is satisfied by the corresponding valuation. Moreover,
if Φ is satisfiable, a contact representation by vertical and horizontal segments
is a contact (i.e., also intersection) representation by convex sets. To achieve a
contact representation by isosceles triangles, it suffices to replace vertical seg-
ments by very thin triangles and the horizontal segments by very fat ones (with
very small height and whose base corresponds to a horizontal segment).

A similar modification of the gadgets by leaving a controlled space for the
flexible vertices shows the next result on disk contact (intersection) graphs (the
proof will be given in the full version of the paper).

Theorem 3. Given a planar graph G and a partial representation R′ by contacts
of disks, the following questions are NP-hard to decide

1. if R′ can be extended to an intersection representation of G by disks,
2. if R′ can be extended to a contact representation of G by disks.

4 Contacts of Regions

One can further relax the conditions on the representation by geometrical ob-
jects. From a non-crossing drawing of a planar graph one can easily construct
a contact graph of closed regions bounded by simple Jordan curves. (Disks are
of course such regions, but the proof for contacts of simple regions is much eas-
ier.) For partial contact representations by regions we encounter a polynomially
solvable case. To maintain planarity, we insist that no three regions share a point.

Theorem 4. Given a graph G and a partial representation by contacts of simple
regions, one can decide in linear time if the representation can be extended to a
contact region representation of the entire graph G.

Proof. Add a master point Mu inside every region representing a vertex u and
connect it by non-crossing curves to contact points on the boundary of its region.
Consider this as a non-crossing drawing of a graph H and add vertices for the
unrepresented vertices of G connected to the master points of their neighbors.
Call the graph obtained in this way H ′. Then G has a representation by contacts
of regions if and only if H ′ has a planar drawing that extends the fixed drawing
of H. This can be decided in linear time [1]. See an illustration in Fig. 10.

5 Grid Contact Graphs Revisited

In this section we modify the construction from the proof of Theorem 1 once
more. We note that we may require that the pre-represented vertices belong to
the same bipartition class.

Theorem 5. Given a planar bipartite graph G = (V ∪ H,E) and some of the
V vertices represented by vertical line-segments, it is NP-complete to decide if
the partial representation can be extended to a grid contact representation of the
entire graph.
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Fig. 10. Connecting region contact graphs and partially embedded planarity.

Proof. From the construction in the proof of Theorem 1, we replace each pre-
represented horizontal segment as shown in Fig. 11. Specifically, we replace it
with a flexible horizontal segment with three prescribed vertical neighbors. The
new flexible horizontal segment has the same adjacency as the original prescribed
segment and is locked in the same place by its new black vertical neighbors.

Fig. 11. Lifting the pre-representation of horizontal segments.

We conclude by observing that for the NP-hardness, it is important that
some vertical vertices remain flexible:

Theorem 6. Given a planar bipartite graph G = (V ∪ H,E) with all of the
V vertices represented by vertical line-segments, it can be decided in polynomial
time if the partial representation can be extended to a grid contact representation
of the entire graph.

Proof. (Sketch) For every horizontal vertex u ∈ H, the x-coordinates of its
(vertical) neighbors determine the x-coordinates of the left and right endpoints
of the segment representing u. What remains to be determined is its height, i.e.,
the y-coordinate. The positions of its (vertical) neighbors determine a range I(u)
of possible y-coordinates of this segment. It can be shown that I(u) is a union
of at most |V | real intervals, and hence can be described in polynomial time.
Finally, one has to resolve conflicts among the horizontal segments as segments
with equal y-coordinates must not intersect (i.e., segments with overlapping
projections to the x axis must not have the same y-coordinate). The vertices u
with infinite I(u) can be disregarded for the moment, since their y-coordinates
can always be chosen different than y-coordinates of all other vertices (we are
processing a finite graph). It can be seen that if I(u) is finite, it contains at most
2 values. The choice of the y-coordinates of such vertices can then be modeled
by 2-Satisfiability.

Pseudocode for this algorithm, a detailed proof of its correctness, and its
running time analysis will be given in the full version of the paper.

A further relaxation is when the vertical segments do not come with specified
endpoints, but only their x-coordinates (or, equivalently, their left-to-right order)
are given:
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Theorem 7. Given a planar bipartite graph G = (V ∪H,E) and the order of
x-coordinates of the vertical segments V , there is a polynomial-time algorithm
to decide if there is a grid contact representation of G respecting this order.

Proof. Here we sketch a polynomial reduction from this problem to level-
planarity testing (a detailed proof will be given in the full version of the paper
where we also show that level-planarity testing can be reduced to this problem).
In level-planarity testing we are given a leveled graph G, i.e., a graph whose
vertex set is partitioned into independent sets (levels) S1, . . . , Sk. The goal is to
determine if there is a planar drawing of G where the vertices of each Si are
represented by points on the line x = i. (For convenience we represent levels
vertically, rather than horizontally.)

Level-planarity testing is known to be solvable in linear time [9, 15]; the
algorithm proceeds level-by-level and uses PQ-trees to record possible orderings
on previous levels. Now to our problem.

Let G = (V ∪H,E) be a given planar bipartite graph and let v1, v2, . . . , vn1

be a given ordering of V by prescribed x-coordinates. For simplicity we use the
same symbol for a vertex and the segment representing it.

We may assume that G is connected, otherwise we simply solve the corre-
sponding problem on each connected component ofG and put the representations
one above the other. We may also assume that the degree of each vertex in H is
at least two; all vertices of degree one in H can be safely removed and reattached
later at arbitrary contact points.

The intuition regarding the connection between these problems comes from
the special case when every horizontal segment has degree two. In this case
we see the reduction immediately by respectively mapping vertical segments
and horizontal segments to vertices and edges in the level-planarity instance. In
particular, by giving each vertical segment its own level and ordering the levels
by the x-coordinates of the verticals we are done.

We now turn to the more interesting case, when some horizontal segments
have high (≥ 3) degree. In this case we replace each high degree horizontal
segment h by a gadget which involves O(degree of h) new segments where the
horizontal segments have degree two and the vertical segments have degree three.
This replacement is depicted in Fig. 12 and is formally described as Rule 1 below.
Rule 1. If H contains a vertex h of degree at least 3, then let vi0 , vi1 , . . . , vik+1

denote neighbors of h, where i0 < i1 < . . . < ik+1, and do the following:

(a) remove h from H and add a path
vi0 , z0, x−1 , y−1 , vi1 , y+1 , x+1 , z1, x−2 , y−2 , vi2 , . . . , vik , y+k , x+k , zk, vik+1

where x−j , x+j , y−j , y+j , zj are new vertices such that:

x−j , x+j are put in V and the rest in H.

(b) add new vertices h1, h2, . . . , hk where each hi is adjacent to x−i and x+i ,

(c) modify the ordering of V by
– inserting x−j right before and x+j right after vij , for all j = 1, . . . , k.

Moreover, from Fig. 12, it is easy to see that any solution to the original
problem is preserved by applying Rule 1. So, we need to argue that any solution
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h1

vi0 vi1

vi2

vi3 vik+1

...

h2

h3 z3 zk

y−1

y−2

y−3 y
+
3

y+2

y+1

x+1x−1

x+2x−2

x+3x−3z0 z2z1

vik

hk

y−k y+k

x+kx−k
vi0

vi1

vi2

vi3
vik+1

...

vik

Fig. 12. Replacing a horizontal segment.

to the instance post-replacement must correspond to a solution pre-replacement.
This amounts to two properties that we will need. The first is that the faces x−j ,

hj , x
+
j , y+j , vij , y−j are empty in any solution and the second is that the path

z0, x−1 , h1, x+1 , z1, x−2 , h2, x+2 , z2, . . . , x−k , hk, x+k , zk
can be “straightened”. Both of these conditions are easily observed, but require
a bit of care to prove formally. Moreover, once they are attained we then simply
reverse the replacement as in Fig. 12 to obtain a solution to our original instance.

Notice that the size of the instance of level-planarity we produced is linear
with respect to our input graph. Thus, via Rule 1 and our argument regarding
the degree two case, the reduction is complete.

6 Conclusion

In most of the cases we have encountered NP-hardness. One certainly wonders if
additional assumptions may make the partial representation extension problems
polynomially solvable. One possible direction is requiring the input graph to be
highly connected (since the graph used in the proof of Theorem 1 is very sparse):

Problem 1 Is extendability of partial grid contact representations of planar
quadrangulations decidable in polynomial time?

In view of Theorem 7 one may wonder what happens if only a part of the
vertical segments is partially described:

Problem 2 Given a planar bipartite graph and a linear order of the x-
coordinates of some of the vertical segments, can one decide in polynomial time
if there is a grid contact representation respecting this order?
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