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Abstract

The graph colouring problem and its derivatives have been notoriously known

for their inherent intractability. The difficulty seems to stem from the fact that

we want a solution for any given graph, however complex it may be. One of the

ways how to overcome this difficulty is to restrict possible inputs to the problem;

that is, we ask for a solution only for graphs having some special structure which

in turn can be used to efficiently solve the problem.

In this report, we focus on a class of graphs with particularly nice structure,

namely chordal graphs. We first survey results about colouring problems, ho-

momorphism problems and partitioning problems in general graphs, as well as,

describe useful graph decomposition techniques used in efficient algorithms for

these problems. Then we explain our solutions to some cases of partitioning and

colouring problems on chordal graphs.
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Chapter 1

Introduction

The graph colouring problem has been a focal point of graph theory for over a century. Here

the task is to label the vertices of a given graph with colours in such a way that no adjacent

vertices receive identical labels. The origins of this problem can be traced probably all the

way back to the problem of four colours, as formulated by Francis Guthrie in 1852, where

we are asked to colour any map of countries using only four colours in such a way that no

two countries sharing a boundary use the same colour. Just like the four colour problem,

there are many interesting problems that can be easily recast as a graph colouring problem.

Unfortunately the problem itself turns out to be virtually intractable (as long as the number

of colours exceeds two). Similarly, by a result of Hell and Nešetřil [65], a generalisation of

this problem – the problem of existence of a homomorphism (i.e., a mapping of the vertices

of a source graph to the vertices of a target graph that preserves adjacencies) is intractable

unless the target graph is fixed and bipartite or has a loop. Finally, as follows from a result of

Farrugia [37], a very large class of interesting generalisations of the graph colouring problem

is intractable. The difficulty seems to be caused by the generality of the input to the problem.

(We ask for a solution to the problem for any graph, however complex it may be.) This is

one of the reasons why researchers have been trying to restrict the input graphs so as to

obtain tractable versions of the aforementioned problems.

In this report, we investigate an instance of this approach, namely a restriction of the

inputs to chordal graphs. We focus on chordal graph particularly in later chapters. First,

in Chapters 2 and 3, we survey results about partitioning, colouring, and homomorphism

problems in general graphs. Then, in Chapter 4, we describe various graph decomposi-

tion methods that are useful for constructing efficient algorithms for colourings and other

problems, and in particular we discuss efficient algorithms for graph properties definable in

Monadic Second Order logic in graphs of bounded treewidth. Finally, in Chapter 5, we turn

our attention to chordal graphs and explain our solutions to some cases of partitioning and

colouring problems on chordal graphs.

1
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1.1 Definitions

A graph G is a pair (V, E) where V is a set of vertices (also called a vertex set), and E, called

a set of edges (or an edge set), is a binary relation on V , i.e., E ⊆ V × V . For a graph G,

the set of vertices and the set of edges of G is denoted by V (G) and E(G) respectively.

A graph G is undirected if E(G) is symmetric. In case we want to emphasise that G is

not necessarily undirected, we say that G is directed, or that G is a digraph. A graph G is

loopless, if E(G) is irreflexive. Note that the definition of graph above does not allow multiple

edges between two vertices; in other words, our graphs are what is sometimes reffered to as

simple.

We say that vertices u and v are adjacent in G (or that u and v are neighbours in G), if

uv ∈ E(G) of vu ∈ E(G). A walk W in G is a sequence of vertices W = u1, u2, . . . uk such

that for each 1 ≤ i < k, the vertices ui and ui+1 are adjacent. A walk W = u1, . . . , uk in

G is closed if the vertices u1 and uk are also adjacent. A (closed) walk W in G is a path

(respectively a cycle) if no vertex of W appears on W more than once. We denote by Pk the

path on k vertices with k − 1 edges, and denote by Ck the cycle on k vertices with k edges.

We say that G is connected if for any two vertices u, v of G there exists a path that connects

them, i.e., a path u = u1, u2, . . . , uk = v. Otherwise, we say that G is disconnected. We say

that a graph is acyclic if it contains no cycle. An undirected acyclic graph is called a forest.

A connected forest is called a tree.

We say that a graph H is a subgraph of G and denote it by H ⊆ G, if V (H) ⊆ V (G)

and E(H) ⊆ E(G). We say that a subgraph H of G is induced and denote it by H ≤ G, if

E(H) = E(G) ∩ V (H) × V (H). For any subset S of the vertices of G, we denote by G[S]

the induced subgraph of G whose vertex set is S. We also say that G[S] is a subgraph of

G induced on S. For a subset S of vertices (respectively edges), we denote by G − S the

subgraph of G that is obtained by removing from G the vertices (edges) of S. (Note that

with each removed vertex we must also remove all edges adjacent to it.) In the case that S

consists only of a single element x, we write G− x instead of G− {x}.
For a connected graph G, a vertex u is a cutpoint of G if the graph G−u is disconnected.

An edge e = uv is a bridge of G if the graph G − e is disconnected. A subset S of vertices

(edges) of G is a vertex (edge) separator of G if G− S is disconnected.

We say that two graphs G and H are isomorphic and denote it by G ∼= H , if there exists
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a bijective mapping f : V (G)→ V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H)

for any u, v ∈ V (G). The complement of a graph G is the graph G with vertices V (G) and

edges uv where u 6= v and uv 6∈ E(G). The union G∪H of two graphs G and H is the graph

with vertices V (G)∪ V (H) and edges E(G)∪E(H). The disjoint union G⊎H of G and H

is the union of graphs G′ and H , where G ∼= G′ and V (G′) ∩ V (H) = ∅. The join G + H of

two graphs G and H is the complement of G ⊎H.

A graph G is complete, if it contains edges between all pairs of distinct vertices. We

denote by Kn the complete graph on n vertices. A clique of G is a complete subgraph of G,

and an independent set of G is an induced subgraph of G having no edges. For any graph

G, we denote by ω(G), and α(G), the size of a maximum clique in G, and the size of a

maximum independent set in G, respectively.

For a subset S of the vertices of G, we denote by N(S) the open neighbourhood of S, i.e.,

the set of vertices of G−S that are adjacent to at least one vertex of S. We denote by N [S]

the closed neighbourhood of S, i.e., N [S] = N(S) ∪ S. If S contains only one element u, we

abbreviate N({u}) and N [{u}] to N(u) and N [u] respectively. We let deg(u) = |N(u)| be

the degree of u, and let ∆(G) be the maximum degree among the vertices of G.

Unless indicated otherwise, n always denotes the number of vertices of G and m the

number of edges of G.

A colouring of a graph G is a mapping c : V (G) → N where N is the set of all natural

numbers. A k-colouring of G is a mapping c : V (G) → {1, 2, . . . , k}. A colouring c of G

is proper if for any u, v ∈ V (G) we have c(u) 6= c(v) whenever uv ∈ E(G). The chromatic

number of G, denoted by χ(G), is the smallest integer k such that G admits a proper k-

colouring.

A dominating set S in G is a subset of vertices of G such that any vertex of G not in S

has at least one neighbour in S. The domination number of G, denoted by γ(G), is the size

of a smallest dominating set in G.

For any two vertices u, v ∈ V (G), we denote d(u, v) the distance between u and v, i.e.,

the length of a shortest path between u and v in G. We denote by Gk the k-th power of G,

i.e., the graph obtained from G by making adjacent any two vertices in distance at most k.

For a graph H , we say that G is H-free is G contains no induced subgraph isomorphic

to H . For a set of graphs H, we say that G is H-free is G contains no induced subgraph

isomorphic to some H ∈ H.
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1.2 Graph classes

In this section we briefly describe some properties of chordal graphs, and also mention other

graph classes, in particular those that are important in our later investigations.

1.2.1 Chordal Graphs

A graph G is chordal if it does not contain an induced subgraph isomorphic to Ck for k ≥ 4.

Chordal graphs have been investigated in the literature also under names triangulated or

rigid-circuit graphs [57]. Chordal graphs have been found to possess several interesting

structural properties.

An elimination ordering π is a numbering of vertices of a graph G from 1 to n. The fill-in

Fπ caused by the ordering π is the set of edges defined as follows.

Fπ =

{

uv

∣
∣
∣
∣
∣

u 6= v, uv 6∈ E(G) and there exists a u-v path P in G

with π(w) < min{π(u), π(v)} for all u, v 6= w ∈ P

}

An elimination ordering π is perfect if Fπ = ∅. Equivalently, one can say that a total

ordering ≺ on the vertices of G is a perfect elimination ordering of G, if whenever y and

z are neighbours of x such that x ≺ y and x ≺ z, we have that y and z are adjacent. An

elimination ordering π is minimum if |Fπ| is minimum over all orderings of G, and is minimal

if there is no ordering σ with Fσ $ Fπ. The graph Gπ = (V, E ∪Fπ) is the fill-in graph for π.

Elimination orderings arise in the study of Gaussian elimination of sparse symmetric

matrices [97]. The following properties establish connection between perfect elimination

orderings and chordal graphs.

Proposition 1.1. [25] Any choral graph G contains a simplicial vertex, i.e., a vertex whose

neighbourhood in G induces a clique in G.

Proposition 1.2. [98] Any ordering π is a perfect elimination ordering of Gπ.

Proposition 1.3. [25, 98] A graph G has a perfect elimination ordering if and only if G is

chordal.

Perfect elimination orderings play an important role in many algorithms for chordal

graphs. In particular, it can be shown [57] that using a perfect elimination ordering of a
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chordal graph G, one can compute in time O(n + m) the chromatic number χ(G) of G, the

size of a maximum clique ω(G) of G, and also the size of a maximum independent set α(G)

of G. Note that these problems are intractable in general. It also turns out that for any

chordal graph G the chromatic number of G and the size of a maximum clique are equal,

i.e., χ(G) = ω(G). In particular, this is true for any induced subgraph H of G since H must

be also chordal. This shows that chordal graphs are a special subclass of so-called perfect

graphs which we discuss in the next section.

Now let T be a tree and T = {T1, . . . , Tn} be a set of (connected) subtrees of T . The

vertex intersection graph of T is a graph G with vertex set V (G) = {v1, . . . , vn} in which

two vertices vi and vj are adjacent if and only if the trees Ti and Tj share a vertex, i.e.,

V (Ti) ∩ V (Tj) 6= ∅. (A similar class of graphs so-called edge intersection graphs of paths in

a tree has also been studied [58].) We have the following property.

Proposition 1.4. [55] A graph G is chordal if and only if G is the vertex intersection graphs

of subtrees of some tree.

A family of sets {X1, . . . , Xn} is said to satisfy the Helly property if for any index set

I ⊆ {1, . . . , n} with Ti ∩ Tj 6= ∅ for any i, j ∈ I, we have that
⋂

i∈I Ti 6= ∅. The following is

easy to observe.

Proposition 1.5. A family of subtrees of a tree satisfies the Helly property.

Proposition 1.6. [52] Any chordal graph G on n vertices has at most n maximal cliques.

Lastly, we have the following property.

Proposition 1.7. [57] Every minimal vertex separator in a chordal graph induces a clique.

This property allows one to construct a decomposition of any chordal graph using its

minimal separators. This is captured by the following notion.

A clique-tree T of a connected chordal graph G is a tree such that (i) each vertex v ∈ V (T )

corresponds to a maximal clique Cv of G, (ii) for any edge xy ∈ E(G), there exists a vertex

v ∈ V (T ) with x, y ∈ Cv, and (iii) for any vertex x ∈ V (G), the vertices v ∈ V (T ) with

x ∈ Cv induce a connected subgraph Tx in T .

The following property explains a connection between vertex intersection graphs of sub-

trees of a tree and clique-trees of chordal graphs.
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Proposition 1.8. Any chordal graph G is the vertex intersection graph of subtrees Tx of a

clique-tree T of G.

Finally, we establish a connection between perfect elimination orderings and clique-trees

of chordal graphs.

Let T be a fixed clique-tree of a chordal graph G. Let us consider T rooted at a vertex r

chosen arbitrarily, and let ⊏ be a strict partial order on the vertices of T defined as follows:

u ⊏ v ⇐⇒ u is a descendant of v. Based on this, one can easily observe that the vertex

set of any (connected) subgraph of T has a (unique) maximal element with respect to ⊏.

Hence, for any vertex x ∈ V (G), let mx be the unique maximal element of Tx (the connected

subgraph of T formed by vertices v ∈ V (T ) with x ∈ Cv) with respect to ⊏.

Now let ≺ be a strict partial order on the vertices of G defined as follows: x ≺ y ⇐⇒
mx ⊏ my. It is easy to see from the definition that the following observation holds.

Proposition 1.9. Any linear extension of ≺ is a perfect elimination ordering of G.

(This useful fact appears to not have been explicitly observed previously.)

Now we introduce a fundamental concept for exploring the structure of a graph. Lexico-

graphic breadth-first search is an algorithm that, given a graph G, constructs a special

breadth-first search ordering of the vertices of G. In the process of exploring the graph,

the algorithm assigns to the vertices labels formed by subsets of {1, . . . , n}, and using these

labels it decides which vertex to explore next. The elements of any label are assumed to be

ordered from the largest to the smallest number in the label. The algorithm always chooses

an unprocessed vertex with lexicographically largest label among the unprocessed vertices

(ties are broken arbitrarily), where lexicographic order is just the usual dictionary order,

e.g., {9, 7, 6, 1} < {9, 8, 5} and {6, 4, 3} < {6, 4, 3, 2}. The algorithm as just described is

summarised in Algorithm 1.

We have the following property about the algorithm.

Proposition 1.10. [57] A graph G is chordal if and only if Algorithm 1 on G produces a

perfect elimination ordering π of G.

Now it follows that one can decide in time O(n + m) whether a given graph G is chordal

just by computing an elimination ordering π using Algorithm 1 on G, and then testing
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whether π is a perfect elimination ordering by simply checking whether the neighbours of

any vertex v that appear in π after v form a clique; both steps can easily be implemented in

time O(n + m).

We remark that Lexicographic breadth-first search algorithm was originally introduced

by Rose, Tarjan and Leuker in [98] as a simple linear time algorithm for recognising chordal

graphs (as we just described). It has since found numerous applications outside chordal

graphs, for instance, efficient recognition of cographs (P4-free graphs), P4-sparse graphs, P4-

reducible graphs, AT-free graphs, interval graphs, unit interval graphs, and their powers [20].

We should mention that there exists yet another efficient algorithm by Tarjan [111] for

recognition of chordal graph. Maximum cardinality search is an algorithm that numbers

vertices of a graph from n to 1 where the next vertex to be numbered it one that is adjacent

to the most numbered vertices (ties are broken arbitrarily). This algorithm also produces

a perfect elimination ordering given a chordal graph, yet it should be pointed out that the

orderings produced by Maximum cardinality search and the orderings produced by Lex-

icographic breadth-first search are not exactly the same, and moreover there are perfect

elimination orderings that none of these algorithms can produce.

We close by mentioning that recently a unified approach to graph search algorithms

generalising both the above algorithms has been discovered [22].

Algorithm 1: Lexicographic Breadth-First search

Input: A graph G

Output: An elimination ordering π

set label(v)← ∅ for all v ∈ V (G)1

for i← n downto 1 do2

pick an unnumbered vertex v with lexicographically largest label3

π(i)← v /* the vertex v becomes numbered */4

for each unnumbered w adjacent to v do5

add i to label(w)6
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1.2.2 Perfect Graphs

A graph G is perfect if, for every induced subgraph H of G, the chromatic number χ(H) is

equal to the clique number ω(H). The class of perfect graphs includes such classes of graphs

as bipartite graphs, chordal graphs, cographs, comparability graphs, and their complements.

It is an interesting and important class of graphs, and has been a focus of attention for more

than a half of a century now, which is in part due to the result of Grötschel, Lovász and

Schrijver [59] who gave a polynomial time algorithm for all the basic combinatorial problems

(χ,α,ω) in perfect graphs. There are many interesting results known about perfect graphs.

Here we only mention the most notable ones conjectured by Berge [6], namely The Weak

Perfect Graph Theorem due to Lovász [24] and The Strong Perfect Graph Theorem due to

Chudnovsky, Robertson, Seymour and Thomas [15].

Theorem 1.11 (The Weak Perfect Graph Theorem). [24]

A graph is perfect if and only its complement if also perfect.

Theorem 1.12 (The Strong Perfect Graph Theorem). [15]

A graph is perfect if and only if it has no induced odd cycle or its complement.

As we already remarked, some problems that are difficult in general like the graph colour-

ing or the maximum clique problem, admit a polynomial time solution in perfect graphs.

Unfortunately, the algorithms for these problems are not always combinatorial, and in addi-

tion, there are problems that are not tractable even in perfect graphs. It is therefore natural

to ask in which restricted classes of perfect graphs these problems have nice combinatorial

solutions and perhaps a polynomial solutions for problems intractable in perfect graphs. We

already mentioned such a subclass, namely the class of chordal graphs in which many difficult

problems admit even linear time algorithms.

In the following, we briefly describe some other interesting examples of such classes, and

summarise the complexities of selected combinatorial problems at the end of this chapter.

Split graphs

A graph G is split if G can be partitioned into a clique and an independent set with no other

restriction on the edges between the two. It can be seen that any split graph is also chordal,

and since the complement of a split graph is also split, any split graph is also co-chordal
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(a graph is co-chordal if it is the complement of a chordal graph). In fact, the converse

is also true.

Theorem 1.13. [57] A graph G is split if and only if G is both chordal and co-chordal.

Comparability graphs

A subset of edges F ⊆ E(G) of an undirected graph G is an orientation of G if F ∩F−1 = ∅
and F ∪ F−1 = E(G). (The set F−1 consists of edges vu where uv ∈ F ).

A graph G is a comparability graph if there exists a transitive orientation of G, that is,

an orientation F of G with F 2 ⊆ F where F 2 = {ac | ab, bc ∈ F for some b}. We remark

that basic facts about comparability graphs go all the way back to the paper of Gallai [54].

Permutation graphs

For a permutation π of {1, . . . , n}, let G[π] be a graph with vertices V (G[π]) = {1, . . . , n}
and edges ij ∈ E(G[π]) ⇐⇒ (i− j)

(
π−1(i)− π−1(j)

)
< 0.

A graph G is called a permutation graph if G ∼= G[π] for some permutation π. It can

be shown that any permutation graph is also a comparability graph. Moreover, one can

observe that the complement of a permutation graph G = G[π] is the graph G[πR] where πR

is the reverse of π, i.e., πR(i) = π(n + 1 − i) for all 1 ≤ i ≤ n. Hence, G is a permutation

graph and it follows that any permutation graph is also a co-comparability graph (a graph is

co-comparability if it is the complement of a comparability graph). In fact, it can be shown

that, conversely, any graph that is both a comparability and a co-comparability graph is also

a permutation graph.

Theorem 1.14. [57] A graph G is a permutation graph if and only if G is both a comparability

and co-comparability graph.

Cographs

A graph G is a cograph if G can be constructed from single vertex graphs using the oper-

ations of join and union (or equivalently the operations of complement and union). This

construction can be represented by a tree whose leaves are the vertices of G, and inner nodes

are labeled either 0 or 1, denoting the operation of union or join respectively. It can be



10 Chapter 1. Introduction

shown [21] that for any cograph G there exists a unique minimal tree that represents the

construction of G; such a tree is called the cotree of G. We remark that using the cotree of a

cograph G, one can solve many graph problems on G efficiently and usually in linear time.

From a structural point of view, in [21] it was shown that the class of cographs is precisely

the class of P4-free graph.

Theorem 1.15. [21] A graph G is a cograph if and only if G contains no induced P4.

Additionally, the authors in [21] show a multitude of equivalent definitions of cographs

that independently appeared in the literature. In particular, it can be seen that cographs

form a proper subclass of permutation graphs.

Interval graphs

For a family of intervals I = {I1, . . . , In} on the real line, the intersection graph of I is the

graph with vertices {v1, . . . , vn} and edges vivj ⇐⇒ Ii ∩ Ij 6= ∅.
A graph G is an interval graph if G is the intersection graph of a family of intervals on

the real line. It can be seen that any interval graph is also a chordal graph. Similarly, it

is not difficult to argue [57] that any interval graph is also a co-comparability graph, and

conversely, any graph that is chordal and co-comparability is also an interval graph.

Theorem 1.16. [57] A graph G is interval if and only if G is both chordal and co-comparability.

By a result of Lekkerkerker and Boland [84], we have the following characterisation of

interval graphs. An asteroidal triple of a graph G is a triple of mutually non-adjacent

vertices such that for any two vertices of the triple there exists a path in G that avoids the

neighbourhood of the third vertex in the triple. We say that a graph G is AT-free if G does

not contain any asteroidal triple.

Theorem 1.17. [84] A graph G is interval if and only if G is chordal and contains no

asteroidal triple (is AT-free).

We remark that AT-free graphs form a class on their own, and even though they are not

a subclass of perfect graphs, several interesting results are known about them [102].

1.2.3 Other classes

In this section, we briefly define other classes of graphs we shall deal with in later chapters.
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Circular-Arc graphs

A graph G is a circular-arc graph if G is the intersection graph of arcs of a circle. Circular-arc

graphs are not necessarily perfect, e.g., C5 is circular-arc.

Bi-arc graphs

A graph G is a bi-arc graph if there exist a family of arcs of a circle with two distinguished

points p and q where each vertex of G is associated with two arcs (Nx, Sx) such that Nx

contains p but not q and Sx contains q but not p, and for any two vertices x, y the following

holds: (i) if xy ∈ E(G) then Nx ∩ Sy = ∅ and Ny ∩ Sx = ∅, and (ii) if xy 6∈ E(G) then

Nx∩Sy 6= ∅ and Ny ∩Sx 6= ∅. Note that it is not possible that Nx∩Sy = ∅ and Ny ∩Sx 6= ∅.

1.2.4 Complexity Results

In table 1.1 in this section we summarise complexities of the graph colouring and related

problems in different graph classes. The results are taken from [102]. Here, n and m, as

usual, refer to the number of vertices respectively edges of an input graph, and nα is the

complexity of matrix multiplication.
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recognition χ(G) α(G) γ(G) HAM

All graphs - NP c NP c NP c NP c

Perfect O(n9) ∈ P ∈ P NP c NP c

Chordal O(n + m) O(n + m) O(n + m) NP c NP c

Split O(n + m) O(n + m) O(n + m) NP c NP c

AT-free O(nα) open O(n3) O(n6) open

Interval O(n + m) O(n) O(n) O(n) O(n)

Circular-arc O(n + m) NP c O(n) O(n) O(n2 log n)

Comparability O(nα) O(n + m) O(n2m) NP c NP c

Co-comparability O(nα) O(n2m) O(n + m) O(nm2) O(n3)

Permutation O(n + m) O(n log log n) O(n log log n) O(n) O(n + m)

Cographs O(n + m) O(n) O(n) O(n) O(n)

Table 1.1: A summary of complexities of selected graph problems in different graph classes.

Note that all problems except the recognition assume that an appropriate representation of

a graph is given, e.g., a set of intervals for an interval graph.



Chapter 2

Graph Properties

In this chapter, we investigate complexity of generalised colouring problems cast as colourings

by graph properties. We will mostly follow the notation used in [37].

For a set U , a property P of U is a subset of U . A property P is trivial if P = ∅ or P = U ;

otherwise P is non-trivial. A graph property P is an isomorphism closed property of the set

of all graphs, i.e., for each G ∈ P, any G′ isomorphic to G is also in P. Unless indicated

otherwise, we shall assume that the properties we consider are non-trivial.

2.1 Closure properties

We say that P, a property of U , is closed under a (k + 1)-ary relation R ⊆ U × Uk, k ≥ 0,

if, whenever (s, t1, t2, . . . , tk) ∈ R and t1, t2, . . . tk ∈ P, then also s ∈ P. For instance, by

definition any graph property P is closed under isomorphism, i.e., the relation α(G1, G2) ≡
“G1 is isomorphic to G2”. We say that a graph property P is additive, if it is closed under

taking disjoint unions of graphs, i.e., the relation ⊎(G, G1, G2) ≡ “G is the disjoint union of

G1 and G2”; we say that P is co-additive if it is closed under join.

For a partial order � on the set U , we say that a property P is �-hereditary, if P is closed

under �. In particular, for the case of graphs, we shall be interested in two partial orders

on graphs, namely the subgraph order ⊆ and the induced subgraph order ≤. We shall say

that a graph property P is hereditary, respectively induced-hereditary, if P is ⊆-hereditary,

respectively ≤-hereditary. We denote by L, L≤, La, and La
≤ the class of hereditary, induced

hereditary, additive hereditary and additive induced hereditary properties respectively.

We now briefly mention some examples of hereditary graph properties. In chapter 3,

we define the problem HOM(H) of existence of a homomorphism from a given graph G to

the graph H . This problem clearly defines a graph property (→H) = {G | G → H}, that

is, (→H) contains the graphs G homomorphic to H . It is easy to see that for any H the

13
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property (→H) is additive and hereditary, hence also induced hereditary. Below, we list

more examples of (induced) hereditary graph properties.

O = {Kr | r ≥ 0} K = {Kr | r ≥ 0} Sk = {G | ∆(G) ≤ k}
Pk = {G | Pk 6≤ G} Kk = {G | Kk 6≤ G} H⊆ = {G | G ⊆ H}
Pk = {G | P k 6≤ G} Kk = {G | Kk 6≤ G} H≤ = {G | G ≤ H}

(→H) = {G | G→ H} B = {perfect graphs} X = {chordal graphs}

The properties O,Sk,Kk, (→H), H⊆ are all hereditary, whereas Kr,Pk,Pk,Kk, H≤,B,X
are only induced hereditary and not hereditary. Similarly the propertiesO,Sk,Pk,Pk,Kk,Kk,

(→H), B,X are additive, whereas K, H⊆, H≤ are not. Furthermore, K,B,Pk,Kk and Pk for

k ≥ 4 are the only co-additive properties from the list above.

An element s ∈ U is a �-predecessor of t ∈ U if s � t; if moreover s 6= t, then s is a proper

�-predecessor of t. For a property P, a minimal forbidden �-predecessor is an element t 6∈ P
such that each proper �-predecessor of t is in P. We denote F�(P) the set of all minimal

forbidden �-predecessors for P, i.e., F�(P) = min�{t | t 6∈ P}.
For a set S ⊆ U , we define the property Forb�(S) = {t | ∀ s ∈ S, s 6� t}. If S is a single

element s, we write Forb�(s) instead of Forb�({s}). For instance, we have Forb≤(Pk) = Pk

and Forb⊆(Kk) = Kk, where F≤(Pk) = {Pk} and F⊆(Kk) = {Kk}. In general, if S is an

antichain under �, then F�(Forb�(S)) = S.

Note that, if � is the minor relation (a graph H is a minor of G, H � G, if H can be

obtained from G by a series of edge contractions and edge removals), then by The Graph

Minor Theorem of Robertson and Seymour [96], any antichain under � is finite; hence F�(P)

is finite for any minor closed graph property P.

2.2 Composition of properties

For two properties P,Q the property P ◦ Q contains all graphs G whose vertex set V (G)

can be partitioned into sets X, Y where G[X] ∈ P and G[Y ] ∈ Q. We shall call the property

P ◦Q the composition of the properties P and Q. More generally, for properties Q1, . . . ,Qk,

the property Q1 ◦ . . . ◦Qk consists of all graphs G whose vertex set V (G) can be partitioned

into sets V1, . . . , Vk where G[Vi] ∈ Qi for all 1 ≤ i ≤ k. If P = Q1 ◦ . . . ◦ Qk, then each Qi is

a factor or divisor of P, while P is their product. For a property R, we usually abbreviate
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R ◦ . . . ◦ R to Rk. For a class of graph properties P, we say that a property P is reducible

or factorisable over P, if there exist properties R,Q ∈ P such that P = R ◦ Q. Otherwise,

we say that P is irreducible over P.

2.3 Uniqueness of factorisation

For graphs G1, G2 and a partial graph ordering �, a (disjoint) �-composition of G1 and G2 is

a graph H containing (vertex disjoint) subgraphs H1 and H2 where G1 � H1 and G2 � H2.

We say that a hereditary graph property P is hereditary (disjoint) compositive if P is

closed under (disjoint) ⊆-composition. We say that an induced-hereditary graph property

P is induced-hereditary (disjoint) compositive if P is closed under (disjoint) ≤-composition.

It turns out that any (additive) hereditary compositive property has a factorisation into

(additive) hereditary compositive properties which is unique, up to the order of factors;

similarly for (additive) induced hereditary disjoint compositive properties.

Theorem 2.1. [37] An (induced) hereditary (disjoint) compositive property has a unique

factorisation into irreducible (induced) hereditary (disjoint) compositive factors; an additive

(induced) hereditary property has a unique factorisation into irreducible additive (induced)

hereditary factors.

The proof of this theorem is quite non-trivial and utilises partial results spanning several

papers [5, 35, 36, 76, 90, 91, 92]. The result itself serves as a tool in characterising uniquely

partitionable graphs which are used in the complexity characterisation which we discuss in

the next section.

2.4 Complexity

For properties Q1, . . . ,Qk, the problem of deciding, given a graph G, whether G ∈ Q1 ◦ . . . ◦
Qk is called a (Q1, . . . ,Qk)-colouring or (Q1, . . . ,Qk)-partitioning or (Q1 ◦ . . . ◦ Qk)-

recognition problem. For instance the problemOk-recognition is the well known proper

k-colouring problem.

Interestingly, the problem of P-recognition can be arbitrarily hard, even when P is

additive and induced-hereditary [37]. (Note that this does not happen with minor closed
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properties P since then F�(P) is always finite [96].) On the other hand, if both P and

Q are in NP then their composition P ◦ Q is also in NP , whereas if both P and Q are

in P , then P ◦ Q can be NP -complete. It turns out [34, 37] that for reducible additive

induced-hereditary properties each problem is either in P or NP -hard.

Theorem 2.2. [34, 37] Let P and Q be additive induced-hereditary properties, P ◦ Q 6= O2.

Then (P ◦ Q)-recognition is NP -hard. Moreover, it is NP -complete iff P- and Q-

recognition are both in NP .

2.5 Mixed Properties

For a property Q, we define the property Q as the graphwise complement of Q, i.e., Q =

{G | G ∈ Q}. Unfortunately, not all interesting graph properties can be expressed as a

composition of additive properties. This is for instance the case for the class of polar graphs.

(A graph G is polar if G can be partitioned into a complete multipartite graph and a disjoint

union of cliques.). However, some graph properties can be expressed as a composition P ◦Q
where P and Q are additive properties. For example, polar graphs precisely correspond to

the property P3 ◦ P3. It is easy to see that a property Q is additive induced-hereditary if

and only if Q is co-additive induced-hereditary. Note that similar claim does not hold for

hereditary properties. In [37], the following complexity result is proved.

Theorem 2.3. [37] Let P be a composition of an additive and a co-additive induced hered-

itary property. Then P-recognition is NP -hard except, possibly, if there exist efficiently

recognisable irreducible properties Q and R where Q is additive and R is co-additive such

that P is Q,R,Q ◦R, Q ◦ K2, O2 ◦ R, or O2 ◦ K2.

On the other hand, it is known that (O ◦ K)-, (O2 ◦ K)-, (O ◦ K2)- and (O2 ◦ K2)-

recognition are polynomial time solvable [46], whereas the complexity of the cases Q◦R,

Q◦K2 and O2◦R is largely unknown. However, for hereditary properties there is a complete

characterisation due to Alekseev and Lozin [3].

Theorem 2.4. [3] For any properties P and Q where P ⊆ Forb≤(Kp), and Q ⊆ Forb≤(Kq)

for some integers p, q, there exists a polynomial time algorithm for (P ◦ Q)-recognition.
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The running time of this algorithm is roughly O(n2R(p,q)) where R(p, q) is the Ramsey

number of p and q. It should be noted that this result is a particular instance of a more

general approach called sparse-dense partitions [46] which is described in Section 3.3.1 of

Chapter 3. Finally, since each hereditary property must be Kp-free for some p, unless it

contains all graphs, we have the following consequence.

Theorem 2.5. [3] For any additive hereditary properties P and Q, the problem of (P ◦Q)-

recognition is NP -hard, unless both P and Q are in P , in which case it is polynomial

time solvable.

2.6 Properties of graph classes

Finally, in the light of results from the previous sections, we can naturally ask what is the

complexity of P-recognition when restricted to a particular class of graphs. That is, for a

graph property P and a class of graphs D, we can consider the problem of P-recognition

on instances from D. In case D is efficiently recognisable, we can equivalently consider the

problem of D ∩ P-recognition. Notice that unfortunately Theorem 2.2 does not apply

here, since for properties P and Q, we do not necessarily have D∩(P◦Q) = (D∩P)◦(D∩Q).

Generally, the complexity characterisation like Theorem 2.2 in this case is largely unknown

even for nicely structured graph classes D.



Chapter 3

Graph Homomorphisms

In this chapter, we investigate the complexity of graph homomorphism properties which form

a significant subclass of all additive hereditary properties. We explain the connection with

Constraint Satisfaction and well known Dichotomy Conjecture.

3.1 Constraint Satisfaction

A vocabulary is a set σ = {(R1, k1), . . . , (Rt, kt)} of relation names and their arities. A

relational structure H over the vocabulary σ is a tuple H = (V, R1, . . . , Rt) where V is a

set and Ri ⊆ V ki for all 1 ≤ i ≤ t. For two relational structures G and H over the same

vocabulary, a homomorphism from G to H is a mapping h : V (G) → V (H) where for any

1 ≤ i ≤ t, whenever (x1, . . . , xki
) ∈ Ri(G), then also (h(x1), . . . , h(xki

)) ∈ Ri(H). Note that

(di)graphs are precisely relational structures over the vocabulary {(E, 2)}.
A constraint satisfaction problem is the problem of deciding, given two relational struc-

tures G and H over the same vocabulary (with possibly G or H fixed), whether there exists

a homomorphism h from G to H. In case h exists, we also say that G is homomorphic to H
and write G → H, otherwise we write G 6→ H. We observe that any constraint satisfaction

problem is in NP , since given a mapping h, one can easily check whether it is a homomor-

phism from G to H, and the description of h is clearly polynomial in size. In case H is fixed,

we denote such problem CSP (H). If H is a (directed) graph H , we also call it H-colouring

problem, and denote it HOM(H). The structure G is usually called an instance or a source,

and H is usually called a template or a target. The H-graph retract problem RET (H) is a

problem of deciding, given a (di)graph G containing a fixed copy H ′ of H , whether there ex-

ists a homomorphism from G to H that bijectively maps H ′ to H . It is a particular example

of a constraint satisfaction problem. We say that a graph G is a core if G is not homomor-

phic to any proper induced subgraph of G, or equivalently, G cannot be retracted to some

18
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proper induced subgraph of G. We call CSP the class of problems CSP (H), and similarly

call HOM respectively RET the class of problems HOM(H) respectively RET (H).

The class CSP is a very poweful and rich class of problems. There are countless examples

of problems expressible as a CSP . For instance, we find uses of CSP in machine vision,

belief maintenance, scheduling, temporal reasoning, type reconstruction, graph theory and

satisfiability [28, 49, 77, 89].

For two decision problems A and B, we say that A is polynomially reducible to B if there

exists a polynomially computable function f transforming instances of A to instances of B

such that X ∈ A ⇐⇒ f(X) ∈ B for any instance X of A. We say that A and B are

polynomially equivalent if A is polynomially reducible to B and B is polynomially reducible

to A. For two classes of decision problems A and B, we say that A is polynomially equivalent

to B, if for any problem A ∈ A there exists a polynomially equivalent problem BA ∈ B, and

for any problem B ∈ B there exists a polynomially equivalent problem AB ∈ A

3.1.1 Dichotomy Conjecture

Constraint satisfaction problems have recently gained considerable interest due to the fa-

mous paper of Feder and Vardi [49]. The result of Ladner [80] says that assuming P 6= NP ,

there must exist problems that are neither in P nor NP -complete, also called intermediate

problems. In the light of this result, Feder and Vardi investigated which subclasses of NP

have the same computational power as NP , and which do not (and hence might not contain

intermediate problems). They define the class MMSNP , monotone monadic strict NP

without inequality, and show that for this class Ladner’s argument does not immediately

apply, however, removing either of ‘monotone’, ’monadic’ or ’without inequality’ restrictions

gives the full computational power of NP . Furthermore, they show that MMSNP is poly-

nomial time equivalent to the class CSP , where the reduction from MMSNP to CSP is

deterministic, whereas the reduction from CSP to MMSNP is randomised. (Later Gabor

Kun [78] derandomised their construction.) Hence they conjectured the following.

Conjecture 3.1 (Dichotomy Conjecture for CSP).

Every problem in the class CSP is either in P or NP -complete.

It should be mentioned that this dichotomy conjecture was largely motivated by a result
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of Shaeffer [100], who showed a dichotomy for boolean CSP , and a result of Hell and Nešetřil,

who showed a dichotomy for undirected graphs. (See Theorem 3.11.)

Feder and Vardi in [49] also investigated which classes of NP problems have the same

computational power as CSP , and in particular showed the following.

Theorem 3.2. [49] CSP is polynomially equivalent to the classes RET and HOM .

This implies that showing a dichotomy for either of RET or HOM implies dichotomy

for CSP . Hence, the following conjectures.

Conjecture 3.3 (Dichotomy Conjecture for (di)graph homomorphism problem).

Every problem in the class HOM is either in P or NP -complete.

Conjecture 3.4 (Dichotomy Conjecture for graph retract problem).

Every problem in the class RET is either in P or NP -complete.

The last problem we are going to deal with that has a connection to the conjecture is the

following. The list constraint satisfaction problem for a relational structure H, denoted by

LCSP (H), is the problem of deciding, given a relational structure G with lists ℓ(v) ⊆ V (H)

for any v ∈ V (G), whether there exists a homomorphism h from G to H with h(v) ∈ ℓ(v)

for any v ∈ V (G). Such homomorphism h is called a list homomorphism. We denote LCSP

the class of problems LCSP (H). For (directed) graph H , we write LHOM(H) for the

problem LCSP (H), and denote LHOM the class of problems LHOM(H). (Note that

here we deviate from the notation used in [10] by using LHOM strictly for (di)graph list

homomorphism, and using LCSP in place of LHOM for structures.)

In the literature [10, 64], list CSP ’s are also called conservative CSP ’s or CSP ’s for

conservative structures. (A structure H is conservative if H contains all unary (arity one) re-

lations US(H) = S ⊆ V (H).) Indeed, any instance (G, ℓ) of LCSP (H) can be transformed to

an instance G′ of CSP (H′) whereH′ is the structureH augmented with all unary relations US

(i.e., H′ is conservative), and G′ is constructed from G by setting US = {v ∈ V (G) | ℓ(v) = S}.
By a similar argument, any instance G′ of CSP (H′) for conservative H′ can be transformed

to an instance (G, ℓ) for LCSP (H) where H has no (or may have some) unary relations.

It turns out that for LCSP a dichotomy is already known [10]. (We remark this result

does not immediately imply a dichotomy for any of HOM , RET or CSP ).
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Theorem 3.5 (Dichotomy for list homomorphism problem (LCSP)). [10]

Every problem in the class LCSP is either in P or NP -complete.

We should mention that this result was strongly motivated by the results of Feder, Hell

and Huang [38, 43, 44] who proved a dichotomy for LHOM in the case of undirected graphs.

(See Theorems 3.12, 3.13, and 3.14.)

We close by noting that there also exists a dichotomy for a related problem of counting

homomorphisms #CSP defined formally in [11].

Theorem 3.6 (Dichotomy for counting homomorphism problem (#CSP)). [11]

Every problem in the class #CSP is either in FP (polynomial) or #P -complete.

3.1.2 Polymorphisms

Let H be a fixed relational structure. It turns out that the complexity of CSP (H) can be

determined from particular algebraic properties of H.

We say that a mapping ϕ : V (H)k → V (H) where k ≥ 1 is a polymorphism of H if,

whenever uivi ∈ E(H) for all 1 ≤ i ≤ k, also ϕ(u1, . . . , uk)ϕ(v1, . . . , vk) ∈ E(H). Similarly,

for a relational structure H over the vocabulary σ = {(R1, k1), . . . , (Rt, kt)}, a mapping

ϕ : V (H)k → V (H) where k ≥ 1 is a polymorphism of H if, for all 1 ≤ j ≤ t, whenever

(u1i, . . . , ukji) ∈ Rj(H) for all 1 ≤ i ≤ k, also (ϕ(u11, . . . , u1k), . . . , ϕ(ukj1, . . . , ukjk)) ∈ Rj(H).

We denote by Pol(H) the set of all polymorphisms of H.

In [74], the following interesting fact is shown.

Theorem 3.7. [74] Assuming V (H) = V (H′), if Pol(H′) ⊆ Pol(H), then CSP (H) is

polynomially reducible to CSP (H′).

It follows that for structures H having many polymorphisms, CSP (H) is likely to be

polynomial, whereas for structures with few polymorphisms, CSP (H) is expected to be

NP -complete. In particular, this is true for so-called projective structures. A structure H
is projective if the only polymorphisms of H are f ◦ πi,k where f is an automorphism of H
and πi,k is a projection (u1, . . . , uk) 7→ ui.

Theorem 3.8. [74] If H is projective, then CSP (H) is NP -complete.
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For example, it turns out that K3 is projective, and so is the structure N over elements

{0, 1} with one ternary relation E(N) = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. Hence, the corre-

sponding CSP problems are NP -complete which is no surprise, since CSP (K3) is precisely

3-colouring and CSP (N) is NAE-3-SAT (not all equal 3-SAT ); both are already known to

be NP -complete.

On the other hand, having a particular polymorphism in Pol(H), allows one to solve

CSP (H) polynomially. We say that a polymorphism ϕ is conservative if ϕ(v1, . . . , vk) ∈
{v1, . . . , vk} for any v1, . . . , vk ∈ V (H). A majority operation is a ternary polymorphism

ϕ satisfying ϕ(u, u, v) = ϕ(u, v, u) = ϕ(v, u, u) = u for all u, v ∈ V (H). A Mal’tsev opera-

tion is a ternary polymorphism ϕ satisfying ϕ(u, u, v) = ϕ(v, u, u) = v for all u, v ∈ V (H).

A semilattice operation is a binary polymorphism ϕ satisfying ϕ(u, u) = u, ϕ(u, v) = ϕ(v, u)

and ϕ(u, ϕ(v, w)) = ϕ(ϕ(u, v), w) for all u, v, w ∈ V (H).

Theorem 3.9. [12, 49, 64] If H admits a majority, or a Mal’tsev, or a semilattice operation,

then CSP (H) is polynomial time solvable.

It should be noted that unlike in the general CSP , these three polymorphisms are pre-

cisely those that lead to all polynomial cases for the classes LCSP and #CSP (in both cases

a dichotomy is known [10, 11]), namely for LCSP polynomiality is connected with existence

of either majority, or Mal’tsev, or semilattice polymorphism, whereas the polynomial cases

for #CSP are roughly those with Mal’tsev operation (which corresponds to solving systems

of linear equations over a finite field).

Finally, we should mention that all of the above operations are instances of so-called

Taylor operations, which usually give rise to a polynomial time algorithm for CSP , and are

conjectured to be the only polymorphism that guarantee polynomiality. We say that a k-ary

polymorphism ϕ is inclusive in position i if there exists a choice of uj, vj ∈ {u, v} for all

1 ≤ j ≤ k where ui 6= vi such that ϕ(u1, . . . , uk) = ϕ(v1, . . . , vk) holds for any u, v ∈ V (H).

A k-ary polymorphism ϕ is a Taylor operation if ϕ is inclusive in each position 1 ≤ i ≤ k.

Conjecture 3.10. [64] If H admits a Taylor operation, then CSP (H) is polynomial time

solvable, otherwise NP -complete.

We close by noting that recently other conjectured dichotomy characterisations have

appeared in the literature [83, 86, 94]; they all turned out to be equivalent to the one above.
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3.2 Undirected Graphs

We begin by mentioning a result of Hell and Nešetřil [65] which shows a dichotomy for HOM

for the case of undirected graphs.

Theorem 3.11. [65] If H is bipartite or has a loop, then H-colouring problem is in P ,

otherwise H-colouring problem is NP -complete.

Recently, this result has been reproved by Bulatov [9] using algebraic methods.

3.2.1 List Homomorphisms

The complexity characterisation for LHOM problems for undirected graph split into several

cases; namely it was first shown for reflexive, then for irreflexive graphs, and finally for

graphs allowing both vertices with and without loops.

Theorem 3.12. [38] Let H be a reflexive graph. If H is an interval graph, then LHOM(H)

is polynomial time solvable, otherwise NP -complete.

Actually, it turns out that interval graphs H are the only reflexive graphs with so-called

X-property (read “X-underbar-property”), also called a min-ordering. This also coincides

with existence of a conservative semilattice polymorphism for corresponding CSP (H) [74].

(The ordering ≺ defines a semilattice polymorphism f(x, y) = x ⇐⇒ x ≺ y, and f is

conservative since ≺ is a total ordering; the converse is also true.) On the other hand,

one can prove using forbidden induced subgraph characterisation of interval graphs due to

Lekkerkerker and Boland [84] (see Theorem 1.17), that for any minimal non-interval graph

H , the problem LHOM(H) is NP -complete, and hence is for all non-interval graphs H .

(Note that this type of argument generally does not work for HOM properties.)

Similarly, one can show a dichotomy for irreflexive graphs. Note that by Theorem 3.11,

for any irreflexive non-bipartite graph H , we have that HOM(H) is already NP -complete.

Theorem 3.13. [43] Let H be an irreflexive graph. If H is bipartite and the complement

of H is a circular-arc graph, then LHOM(H) is polynomial time solvable, otherwise NP -

complete.

Finally, in [44], a dichotomy is proved for the general case.
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Theorem 3.14. [44] The list homomorphism problem LHOM is polynomial time solvable

if H is a bi-arc graph, and NP -complete otherwise.

We conclude by mentioning that a similar dichotomy was proved for a related minimum

cost homomorphism problem MinHOM , where the task is to find a homomorphism of least

cost [60]. That is, given an instance (G, c) of MinHOM(H) for a fixed (di)graph H where G

is a (di)graph and c a mapping c : V (G)×V (H)→ R, the cost of a homomorphism h : G→ H

with respect to c is defined as
∑

v∈V (G) c(v, h(v)). Then a solution to MinHOM(H) for (G, c)

is a homomorphism from G to H that minimises the cost with respect c.

A graph G is a proper interval graph if G is the intersection graph of an inclusion-free

family intervals on the real line, i.e., no interval of the family is properly contained in another

interval of the family. The intersection bigraph of two families of sets I = {I1, . . . , Ik} and

J = {J1, . . . , Jℓ} is the graph with vertices {v1, . . . , vk, u1, . . . , uℓ} and edges viuj ⇐⇒
Ii ∩ Jj 6= ∅. A graph G is a proper interval bigraph if G is the intersection graph of two

inclusion-free families of intervals on the real line.

Theorem 3.15. [60] Let H be a connected graph. If H is a proper interval graph or a proper

interval bigraph, then MinHOM(H) is polynomial time solvable, otherwise NP -complete.

3.3 Matrix Partitions

Let M be a k×k (symmetric) matrix with entries from {0, 1, ∗}. An M-matrix partition of a

(di)graph G, or just M-partition of G, is a partition of the vertices V (G) into sets V1, . . . , Vk

such that for any 1 ≤ i, j ≤ k and vertices x ∈ Vi and y ∈ Vj, we have xy ∈ E(G) if Mi,j = 1

and x 6= y, and xy 6∈ E(G) if Mi,j = 0. For a fixed k×k matrix M , the M-partition problem

is a problem of deciding, given a graph G, whether G admits an M-partition. Similarly, the

list M-partition problem is a problem of deciding, given a graph G with lists ℓ(v) ⊆ {1 . . . k}
for all v ∈ V (G), whether G admits an M-partition V1, . . . , Vk such that for all v ∈ V (G),

we have v ∈ Vi if and only if i ∈ ℓ(v).

It is easy to see that (list) matrix partitions generalise (list) homomorphisms, namely

(list) H-colouring is precisely (list) M-partition where M is the adjacency matrix of H with

entries 1 replaced with ∗. Also, (list) matrix partitions generalise (list) full homomorphisms;

here the matrix M is exactly the adjacency matrix H . (A full homomorphism is a mapping

h : V (G)→ V (H) such that xy ∈ E(G) if and only if h(x)h(y) ∈ E(H) for all x, y ∈ V (G).)
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On the other hand, there are multiple examples of interesting problems [46] that are

expressible as an M-partition, but are not expressible as a (full) homomorphism, e.g., a

clique cutset, a homogeneous set, and a skew cutset problems. It should be noted that any

M-matrix partition problem can be cast as an instance of a special CSP called trigraph

homomorphism which is a homomorphism between structures with two binary relations E

and N . An instance G of the M-partition problem where M is a k × k matrix corresponds

precisely to the instance G of CSP (H) where E(G) = E(G), N(G) = V (G)× V (G) \E(G),

V (H) = {1, . . . , k}, E(H) = {ij | Mi,j = 1 or ∗}, and N(H) = {ij | Mi,j = 0 or ∗}.

Now we investigate the complexity of the (list) M-partition problems for fixed symmetric

matrix M . First we should mention that it follows from Theorems 3.12, 3.13, 3.14 that for

matrices with no zeroes or no ones, one can obtain a dichotomy for the list M-partition

problem for symmetric matrices M . (Similarly a dichotomy for the M-partition problem for

such matrices follows from Theorem 3.11.)

Theorem 3.16. [46] If a symmetric matrix M contains no 0 or no 1 entry, then the (list)

M-partition problem is NP -complete or polynomial time solvable.

Apart from trying to prove a dichotomy, the following weaker quasi-dichotomy for list M-

partition problem was conjectured in [46] and proved in [40]. (The problem is quasipolynomial

is it has a solution with running time O(nc·logt n) for some positive constants c, t.)

Theorem 3.17. [40] All list M-partition problems are quasipolynomial, or NP -complete.

In fact, in [40] a more general result about so-called three-inclusive W -full CSP is given.

(See also [64].) Note that while, of course, a dichotomy would be preferred, the existence

of a quasipolynomial algorithm for a problem suggests that the problem is not likely NP -

complete, since no NP -complete problem is known to have a quasipolynomial time solution.

Unfortunately, a dichotomy in this case is not expected strongly, since there exists a certain

4x4 “stubborn” matrix [13] (see Figure 3.1) for which the problem is quasipolynomial but

no polynomial solution is known as of yet, and it is believed that this matrix is not just a

single exception but many other such matrices may exist.
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Figure 3.1: The “stubborn” matrix.

3.3.1 Sparse-Dense partitions

One of the tools used successfully in solving matrix partition problems is the sparse-dense

partition algorithm [46]. Let S and D be two induced-hereditary classes (or properties) of

graphs for which there exists a constant c such that any graph in S∩D has at most c vertices.

(S can be thought of as a sparse class and D as a dense class.) A sparse-dense partition of

a graph G is a partition of V (G) into two sets VS , VD where G[VS ] ∈ S and G[VD] ∈ D.

Theorem 3.18. [46] Any graph G on n vertices has at most n2c sparse-dense partitions.

Furthermore, all sparse-dense partitions of G can be enumerated in time O(n2c+2T (n)) where

T (n) is the time needed to recognise an n-vertex graph in S or an n-vertex graph in D.

For example, if S = O and D = K, i.e., sparse graphs are independent sets and dense

graphs are cliques, then we have c = 1 implying a polynomial time algorithm for recognising

split graphs. Similarly, for S = {planar graphs} and D = K, we have c = 4 since K5 is not

planar, and again S ◦ D has a polynomial time solution.

Applying this in the context of matrix partitions, one can show that the list M-partition

problem is polynomial time solvable for matrices with no ∗ entries. Note that this result

complements Theorem 3.16.

Theorem 3.19. [46] If M contains no ∗ entry, then the (list) M-partition problem is poly-

nomial time solvable.

3.3.2 Small cases

For symmetric matrices of small sizes, a complete characterisation of complexity is known.

Theorem 3.20. [46] Suppose that the size of M is k = 3. Then the list M-partition problem

is NP -complete if M or its complement is the matrix of 3-colouring or the stable cutset

problem, and polynomial time solvable otherwise.
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Theorem 3.21. [13, 46] Suppose that the size of M is k = 4, and M is not the “stubborn”

matrix or its complement. Then the list M-partition problem is NP -complete if M contains

a submatrix corresponding to the problem of 3-colouring or its complement, and polynomial

time solvable otherwise.

Note that if M contains a ∗ on the main diagonal, the M-partition problem (without

lists) is trivial, hence since the “stubborn” matrix contains a star on the main diagonal, it

follows that Theorem 3.21 provides a dichotomy for the M-partition problem.

Note that by simultaneously permuting rows and columns, we can assume that a sym-

metric square matrix M of size k + l with no ∗’s on the main diagonal is arranged as follows:

M =

(
A CT

C B

)

where A is a symmetric k×k matrix with all zeroes on the main diagonal,

and B is symmetric a l × l matrix with all ones on the diagonal. We write that M is an

(A, B, C)-block matrix.

3.3.3 Partitioning chordal graphs

In this section, we mention results about the complexity of M-partition problems on chordal

graphs. As one would expect, the situation is much more pleasing than in the general case.

In particular, the following claims are shown in [47]. A matrix is said to be crossed if each

non-∗ entry belongs to a row or a column of non-∗ entries.

Theorem 3.22. [47] If all diagonal entries of M are zero or all diagonal entries of M are

one, then the chordal list M-partition problem can be solved in polynomial time.

Theorem 3.23. [47] Suppose that M is an (A, B, C)-block matrix. If C is crossed, then the

chordal list M-partition can be solved in polynomial time.

Note that by Theorem 3.22, all HOM properties and all LHOM(H) properties for

irreflexive H in chordal graphs are polynomial time solvable. On the other hand, there are

instances of matrices M for which the list M-partition problem is NP -complete already on

split graphs, and matrices M for which the chordal M-partition problem (without lists) is

NP -complete [47].

Finally, a special case of chordal M-partition problem, namely the property Ok ◦Kl, i.e.,

M = (A, B, C) where all entries in C and all off-diagonal entries in A and B are ∗, has
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been shown to admit a simple linear time algorithm [68] and it is characterised by a single

minimal forbidden induced subgraph, namely (l + 1)Kk+1 [67].

We conclude by mentioning that for cographs, all M-partition problems have been shown

to admit a polynomial time solution [42].

3.3.4 Bounded size obstructions

Let M be a fixed symmetric matrix. In this section, we focus on minimal obstructions

(also called forbidden induced subgraphs) for the M-partition problem, that is, graphs that

do not admit an M-partition, but whose all proper induced subgraph do. Clearly, any

graph containing a minimal obstruction for the M-partition problem as an induced subgraph

cannot admit an M-partition; this follows from the fact that the class of graphs that admit

an M-partition is induced hereditary (closed under taking induced subgraphs). Actually,

the previous argument is true for any induced hereditary property. It follows that if for the

matrix M , the M-partition problem (or any induced hereditary property, for that matter)

has only a finite number of minimal obstructions, it can be solved in polynomial time; one

only needs to check whether the input graph contains one of the obstructions. It turns out

that in number of polynomially solvable problems, some of which we already described, this

is precisely the case; for instance, for any matrix M which has all off-diagonal entries ∗, we

have a single minimal obstruction for the M-partition problem in chordal graphs [67].

Unfortunately, even though we might know that for a particular matrix M the number of

obstructions is finite, the actual number of obstructions can be very large. Hence, instead,

we shall settle for showing an upper bound on the size of any minimal obstruction; clearly,

if this bound is a constant for M (i.e., depending only on M), the number of obstructions

will be finite.

First we mention the following result from [48]. A matrix M = (A, B, C) is friendly if A

and B contain no ∗ entries.

Theorem 3.24. [48] If M is not a friendly matrix, then there are infinitely many minimal

obstructions for the M-partition problem.

Note that the converse of this theorem is not true [48], that is, there are friendly matrices

with infinitely many obstructions for the M-partition problem. However, in a special case
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when M has no ∗ entries, it turns out to be true [41]. We again assume that M = (A, B, C)

where A is a k × k matrix and B is a l × l matrix.

Theorem 3.25. [41] If M has no ∗ entries then a minimal obstruction for the M-partition

problem has at most (k + 1)(l + 1) vertices, and moreover, there are at most two minimal

obstructions with precisely (k + 1)(l + 1) vertices.

Note that these results concern all minimal obstructions for the M-partition problem,

whereas if we consider only those minimal obstructions that are for instance perfect, or

chordal, the number of them can be finite, even though the total number of minimal obstruc-

tions is infinite. Clearly, for the M-partition problem in perfect, respectively chordal graphs,

one only needs to consider minimal obstructions that are perfect, respectively chordal. For

instance, the two by two matrix M with zeroes on the main diagonal and ∗ off the diagonal

has (by Theorem 3.24) infinitely many obstructions, namely all odd cycles, whereas it has

only one obstruction K3 in perfect and in chordal graphs.

Now we shall restrict our attention to matrices M = (A, B, C) where all off-diagonal

entries in A are in a, all off-diagonal entries in B are in b, and all entries in C are in c where

a, b, c ⊆ {0, 1, ∗}. The following results describe different cases for a, b, c in which the number

perfect graphs that are minimal obstructions to the M-partition problem is finite.

Theorem 3.26. [39] Any perfect graph which is a minimal obstruction to the M-partition

problem has a bounded number of vertices for the following cases of a, b, c.

i) |a| = |b| = |c| = 1 and c 6= {∗},

ii) |c| = 1, a = {0, 1} or a = {∗}, and b = {0, 1} or b = {∗}.

Note that in the exact bounds on the size of obstructions can be exponential in k and l,

in particular they are exponential in some cases of ii). Finally, we remark that it is possible

to improve these bound when considering only chordal graphs instead of perfect graphs [46].



Chapter 4

Decompositions

In this chapter, we investigate particular techniques for decomposing graphs into atomic

subgraphs and discuss related complexity issues. Namely we study decomposition by clique

separators, modular decomposition, tree decomposition, and graph grammars with relation

to logic of graphs.

4.1 Clique separators

By a result of Whitesides [116], for any graph G, it is possible to efficiently identify a clique

separator of G (i.e., a clique whose removal disconnects G) if one exists.

Theorem 4.1. [116] One can find in time O(nm) a separating clique in a graph if one exists.

In many combinatorial (optimization) problems, the notion of a separating clique plays

an important role. For instance, if a graph G contains a clique C that separates G to G[A]

and G[B], and if one can colour G[A ∪ C] and G[B ∪ C], then a colouring of G is obtained

easily by permuting the colours in the colourings of G[A ∪ C] and G[B ∪ C] so that they

match on C. This, in particular, makes the graph colouring problem on chordal graphs easy,

since by Theorem 1.7 any chordal graph is separable by a clique (unless the graph itself is a

clique).

Clearly, as we just described, if a graph contains a separating clique C, one can decompose

it into subgraphs G[A ∪ C] and G[B ∪ C] and apply this rule to G[A ∪ C] and G[B ∪ C]

independently. This way one can obtain a special tree decomposition (T, X) of G (defined

later in the chapter) in which for any edge uv ∈ E(T ), the set X(u)∩X(v) induces a clique

in G, and for all u ∈ V (T ) the graph G[X(u)] does no contain any clique separators. (Such

a decomposition is called a clique decomposition of G.) This was already pointed out by

Tarjan in [109] where he describes an efficient algorithm to do so. (Note that the complexity

of his algorithm is better than the näıve application of Theorem 4.1 alone.)

30
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Theorem 4.2. [109] One can in time O(nm) compute a clique decomposition of a graph.

4.2 Modular decomposition

A module M (also called a homogeneous set) of a graph G is a set of vertices M ⊆ V (G) such

that each vertex of G−M is either adjacent to every vertex in M or non-adjacent to every

vertex in M . (That is, no two vertices in M are distinguishable by their neighbourhoods in

G −M .) A module M is called trivial if M = V (G) or M contains a single vertex. Note

that, if two modules N and M of G intersect, then both N ∪M and N ∩M are also modules

of G. A module M is strong if for any module N with N ∩M 6= ∅, we have N ⊆ M or

M ⊆ N . A strong module M ⊆ N is a maximal submodule of a module N , if there is no

strong module M ′ with M $ M ′ $ N . The following fact was first shown in [101].

Proposition 4.3. [101] Every vertex of a non-trivial module M belongs to a unique maximal

submodule of M .

Hence, applying this to M = V (G) we have that one can uniquely decompose any

graph G to a collection of strong modules of G. This decomposition is called the modular

decomposition of G; it is also known as the substitution decomposition. The decomposition of

G into its strong modules can be captured by the following modular decomposition tree TG.

The nodes of TG correspond to the strong modules of G, the root node is V (G), the leaves

are the vertices of G, and the children of every internal node M are the maximal submodules

of M . Note that the tree TG is unique.

The complexity of computing modular decomposition was first shown to be O(n2) [93],

then later improved on chordal graphs to O(n + m) [72], and finally shown to be O(n + m)

[87, 23] in general graphs. All these results concern undirected graphs. For directed graphs,

also an O(n + m) time algorithm was recently discovered [88].

Modular decomposition has been discovered independently by researchers in graph the-

ory, network theory, game theory, and other areas [54, 93]. In particular it was used in

efficient recognition of comparability graphs, efficient solutions to chromatic number and

minimum clique problems for comparability graphs [87, 102], and efficient recognition of

chordal comparability and interval graphs [72].
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4.3 Graph Grammars

Graph grammars originated as a natural generalisation of formal language theory to graphs

and since found their applications in numerous areas of computer science such as VLSI layout

schemes, database design, modeling of concurrent systems, pattern recognition, compiler

construction and others. Several different flavours of grammars for graphs have been studied;

some are based on replacing vertices, and some based on replacing (hyper)-edges, while others

replace whole subgraphs; here, additionally, mechanisms for “gluing” graphs can vary. In

all of these models, nodes or edges of graphs are usually labeled, and it is the labels that

control the way graphs are transformed by the grammar.

Here, we focus only on one particular model of graph grammars, hyperedge replacement

grammars (HRG). These grammars are particularly interesting since they are a direct coun-

terpart to the context-free grammars (CFG) on strings. (As we shall see, many algorithms

for CFG carry over to HRG.)

For a set S, we denote by S∗ the set of all finite sequence of elements of S. Let C be an

arbitrary (fixed) set of labels and let type : C → N be a typing function. A hypergraph H

over C is a tuple (VH , EH , attH , labH , extH) where VH is a finite set of nodes, EH is a finite

set of hyperedges, att : EH → V ∗
H is a mapping assigning a sequence of pairwise distinct

attachment nodes attH(e) to each e ∈ EH , labH : EH → C is a mapping that labels each

hyperedges such that type(labH(e)) = |attH(e)|, and extH ∈ V ∗ is a sequence of pairwise

distinct external nodes. Note that in this model hyperedges are ordered subsets of vertices

and are labeled according to their cardinality. External nodes extH , in general, do not have

to be specified, they are only used in grammar specification to describe how hyperedges are

replaced. We denote by HC the set of hypergraphs over C.
Now we define hyperedge replacement mechanism. Let H ∈ HC and let e1, . . . , ek ⊆ E(H)

be a set of hyperedges to be replaced by hypergraphs H1, . . . , Hk ∈ HC where type(ei) =

|extHi
| for 1 ≤ i ≤ k. The graph H [e1/H1, . . . , ek/Hk] is constructed from the disjoint

union of H and the graphs H1, . . . , Hk by identifying the vertices of attH(ei) with the ver-

tices of extHi
in their respective orders, for each 1 ≤ i ≤ k, and then removing hyper-

edges e1, . . . , ek. It is not difficult to observe that this mechanism is “context-free”, that is, we

have H [e1/H1, . . . , ek/Hk] = H [e1/H1] . . . [ek/Hk] and H [e1/H1][e2/H2] = H [e2/H2][e1/H1],

and H [e1/H1][e2/H2] = H [e1/H1[e2/H2]] for edges ei in appropriate hypergraphs.
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A hyperedge replacement grammar HRG is a tuple (N, T, P, S) where N ⊆ C is a set of

nonterminals, T ⊆ C with T ∩ N = ∅ is a set of terminals, P ⊆ N × HC is a finite set of

productions with type(A) = |extR| whenever (A, R) ∈ P , and S ∈ N is the start symbol.

A derivation step in HRG is the binary relation =⇒
P

on HC with H =⇒
P

H ′ whenever

H ′ = H [e/R] where labH(e) = A and (A, R) ∈ P . We denote by =⇒
P

∗ the transitive closure

of =⇒
P

. For A ∈ C, let A• denote the hypergraph with a single hyperedge A attached

to type(A) vertices. (A• is usually called a handle.) The hypergraph language L(HRG)

generated by the grammar HRG is LS(HRG), where for A ∈ N , the set LA(HRG) consists

of all hypergraphs in HT derivable from A• by applying productions of P . That is,

LA(HRG) = {H ∈ HT | A• =⇒
P

∗H}.

The context-free nature of hyperedge replacement allows one to define derivation trees

for hyperedge replacement grammars similar to the ones defined for context-free languages.

(For simplicity we deviate from the standard definition given in [99].)

A derivation tree T in HRG = (N, T, P, S) is a tree in which each node is labeled either by

a terminal symbol A ∈ T , a nonterminal symbol A ∈ N , or by a production rule (A, R) ∈ P

such that (i) a vertex v labeled by A ∈ T has no children and we define res(v) = A•, (ii) a

vertex v labeled by A ∈ N either has no children and res(v) = A• or has exactly one child w

labeled by a production rule (A, R) ∈ P and res(v) = res(w), and (iii) a vertex v labeled by

a production rule (A, R) ∈ P has a child vi labeled by labR(ei) for each hyperedge ei ∈ E(R)

where 1 ≤ i ≤ k = |E(R)| and we define res(v) = R[e1/H1, . . . , ek/Hk] where Hi = res(vi).

The graph defined by T is res(r) where r is the root of T . Now it is easy to see that for any

hypergraph H ∈ LA(HRG) one can construct a derivation tree T whose root r is labeled by

A such that res(r) = H .

A hyperedge replacement grammar HRG = (N, T, P, S) is said to be of order k if

type(A) ≤ k for all A ∈ N . An example of a grammar of order 3 generating all partial

3-trees (cf. Section 4.4) can be seen in Figure 4.1.

We now briefly mention some properties of hyperedge replacement grammars. In terms

of their generative power, they can generate all context-free string languages as well as

some context-sensitive languages (for appropriately defined string graphs). On the other

hand, similarly to context-free grammars, analogues of pumping lemma and Parikh’s theorem

hold for HRG’s. Furthermore, as a consequence of the hyperedge replacement rule, graphs
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generated by a hyperedge replacement grammar of order k are always at most k-connected.

Then, since the description of HRG is finite, no HRG can generate graphs of arbitrary large

connectivity. Also, for any k, there exists a HRG of order k generating all partial k-trees

(see Figure 4.1 for an example), whereas no HRG of order k − 1 can generate them. It

follows that graphs generated by HRG’s of different orders form a proper infinite hierarchy.

Finally, there is a characterisation of string graphs generated by HRG’s in terms of so-called

deterministic tree walking transducers [99].

Now we discuss complexity of the membership problem for HRG. It is not difficult to see

that the problem is in NP . One has to guess the derivation and test whether it generates

the input graph; the derivation can be described by a polynomial number of bits since it is

not possible to erase vertices. (Actually [99], for every HRG, there exists a linear function

f such that, if an n-vertex hypergraph H ∈ L(HRG), then H has a derivation of length at

most f(n).) In general the membership problem turns out to be NP -hard, and in particular

the following is true. (Here, ‘linear’ and ‘edge replacement’ means that the rules contain

only one nonterminal on the right hand side, and that the grammar is of order two.)

Theorem 4.4. [81] There exists a linear edge replacement grammar that generates an NP -

complete graph language of maximum degree 2. There exists an edge replacement grammar

that generates an NP -complete graph language of connected graphs.

Note that in this theorem the first grammar generates disconnected graphs with un-

bounded number of connected components, whereas the second grammar generates graphs

of unbounded degree. This is in particular important since, if the grammar only generates

hypergraphs of bounded degree and of bounded number of connected components (or more

precisely, hypergraphs whose k-separability is O(log n)), the membership problem is poly-

nomial time solvable. (By k-separability of a hypergraph H we mean the maximum number

of connected components of H − X where X ⊆ VH and |X| = k.) It should be noted that

the algorithm is a variant of the famous Cocke-Younger-Kasami algorithm for recognising

context-free languages.

Theorem 4.5. [99, 82] Let HRG be a hyperedge replacement grammar of order k. If for

each n-vertex hypergraph H ∈ L(HRG), k-separability of H is O(log n), then the member-

ship problem for HRG is polynomial time solvable. In case k-separability is O(1) for all

H ∈ L(HRG), the membership problem is in LOGCFL.
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Figure 4.1: An example of a hyperedge replacement grammar generating all partial 3-trees.

The grammar uses two nonterminal labels A and S, where S is the starting nonterminal, and

one terminal label T . The vertices marked as ◦ and • represent nodes where the latter are

the external nodes extH for particular hypergraph H (the labels indicate their ordering in

extH). The vertices in boxes represent hyperedges where the edges in the diagram connect

each hyperedge e with its attachment nodes attH(e) (the labels on edges indicated their

ordering in attH(e)). The diagram is a modification of a diagram from [99].

We conclude by mentioning the following results. A k-uniform hypergraph or simply a

k-hypergraph is a hypergraph whose all hyperedges are of cardinality k. In [26], it was shown

that if an HRG of order k generates only k-hypergraphs, then there exists a cubic time

algorithm (for any k) recognising graphs in L(HRG), whereas [27] if the grammar of order k

is allowed to use edges of all cardinalities, it can generate an NP -complete graph language.

These result improve Theorems 4.5 and 4.4 respectively.

Theorem 4.6. [26] Let HRG be a hyperedge replacement grammar of order k. Then there

exists a cubic time algorithm to decide, given a k-hypergraph H, whether H ∈ L(HRG).

Theorem 4.7. [27] For k ≥ 3, there exists a hyperedge replacement grammar of order k that

generates an NP -complete set of k-connected hypergraphs.
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4.4 Treewidth and Monadic Second Order Logic

A tree decomposition (T, X) of a connected graph G is a pair (T, X) where T is a tree and X

is a mapping from V (T ) to the subsets of V (G), such that (i) for any edge ab ∈ E(G), there

exists u ∈ V (T ) with a, b ∈ X(u), and (ii) for any vertex a ∈ V (G), the vertices u ∈ V (T )

with a ∈ X(u) induce a connected subgraph in T . For a tree decomposition (T, X), the sets

X(u) are called bags. Note that a clique-tree of a chordal graph G that we defined earlier is

precisely a tree decomposition (T, X) of G where {X(u) | u ∈ V (T )} is the set of all maximal

cliques of G. The width of a tree decomposition (T, X) is defined as one less than the size of

a largest bag X(u) among u ∈ V (T ). The treewidth of G, denoted by tw(G), is the smallest

integer k such that G admits a tree decomposition (T, X) of width k.

A k-tree is any graph defined recursively as follows: (i) the complete graph on k + 1

vertices is a k-tree, and (ii) a graph obtained from a k-tree G by the addition of a new

vertex that is adjacent to a k-clique of G is a k-tree. A partial k-tree is any (not necessarily

induced) subgraph of a k-tree. It can be seen that the treewidth of any k-tree is exactly k.

Moreover, the partial k-trees are precisely the graphs of treewidth at most k. In particular,

1-trees are precisely trees, and partial 1-trees correspond to forests.

Now we introduce different types of logics we shall discuss here briefly in connection with

bounded treewidth graphs. Let V be a countable alphabet of variables (denoted by x,y,z. . . ).

Let R be a (finite) vocabulary of relational symbols R and their arities ρ(R). A first order

formula (FO) is any (finite) formula that can be constructed from atomic formulas using

binary operations ∧,∨,¬,⇒,⇔ and quantification symbols ∀x, ∃x where atomic formulas

are x = y and R(x1, . . . , xk) for x, y, x1, . . . , xk ∈ V and R ∈ R with ρ(R) = k.

Let X be a countable alphabet of relational variables (denoted by X,Y ,Z. . . ) and

their arities ρ(X). A second order formula (SO) is a (finite) formula that can be con-

structed from atomic formulas using binary operations ∧,∨,¬,⇒,⇔ and quantification sym-

bols ∀x, ∃x, ∀X, ∃X where atomic formulas are x = y, R(x1, . . . , xk) and X(x1, . . . , xk) for

x, y, x1, . . . , xk ∈ V, R ∈ R and X ∈ X with ρ(R) = ρ(X) = k.

An SO formula ϕ is called a monadic second order formula (MS) if ϕ contains only

relational variables X ∈ X of arity one (so-called set variables); the arities of relational

symbols R ∈ R in ϕ are unrestricted.

The semantics of FO, SO and MS is defined as usual (we omit the formal details). Now
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we turn our attention to graphs. A (di)graph H with vertex set V (H) and edge set E(H)

defines the structure |H|1 = (V (H); adj) with one binary relational symbol adj representing

pairs of adjacent vertices. Similarly H defines the structure |H|2 = (V (H) ∪ E(H); inc)

with one ternary relational symbol inc representing triples, each consisting of an edge and

vertices incident to it. In addition, one can introduce into |H|2 a (finite) collection of

relational symbols laba of arity one which describe labels of vertices and edges of H . Also,

the structure |H|2 can be defined for k-hypergraphs H (fixed k) using (k + 1)-ary relational

symbol inc (similarly for |H|1).
We shall refer to MS logic of hypergraphs as MS1, respectively MS2 relative to the

representation of hypergraphs H by structures |H|1, respectively |H|2.
In general, all MS1-expressible properties are MS2-expressible, whereas not every MS2-

expressible property is MS1-expressible (a notable example is Hamiltonicity [99]). However,

when restricted to k-trees, this is no longer the case and the converse is also true.

Theorem 4.8. [19] The same properties of finite simple hypergraphs over (a finite alphabet)

A of treewidth at most k (fixed k) are expressible in MS1 and in MS2.

Now finally, we are ready to describe the main theorem of this section. The theorem deals

with hypergraph replacement grammars and their relation to properties of hypergraphs de-

finable by MS. (We refer the reader to Section 4.3 for definitions related to graph grammars.)

Theorem 4.9. [16, 17, 18] Let L be a MS2-definable set of (labeled) hypergraphs (i.e., the

set of (labeled) hypergraphs satisfying some MS2 formula ϕ). Let HRG be any hyperedge

replacement grammar.

i) One can construct a hypergraph replacement grammar HRG′ generating L ∩ L(HRG).

ii) For every derivation tree T of HRG, one can decide in time O(size(T )) whether the

graph G in L(HRG) defined by T is in L.

iii) One can construct an algorithm, that, for any given oriented graph G, gives in time

O(size(G)2) the following possible answers:

a) G 6∈ L(HRG),

b) G ∈ L without saying whether G ∈ L(HRG),
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c) G 6∈ L without saying whether G ∈ L(HRG).

Now we remark that the set of partial k-trees is definable by a hypergraph replacement

grammar HRGk. (See Figure 4.1 for a concrete example for k = 3; for other k the grammar

HRGk is defined similarly.) Furthermore, any derivation tree T of a graph H in HRGk has

size O(|V (H)|) which can be shown as follows. First starting from Kk we derive in HRGk

a suitable k-tree G ⊇ H by adding at most |V (H)| vertices. Then we remove edges of G

that are not in H one by one. Each time we either add a vertex or remove an edge; hence

at most |V (H)| + |V (H)|k + k2 steps, since in each step in which we add a vertex, we add

exactly k edges adjacent to this vertex and Kk we start with has ≤ k2 edges. Finally, note

that each derivation step produces at most k+1 new nodes in the derivation tree T , and the

description of each node in T is of constant size. This gives us the following fundamental

corollary.

Theorem 4.10. [16, 17, 18] Any property of graphs of treewidth at most k that is expressible

in Monadic Second Order Logic (in either MS1 or in MS2) is decidable in linear time.

We close by remarking that using only Theorem 4.9 i) and Theorems 4.5, and 4.6 does

not give us a comparable result to the above (that is, a polynomial time algorithm for the

membership problem for HRG′ from Theorem 4.9), since the structure of HRG′ is not

guaranteed to satisfy the conditions of either of Theorems 4.5, 4.6.
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Problems and Initial solutions

In this chapter, we briefly state the results we obtained so far, and discuss possible extensions.

An H-transversal of a graph G is a set of vertices S of G that meets all induced copies

of H in G. An F -free H-transversal of G is an H-transversal S which induces an F -free

graph in G. Any F -free H-transversal S of G can be simply viewed as a colouring of G with

two colours (one for S and one for G−S) such that one colour induces an F -free graph and

the other colour an H-free graph. Using the terminology of Chapter 2, a graph G having

an F -free H-transversal is a graph with the property Forb≤(F ) ◦ Forb≤(H). For instance,

if F = K2 and H = K2 then this is precisely the (proper) two colouring. We remark that

most of the problems mentioned in this chapter are of this type.

5.1 P4-transversals of Chordal Graphs

Recall that a graph is perfect if for every induced subgraph H of G, the chromatic num-

ber χ(H) is equal to the clique number ω(H). The Strong Perfect Graph Theorem states

that a graph is perfect if and only if it has no induced odd cycle or its complement [15].

This result had been conjectured by Berge [6]. In the long history of this conjecture, the

study of the structure of P4’s in a graph has been found to play an important role. In

[70], the authors define the notion of a P4-transversal. They show that if a graph has a

P4-transversal with certain properties, it is guaranteed to be perfect. They also investigate

the complexity of finding a P4-transversal with various properties. In particular they investi-

gate stable P4-transversals, i.e., P4-transversals which form an independent set. They show

that for comparability graphs (and therefore also for perfect graphs) it is NP -complete to

decide whether a graph has a stable P4-transversal. In [71], the authors consider a related

problem of P4-colourings (corresponding in our terminology to P4 ◦ . . . ◦ P4-recognition).

They show that finding a P4-free P4-transversal (a “P4-free 2-colouring”) is NP -complete

39
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for comparability graphs, P5-free graphs and (C4, C5)-free graphs.

In [103], we show that the problem of finding a stable P4-transversal remains NP -

complete when restricted to chordal graphs:

Theorem 5.1. [103] It is NP -complete to decide whether a given chordal graph has a stable

P4-transversal.

Using this result, we derive the following consequences:

Theorem 5.2. [103] It is NP -complete to decide whether a given chordal graph has a P3-free

P4-transversal.

Theorem 5.3. [103] It is NP -complete to decide whether a given chordal graph has a P4-free

P4-transversal.

Additionally, using the same proofs as in the above results, we prove the following

strengthening. (A graph G is strongly chordal if it is chordal and there exists a perfect

elimination ordering ≺ of the vertices of G such that if u ≺ v ≺ w ≺ z and (u, z), (u, w) and

(v, w) are edges of G then also (v, z) is an edge.)

Theorem 5.4. [103]

(i) It is NP -complete to decide whether a strongly chordal graph has a stable P4-transversal.

(ii) It is NP -complete to decide whether a strongly chordal graph has a P3-free P4-transversal.

(iii) It is NP -complete to decide whether a strongly chordal graph has a P4-free P4-transversal.

Furthermore, we have a different proof [104] showing the following for the class of chordal

comparability graphs (the graphs that are both chordal and comparability) which is a sub-

class of strongly chordal graphs.

Theorem 5.5.

(i) It is NP -complete to decide whether a chordal comparability graph has a stable P4-

transversal.

(ii) It is NP -complete to decide whether a chordal comparability graph has a P3-free P4-

transversal.

(iii) Every chordal comparability graph has a P4-free P4-transversal.
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In the theorem above, claims (i) and (ii) follow the same structure as in Theorems 5.1,

5.2, 5.3, 5.4, while claim (iii) is based on the following observation. Let G be an undirected

graph, F be an orientation of the edges of G, and π = (v1, v2, . . . , vn) be a permutation of the

vertices of G. We shall call a vertex vi transitional with respect to F and π, if vi is neither

a source nor a sink in G[v1, v2, . . . , vi]. (That is vi has both an incoming edge from some vj ,

j < i and an outgoing edge to some vk, k < i.). Let Xπ(F ) be the number of vertices in G

that are transitional with respect to F and π. If Xπ(F ) = 0, we call F a uniform orientation

of G with respect to π.

Proposition 5.6. [104] There exists a transitive orientation F of a chordal comparability

graph G which is uniform with respect to some perfect elimination ordering π of G.

Finally, using the same approach as in the above results, we have the following generali-

sation.

Theorem 5.7. [105] For any i ≤ j where j ≥ 4, it is NP -complete to decide whether a

given chordal graph has a Pi-free Pj-transversal.

5.2 Polar Chordal Graphs

A graph G is polar if it admits a partition of its vertex set into two subsets Vr and Vb,

where Vb induces a P3-free graph, and Vr induces a P 3-free graph. As remarked earlier,

we can view this as a colouring of G with two colours, one inducing a P3-free graph and

the other inducing a P 3-free graph, or view it simply as the property P3 ◦ P3. A graph is

P3-free, that is, it has no induced P3 if and only if it is a disjoint union of cliques, with

no other edges. (The binary relation ‘adjacent or equal’ becomes an equivalence relation in

this situation.) Thus equivalently, Vb induces a disjoint union of cliques and Vr induces a

complete multipartite graph. (As usual, the edges between the two parts are not restricted.)

A graph G is monopolar if it admits a partition into a P3-free graph and an independent set

(the property O ◦ P3). A graph G is unipolar if it admits a partition into a P3-free graph

and a clique (the property K ◦ P3).

For general graphs, the problem of recognising polar graphs [14] and the problem of

recognising monopolar graphs are both NP -complete [34], whereas there exists a polynomial

time algorithm for recognising unipolar graphs [114].
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On the other hand, in [31], the authors show that for cographs, the problem of recognising

polar graphs, and the problem of recognising graphs that are either monopolar or unipolar

are both polynomial time solvable. In fact, in both cases, they give a complete list of minimal

forbidden induced subgraphs, and the list is finite.

In [30], we prove similar results for chordal graphs. Note that a chordal graph G is polar

if it admits a partition into a P3-free graph and a join of a clique and an independent set.

(A complete multipartite graph is chordal iff all but one of the parts are of size one.)

Theorem 5.8. [30] There exists an O(nm) time algorithm to decide, for a given chordal

graph, whether it admits a unipolar partition.

In fact earlier in [53], it was shown that unipolar chordal graphs are precisely the class

of 2P3-free graph. (2P3 is the disjoint union of two copies of P3.)

Theorem 5.9. [30] There exists an O(n + m) time algorithm to decide, for a given chordal

graph, whether it admits a monopolar partition.

Additionally in [106], we show the complete list of minimal forbidden induced subgraphs

for monopolar chordal graphs. This list is not finite, but it can be described using a simple

graph grammar (see Section 4.3 and [99]).

Theorem 5.10. [106] There exists a hyperedge replacement grammar HRG that generates

all minimal forbidden induced subgraphs for monopolar chordal graphs. There exists a poly-

nomial algorithm to test the membership in L(HRG), the set of graphs generated by HRG.

Theorem 5.11. [30] There exists an O(n5) time algorithm to decide, for a given chordal

graph, whether it admits a polar partition.

5.3 Subcolourings of Chordal Graphs

A k-subcolouring of a graph G is a partition of the vertices of G into k subsets V (G) =

V1∪. . .∪Vk, such that each Vi induces a disjoint union of cliques, i.e., each Vi induces a P3-free

graph. A graph G is called k-subcolourable if there exists a k-subcolouring of G. The smallest

integer k such that G is k-subcolourable is called the subchromatic number of G, and is

denoted by χs(G). We remark that k-subcolouring corresponds to the property P3 ◦ . . . ◦ P3
︸ ︷︷ ︸

k

.
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The k-subcolourings and the subchromatic number were first introduced by Albertson,

Jamison, Hedetniemi and Locke in [4]. Initially, the main focus was on bounds for χs(G).

More recently, the complexity of recognizing k-subcolourable graphs has become a focus of

attention. It follows from the result in [1] that for k ≥ 2 this problem is NP -complete

for general graphs. In [51] (and also in [56]) the authors show that for k ≥ 2, it remains

NP -complete in triangle-free graphs of maximum degree four. On the other hand, there are

several natural classes of graphs for which the problem has a polynomial time solution for

any fixed k, e.g., graphs of bounded treewidth [51]. In another paper [7], the authors show

that the problem is NP -complete for k ≥ 2 when restricted to the class of comparability

graphs, whereas for interval graphs there is an O(n2k+1) time algorithm. They also give

an O(n3k+1) time algorithm for k-subcolouring of permutation graphs, and prove that for

chordal graphs, the subchromatic number χs(G) of G is at most ⌊log2(n + 1)⌋.
Finally, the authors of [7] – Broersma, Fomin, Nešetřil and Woeginger – ask the following

question: What is the complexity of the k-subcolouring problem in chordal graphs?

We answer their open question by completely characterising the complexity of the k-sub-

colouring problem (for fixed k) in chordal graphs into two possible cases, namely polynomial

time solvable for k ≤ 2 and NP -complete for k ≥ 3.

Theorem 5.12. [107] There exists an O(n3) time algorithm for deciding (list) 2-subcolou-

rability on chordal graphs; the algorithm also constructs a desired 2-subcolouring if one exists.

Theorem 5.13. [108] For any k ≥ 3, it is NP -complete to decide whether a chordal graph

admits a k-subcolouring.

5.4 Injective colourings of Chordal Graphs

An injective colouring of a graph G is a colouring c of the vertices of G that assigns different

colours to any pair of vertices that have a common neighbour. (That is, for any vertex v, if

we restrict c to the (open) neighbourhood of v, this mapping will be injective; whence the

name.) Note that injective colouring is not necessarily a proper colouring, i.e., it is possible

for two adjacent vertices to receive the same colour. The injective chromatic number of

G, denoted χi(G), is the smallest integer k such that G can be injectively coloured with k

colours.
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Injective colourings were introduced by Hahn, Kratochv́ıl, Širáň and Sotteau in [62].

They attribute the origin of the concept to complexity theory on Random Access Machines.

They prove several interesting bounds on χi(G), and also show that, for k ≥ 3, it is NP -

complete to decide whether the injective chromatic number of a graph is at most k. Recently,

the problem received more attention and several papers dealing particularly with bounds on

χi(G) appeared in the literature [29, 63, 85].

In [69], we investigate the complexity of injective colourings in chordal graphs. We have

the following results.

Theorem 5.14. [69] It is NP -complete for a given split (and hence chordal) graph G and

an integer k, to decide whether the injective chromatic number of G is at most k.

Theorem 5.15. [69] Unless NP = ZPP , for any ǫ > 0, it is not possible to efficiently

approximate χ(G2) and χi(G) within a factor of n1/3−ǫ, for any split (and hence chordal)

graph G.

Theorem 5.16. [69] There exists a polynomial time algorithm that given a split graph G

approximates χ(G2) and χi(G) within a factor of 3
√

n.

In fact, this results corrects a result of Agnarsson et al. [79], who claimed that the

chromatic number of the square of a split graph is not (n1/2−ǫ)-approximable for all ǫ > 0.

Recently, we discovered a result of Král’[75], which implies a generalisation of Theorem 5.16

for all chordal graphs.

Theorem 5.17. [75] Let G be a chordal graph with maximum degree ∆ ≥ 1. Then:

χ(Gk) ≤
⌊√

91k − 118

384
(∆ + 1)(k+1)/2

⌋

+ ∆ + 1 = O(
√

k∆(k+1)/2)

On the positive side, we prove the following results. Let B(G) denote the set of bridges

of G. A graph G is power chordal, if all powers of G are chordal. Note that strongly chordal

graphs are power chordal.

Theorem 5.18. [69] The injective chromatic number in chordal graphs is fixed parameter

tractable. That is, given a chordal graph G and a fixed integer k, one can decide in time

O
(
n · k · k(k/2+1)2

)
whether χi(G) ≤ k and also whether χ(G2) ≤ k.



5.5. Summary and future directions 45

Theorem 5.19. [69] There exists an O(n + m) time algorithm that computes χi(G) given a

chordal graph G and χ((G−B(G))2). Using this algorithm one can also construct an optimal

injective colouring of G from an optimal colouring of (G− B(G))2 in time O(n + m).

Corollary 5.20. [69] The injective chromatic number of a power chordal (strongly chordal)

graph can be computed in polynomial time.

5.5 Summary and future directions

In Table 5.1, we summarise the results from the previous sections with other known results

about the complexity of partitioning general and chordal graphs in some small cases. The

entry in column X and row Y in the table indicates the complexity of graph partitioning

into two parts, where one part is X-free and the other Y -free, both in general graph and

in chordal graphs. Here P stands for polynomial time and N stands for NP -complete.

A fraction P
N

indicates that the problem is NP -complete in general but polynomial time

solvable in chordal graphs, whereas an entry with P respectively N indicates a polynomial

time solvable respectively NP -complete problem in both classes.

As one would expect, some problems difficult in general graphs are polynomial time solv-

able in chordal graphs, while other ones remain NP -complete. As in the case of general

X\Y K2 K2 P3 P3 Kk Kk P4 Pi

K2 P

K2 P P

P3
1P
N

2P
3P
N

P3
2P

4P
N

1P
N

4P
N

Kl
5P
N

6P
7P
N

5P
bN

5P
N

Kl
6P

5P
N

aP
bN

5P
N

6P
5P
N

P4
8N

aP
N

8N bN 8N
aP
N

8N

Pj
9N

aP
N

9N bN 9N
aP
N

9N 9N

P ≡ polytime, N ≡NP -complete, P

N
≡ P in chordal graphs

NPc in general graphs

Notes: k, l ≥ 3 and i, j ≥ 4
1 [30] Theorems 5.9, 5.11
2 [114] Theorem 5.29
3 [107] Theorem 5.12
4 [46] Theorem 3.21
5 [47] Theorem 3.23
6 [3] Theorem 2.4
7 Theorem 5.25
8 [103] Theorems 5.1, 5.2, 5.3
9 [105] Theorem 5.7
a Theorem 5.27
b Theorem 5.28

Table 5.1: Summary of complexity results of {X-free}◦{Y -free}-recognition in chordal

graphs and general graphs
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graphs (cf. Theorems 2.2 and 2.3), one would hope to obtain a complete characterisa-

tion of complexity of partitioning problems for chordal graphs, namely for reducible addi-

tive induced-hereditary properties, respectively for compositions of additive and co-additive

induced-hereditary properties. In this section, we try to propose some possible generalisa-

tions leading to a dichotomy for the aforementioned types of properties in chordal graphs.

The evidence we gathered suggests the following conjectures.

Conjecture 5.21. For any reducible additive induced hereditary property P, the problem

P-recognition in chordal graphs is in P or it is NP -hard.

Conjecture 5.22. For any property P which is a composition of an additive and a co-

additive induced hereditary property, the problem P-recognition in chordal graphs is in P

or it is NP -hard.

For instance, one could easily see, by examining the proof of Theorem 5.1, that this proof

heavily relies on the fact that P4-free graphs are closed under the operation of join. (Actually,

in chordal graphs, this is equivalent to be closed under adding a dominating vertex.) It

appears that this property should be sufficient to render some partitioning problems NP -

complete, namely the following.

Conjecture 5.23. For any connected graph H without a dominating vertex, the problem of

stable H-transversal in chordal graphs is NP -complete.

The evidence suggests also the following strengthening.

Conjecture 5.24. Let H be a connected graph. Then stable H-transversal of chordal graphs

is NP -complete if H itself is chordal and contains a P4, and polynomial time solvable

otherwise.

On the other hand, we can prove the following.

Theorem 5.25. For any fixed 0-diagonal, or 1-diagonal matrix M with entries {0, 1, ∗}, the

problem of M-partitionable P3-transversal in chordal graphs is polynomial time solvable.

By a similar argument, it should be possible to prove the following.

Conjecture 5.26. For any fixed 0-diagonal, or 1-diagonal matrix M with entries {0, 1, ∗},
the problem of partitioning the vertex set of a chordal graph G into sets V1, V2, V3 where G[V1]

is M-partitionable and G[V2] and G[V3] are both P3-free is polynomial time solvable.
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Finally, for the sake of completeness and to justify Table 5.1, we include the following

claims which are easy to observe.

Theorem 5.27. For any k ≥ 0 and for any graph property P, which is polynomial time

recognisable in chordal graphs, one can decide in polynomial time, whether a given chordal

graph admits a partition into a Kk-free graph and a graph in P.

A special case of the following result has been shown in [3].

Theorem 5.28. For any additive (induced) hereditary property P and any graph H, if it

is NP -complete to decide whether a graph admits a partition into an H-free graph and a

graph from P, it is also NP -complete to decide whether a graph admits a partition into a

(H ⊎K1)-free graph and a graph from P.

Theorem 5.29. [114] There exists a polynomial time algorithm that decides, for a given

graph G, whether G admits a partition into a clique and a P3-free graph.
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